1
|
Fenton AW, Hoffpauir ZA, Martin TA, Harris RA, Lamb AL. Are Allosteric Mechanisms Conserved Among Homologues? J Mol Biol 2025:169176. [PMID: 40306405 DOI: 10.1016/j.jmb.2025.169176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Conservation of allosteric mechanisms among homologues is often assumed but seldom tested. This assumption underpins key concepts like coevolution of residues involved in allosteric mechanisms and the comparison of structures of two different homologues to gain insights into allosteric mechanisms. As an initial assessment of whether allosteric mechanisms are conserved among homologues, this work reviews what is known about the allosteric mechanisms of liver pyruvate kinase (LPYK) vs. skeletal muscle pyruvate kinase (M1PYK), framed within a two-ligand allosteric energy cycle description of allosteric regulation. Selective observations from other PYK homologues are included when relevant. The primary focus of this review is on functional data, while expressing caution regarding the interpretation of allosteric mechanisms based solely on available X-ray crystallographic structures. Additionally, this review considers types of data that are currently lacking for these two PYK homologues, highlighting potential techniques that could be valuable for evaluating the conservation of allosteric mechanisms among homologues. In particular, a hybrid tetramer technique that has been used to study bacterial phosphofructokinases 1 is summarized. Interestingly, despite a high degree of similarity (66.5% sequence identity) between the LPYK and rM1PYK proteins, the available functional comparisons do not provide strong evidence for conserved allosteric mechanisms. Lastly, we consider whether insights into native allosteric mechanisms are relevant to allosteric mechanisms associated with allosteric drug designs.
Collapse
Affiliation(s)
- Aron W Fenton
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Zoe A Hoffpauir
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Tyler A Martin
- San Antonio Uniformed Services Health Education Consortium, Fort Sam Houston, TX 78234, USA
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Audrey L Lamb
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
2
|
Mitermite M, Elizari JMU, Ma R, Farrell D, Gordon SV. Exploring virulence in Mycobacterium bovis: clues from comparative genomics and perspectives for the future. Ir Vet J 2023; 76:26. [PMID: 37770951 PMCID: PMC10540498 DOI: 10.1186/s13620-023-00257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Here we provide a summary of a plenary lecture delivered on Mycobacterium bovis, the bovine TB bacillus, at the M. bovis 2022 meeting held in Galway, Ireland, in June 2022. We focus on the analysis of genetic differences between M. bovis and the human pathogen Mycobacterium tuberculosis as a route to gain knowledge on what makes M. bovis function as an animal pathogen. We provide a brief historical background around M. bovis and comparative virulence experiments with M. tuberculosis, before moving to what we have learned from the studies of the M. bovis genome sequence. We discuss the need to translate knowledge on the molecular basis of virulence in M. bovis into improved control of bovine tuberculosis.
Collapse
Affiliation(s)
- Morgane Mitermite
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Jose Maria Urtasun Elizari
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ruoyao Ma
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
- UCD School of Medicine, University College Dublin, Dublin, Ireland.
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
- UCD Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Romano GE, Silva-Pereira TT, de Melo FM, Sisco MC, Banari AC, Zimpel CK, Soler-Camargo NC, Guimarães AMDS. Unraveling the metabolism of Mycobacterium caprae using comparative genomics. Tuberculosis (Edinb) 2022; 136:102254. [PMID: 36126496 DOI: 10.1016/j.tube.2022.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/01/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022]
Abstract
In our laboratory, Mycobacterium caprae has poor growth in standard medium (SM) 7H9-OADC supplemented with pyruvate and Tween-80. Our objectives were to identify mutations affecting M. caprae metabolism and use this information to design a culture medium to improve its growth. We selected 77 M. caprae genomes and sequenced M. caprae NLA000201913 used in our experiments. Mutations present in >95% of the strains compared to Mycobacterium tuberculosis H37Rv were analyzed in silico for their deleterious effects on proteins of metabolic pathways. Apart from the known defect in the pyruvate kinase, M. caprae has important lesions in enzymes of the TCA cycle, methylmalonyl cycle, B12 metabolism, and electron-transport chain. We provide evidence of enzymatic redundancy elimination and epistatic mutations, and possible production of toxic metabolites hindering M. caprae growth in vitro. A newly designed SM supplemented with l-glutamate allowed faster growth and increased final microbial mass of M. caprae. However, possible accumulation of metabolic waste-products and/or nutritional limitations halted M. caprae growth prior to a M. tuberculosis-like stationary phase. Our findings suggest that M. caprae relies on GABA and/or glyoxylate shunts for in vitro growth in routine media. The newly developed medium will improve experiments with this bacterium by allowing faster growth in vitro.
Collapse
Affiliation(s)
- Giovanni Emiddio Romano
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil.
| | - Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil.
| | - Filipe Menegatti de Melo
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil.
| | - Maria Carolina Sisco
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil.
| | - Alexandre Campos Banari
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil; Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, 87 Prof Dr Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-270, Brazil.
| | - Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil; Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, 87 Prof Dr Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-270, Brazil.
| | - Naila Cristina Soler-Camargo
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil; Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, 87 Prof Dr Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-270, Brazil.
| | - Ana Marcia de Sá Guimarães
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil; Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University. 625 Harrison Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Gibson AJ, Passmore IJ, Faulkner V, Xia D, Nobeli I, Stiens J, Willcocks S, Clark TG, Sobkowiak B, Werling D, Villarreal-Ramos B, Wren BW, Kendall SL. Probing Differences in Gene Essentiality Between the Human and Animal Adapted Lineages of the Mycobacterium tuberculosis Complex Using TnSeq. Front Vet Sci 2021; 8:760717. [PMID: 35004921 PMCID: PMC8739905 DOI: 10.3389/fvets.2021.760717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Members of the Mycobacterium tuberculosis complex (MTBC) show distinct host adaptations, preferences and phenotypes despite being >99% identical at the nucleic acid level. Previous studies have explored gene expression changes between the members, however few studies have probed differences in gene essentiality. To better understand the functional impacts of the nucleic acid differences between Mycobacterium bovis and Mycobacterium tuberculosis, we used the Mycomar T7 phagemid delivery system to generate whole genome transposon libraries in laboratory strains of both species and compared the essentiality status of genes during growth under identical in vitro conditions. Libraries contained insertions in 54% of possible TA sites in M. bovis and 40% of those present in M. tuberculosis, achieving similar saturation levels to those previously reported for the MTBC. The distributions of essentiality across the functional categories were similar in both species. 527 genes were found to be essential in M. bovis whereas 477 genes were essential in M. tuberculosis and 370 essential genes were common in both species. CRISPRi was successfully utilised in both species to determine the impacts of silencing genes including wag31, a gene involved in peptidoglycan synthesis and Rv2182c/Mb2204c, a gene involved in glycerophospholipid metabolism. We observed species specific differences in the response to gene silencing, with the inhibition of expression of Mb2204c in M. bovis showing significantly less growth impact than silencing its orthologue (Rv2182c) in M. tuberculosis. Given that glycerophospholipid metabolism is a validated pathway for antimicrobials, our observations suggest that target vulnerability in the animal adapted lineages cannot be assumed to be the same as the human counterpart. This is of relevance for zoonotic tuberculosis as it implies that the development of antimicrobials targeting the human adapted lineage might not necessarily be effective against the animal adapted lineage. The generation of a transposon library and the first reported utilisation of CRISPRi in M. bovis will enable the use of these tools to further probe the genetic basis of survival under disease relevant conditions.
Collapse
Affiliation(s)
- Amanda J. Gibson
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Ian J. Passmore
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Valwynne Faulkner
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Dong Xia
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Jennifer Stiens
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Sam Willcocks
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ben Sobkowiak
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dirk Werling
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | | | - Brendan W. Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sharon L. Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom,*Correspondence: Sharon L. Kendall
| |
Collapse
|
5
|
Macedo Couto R, Ranzani OT, Waldman EA. Zoonotic Tuberculosis in Humans: Control, Surveillance, and the One Health Approach. Epidemiol Rev 2020; 41:130-144. [PMID: 32294188 DOI: 10.1093/epirev/mxz002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 11/12/2022] Open
Abstract
Zoonotic tuberculosis is a reemerging infectious disease in high-income countries and a neglected one in low- and middle-income countries. Despite major advances in its control as a result of milk pasteurization, its global burden is unknown, especially due the lack of surveillance data. Additionally, very little is known about control strategies. The purpose of this review was to contextualize the current knowledge about the epidemiology of zoonotic tuberculosis and to describe the available evidence regarding surveillance and control strategies in high-, middle-, and low-income countries. We conducted this review enriched by a One Health perspective, encompassing its inherent multifaceted characteristics. We found that the burden of zoonotic tuberculosis is likely to be underreported worldwide, with higher incidence in low-income countries, where the surveillance systems are even more fragile. Together with the lack of specific political commitment, surveillance data is affected by lack of a case definition and limitations of diagnostic methods. Control measures were dependent on risk factors and varied greatly between countries. This review supports the claim that a One Health approach is the most valuable concept to build capable surveillance systems, resulting in effective control measures. The disease characteristics and suggestions to implement surveillance and control programs are discussed.
Collapse
Affiliation(s)
- Rodrigo Macedo Couto
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Otavio T Ranzani
- Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eliseu Alves Waldman
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Sabio Y García J, Bigi MM, Klepp LI, García EA, Blanco FC, Bigi F. Does Mycobacterium bovis persist in cattle in a non-replicative latent state as Mycobacterium tuberculosis in human beings? Vet Microbiol 2020; 247:108758. [PMID: 32768211 DOI: 10.1016/j.vetmic.2020.108758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Members of the Mycobacterium tuberculosis complex (MTBC) are responsible for tuberculosis in several mammals. In this complex, Mycobacterium tuberculosis and Mycobacterium bovis, which are closely related, show host preference for humans and cattle, respectively. Although human and bovine tuberculosis are clinically similar, M. tuberculosis mostly causes latent infection in humans, whereas M. bovis frequently leads to an acute infection in cattle. This review attempts to connect the pathology in experimental animal models as well as the cellular responses to M. bovis and M. tuberculosis regarding the differences in protein expression and regulatory mechanisms of both pathogens that could explain their apparent divergent latency behaviour. The occurrence of latent bovine tuberculosis (bTB) would represent a serious complication for the eradication of the disease in cattle, with the risk of onward transmission to humans. Thus, understanding the physiological events that may lead to the state of latency in bTB could assist in the development of appropriate prevention and control tools.
Collapse
Affiliation(s)
- Julia Sabio Y García
- (Instituto de Biotecnología-IABIMO, INTA-CONICET), Institute of Biotechnology-IABIMO, National Institute of Agricultural Technology (INTA) and National Scientific and Technical Research Council (CONICET), Argentina.
| | - María M Bigi
- (Universidad de Buenos Aires, Facultad de Agronomía), University of Buenos Aires, School of Agronomy Facultad de Agronomía, UBA, Buenos Aires Argentina.
| | - Laura I Klepp
- (Instituto de Biotecnología-IABIMO, INTA-CONICET), Institute of Biotechnology-IABIMO, National Institute of Agricultural Technology (INTA) and National Scientific and Technical Research Council (CONICET), Argentina.
| | - Elizabeth A García
- (Instituto de Biotecnología-IABIMO, INTA-CONICET), Institute of Biotechnology-IABIMO, National Institute of Agricultural Technology (INTA) and National Scientific and Technical Research Council (CONICET), Argentina.
| | - Federico C Blanco
- (Instituto de Biotecnología-IABIMO, INTA-CONICET), Institute of Biotechnology-IABIMO, National Institute of Agricultural Technology (INTA) and National Scientific and Technical Research Council (CONICET), Argentina.
| | - Fabiana Bigi
- (Instituto de Biotecnología-IABIMO, INTA-CONICET), Institute of Biotechnology-IABIMO, National Institute of Agricultural Technology (INTA) and National Scientific and Technical Research Council (CONICET), Argentina.
| |
Collapse
|
7
|
Model-based integration of genomics and metabolomics reveals SNP functionality in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2020; 117:8494-8502. [PMID: 32229570 DOI: 10.1073/pnas.1915551117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human tuberculosis is caused by members of the Mycobacterium tuberculosis complex (MTBC) that vary in virulence and transmissibility. While genome-wide association studies have uncovered several mutations conferring drug resistance, much less is known about the factors underlying other bacterial phenotypes. Variation in the outcome of tuberculosis infection and diseases has been attributed primarily to patient and environmental factors, but recent evidence indicates an additional role for the genetic diversity among MTBC clinical strains. Here, we used metabolomics to unravel the effect of genetic variation on the strain-specific metabolic adaptive capacity and vulnerability. To define the functionality of single-nucleotide polymorphisms (SNPs) systematically, we developed a constraint-based approach that integrates metabolomic and genomic data. Our model-based predictions correctly classify SNP effects in pyruvate kinase and suggest a genetic basis for strain-specific inherent baseline susceptibility to the antibiotic para-aminosalicylic acid. Our method is broadly applicable across microbial life, opening possibilities for the development of more selective treatment strategies.
Collapse
|
8
|
Kalia NP, Shi Lee B, Ab Rahman NB, Moraski GC, Miller MJ, Pethe K. Carbon metabolism modulates the efficacy of drugs targeting the cytochrome bc 1:aa 3 in Mycobacterium tuberculosis. Sci Rep 2019; 9:8608. [PMID: 31197236 PMCID: PMC6565617 DOI: 10.1038/s41598-019-44887-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
The influence of carbon metabolism on oxidative phosphorylation is poorly understood in mycobacteria. M. tuberculosis expresses two respiratory terminal oxidases, the cytochrome bc1:aa3 and the cytochrome bd oxidase, which are jointly required for oxidative phosphorylation and mycobacterial viability. The essentiality of the cytochrome bc1:aa3 for optimum growth is illustrated by its vulnerability to chemical inhibition by the clinical drug candidate Q203 and several other chemical series. The cytochrome bd oxidase is not strictly essential for growth but is required to maintain bioenergetics when the function of the cytochrome bc1:aa3 is compromised. In this study, we observed that the potency of drugs targeting the cytochrome bc1:aa3 is influenced by carbon metabolism. The efficacy of Q203 and related derivatives was alleviated by glycerol supplementation. The negative effect of glycerol supplementation on Q203 potency correlated with an upregulation of the cytochrome bd oxidase-encoding cydABDC operon. Upon deletion of cydAB, the detrimental effect of glycerol on the potency of Q203 was abrogated. The same phenomenon was also observed in recent clinical isolates, but to a lesser extent compared to the laboratory-adapted strain H37Rv. This study reinforces the importance of optimizing in vitro culture conditions for drug evaluation in mycobacteria, a factor which appeared to be particularly essential for drugs targeting the cytochrome bc1:aa3 terminal oxidase.
Collapse
Affiliation(s)
- Nitin P Kalia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Bei Shi Lee
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Nurlilah B Ab Rahman
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Garrett C Moraski
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
9
|
Tullius MV, Nava S, Horwitz MA. PPE37 Is Essential for Mycobacterium tuberculosis Heme-Iron Acquisition (HIA), and a Defective PPE37 in Mycobacterium bovis BCG Prevents HIA. Infect Immun 2019; 87:e00540-18. [PMID: 30455201 PMCID: PMC6346139 DOI: 10.1128/iai.00540-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/08/2018] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis, one of the world's leading causes of death, must acquire nutrients, such as iron, from the host to multiply and cause disease. Iron is an essential metal and M. tuberculosis possesses two different systems to acquire iron from its environment: siderophore-mediated iron acquisition (SMIA) and heme-iron acquisition (HIA), involving uptake and degradation of heme to release ferrous iron. We have discovered that Mycobacterium bovis BCG, the tuberculosis vaccine strain, is severely deficient in HIA, and we exploited this phenotypic difference between BCG and M. tuberculosis to identify genes involved in HIA by complementing BCG's defect with a fosmid library. We identified ppe37, an iron-regulated PPE family gene, as being essential for HIA. BCG complemented with M. tuberculosisppe37 exhibits HIA as efficient as that of M. tuberculosis, achieving robust growth with <0.2 µM hemin. Conversely, deletion of ppe37 from M. tuberculosis results in a strain severely attenuated in HIA, with a phenotype nearly identical to that of BCG, requiring a 200-fold higher concentration of hemin to achieve growth equivalent to that of its parental strain. A nine-amino-acid deletion near the N terminus of BCG PPE37 (amino acids 31 to 39 of the M. tuberculosis PPE37 protein) underlies BCG's profound defect in HIA. Significant genetic variability exists in ppe37 genes across different M. tuberculosis strains, with more than 60% of sequences from completely sequenced M. tuberculosis genomes having mutations that result in altered PPE37 proteins; furthermore, these altered PPE37 proteins are nonfunctional in HIA. Our findings should allow delineation of the relative roles of HIA and SMIA in M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Michael V Tullius
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Susana Nava
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Marcus A Horwitz
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Snášel J, Pichová I. Allosteric regulation of pyruvate kinase from Mycobacterium tuberculosis by metabolites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:125-139. [PMID: 30419357 DOI: 10.1016/j.bbapap.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/26/2018] [Accepted: 11/08/2018] [Indexed: 12/01/2022]
Abstract
Mycobacterium tuberculosis (Mtb) causes both acute tuberculosis and latent, symptom-free infection that affects roughly one-third of the world's population. It is a globally important pathogen that poses multiple dangers. Mtb reprograms its metabolism in response to the host niche, and this adaptation contributes to its pathogenicity. Knowledge of the metabolic regulation mechanisms in Mtb is still limited. Pyruvate kinase, involved in the late stage of glycolysis, helps link various metabolic routes together. Here, we demonstrate that Mtb pyruvate kinase (Mtb PYK) predominantly catalyzes the reaction leading to the production of pyruvate, but its activity is influenced by multiple metabolites from closely interlinked pathways that act as allosteric regulators (activators and inhibitors). We identified allosteric activators and inhibitors of Mtb PYK originating from glycolysis, citrate cycle, nucleotide/nucleoside inter-conversion related pathways that had not been described so far. Enzyme was found to be activated by fructose-1,6-bisphosphate, ribose-5-phosphate, adenine, adenosine, hypoxanthine, inosine, L-2-phosphoglycerate, l-aspartate, glycerol-2-phosphate, glycerol-3-phosphate. On the other hand thiamine pyrophosphate, glyceraldehyde-3-phosphate and L-malate were identified as inhibitors of Mtb PYK. The detailed kinetic analysis indicated a morpheein model of Mtb PYK allosteric control which is strictly dependent on Mg2+ and substantially increased by the co-presence of Mg2+ and K+.
Collapse
Affiliation(s)
- Jan Snášel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 166 10, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
11
|
Nieto R LM, Mehaffy C, Islam MN, Fitzgerald B, Belisle J, Prenni J, Dobos K. Biochemical Characterization of Isoniazid-resistant Mycobacterium tuberculosis: Can the Analysis of Clonal Strains Reveal Novel Targetable Pathways? Mol Cell Proteomics 2018; 17:1685-1701. [PMID: 29844232 DOI: 10.1074/mcp.ra118.000821] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 01/01/2023] Open
Abstract
Tuberculosis (TB) continues to be an important public health threat worldwide, due in part to drug resistant Mycobacterium tuberculosis (Mtb) strains. The United States recently reported a shortage of isoniazid (INH), which could drive higher INH resistance rates. Changes in the Mtb proteome before and after acquisition of INH resistance in a clean genetic background remain understudied and may elucidate alternate drug targets. Here, we focused on Mtb clonal strains to characterize the consequences of INH resistance on mycobacterial metabolism. Proteomic analysis was conducted by liquid-chromatography tandem mass spectrometry (LC-MS/MS) of cellular and secreted fractions, followed by a normalized spectral counting (NSAF) analysis (data are available via ProteomeXchange with identifier PXD009549). Two different Mtb clonal pairs representing a specific genetic lineage (one clinical and one generated in the laboratory) but sharing a katG mutation associated with INH resistance, were used in our analysis. Overall, we found 26 Mtb proteins with altered abundances after acquisition of INH resistance across both Mtb genetic lineages studied. These proteins were involved in ATP synthesis, lipid metabolism, regulatory events, and virulence, detoxification, and adaptation processes. Proteomic findings were validated by Western blotting analyses whenever possible. Mycolic acid (MA) analysis through LC/MS in the clonal Mtb pairs did not reveal a common trend in the alteration of these fatty acids across both INHr strains but revealed a significant reduction in levels of the two more abundant α-MA features in the clinical INHr strain. Interestingly, the clinical clonal pair demonstrated more variation in the abundance of the proteins involved in the FAS II pathway. Together, the proteomic and lipidomic data highlight the identification of potential drug targets such as alternative lipid biosynthetic pathways that may be exploited to combat clinically relevant Mtb INHr strains.
Collapse
Affiliation(s)
| | | | - M Nurul Islam
- From the ‡Department of Microbiology, Immunology and Pathology
| | | | - John Belisle
- From the ‡Department of Microbiology, Immunology and Pathology
| | - Jessica Prenni
- §Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO
| | - Karen Dobos
- From the ‡Department of Microbiology, Immunology and Pathology,
| |
Collapse
|
12
|
Yeboah-Manu D, de Jong BC, Gehre F. The Biology and Epidemiology of Mycobacterium africanum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:117-133. [PMID: 29116632 DOI: 10.1007/978-3-319-64371-7_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
West Africa is the only region in the world where six out of seven mycobacterial lineages of human importance are endemic. In particular, two evolutionary ancient lineages, Mycobacterium africanum West Africa 1 (MTBC Lineage 5) and M. africanum West Africa 2 (MTBC Lineage 6) are of interest as they cause up to 40% of all pulmonary TB cases in some West African countries. Although these M. africanum lineages are closely related to M. tuberculosis sensu stricto lineages, they differ significantly in respect to biology, epidemiology and in their potential to cause disease in humans. Most importantly the M. africanum lineages are exclusive to West Africa. Although the exact mechanisms underlying this geographical restriction are still not understood, it is increasingly suspected that this is due to an adaptation of the bacteria to West African host populations. In this chapter, we summarize the geographical distribution of the M. africanum lineages within the region, describe biological and clinical differences and the consequent implications for TB control in West Africa. We also try to shed light on the geographical restriction, based on recently published analyses on whole genomes of M. africanum isolates.
Collapse
Affiliation(s)
- Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | | | - Florian Gehre
- Institute for Tropical Medicine, Antwerp, Belgium
- Medical Research Council (MRC) Unit, The Gambia Serrekunda, Gambia
| |
Collapse
|
13
|
Biological and Epidemiological Consequences of MTBC Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:95-116. [PMID: 29116631 DOI: 10.1007/978-3-319-64371-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis is caused by different groups of bacteria belonging to the Mycobacterium tuberculosis complex (MTBC). The combined action of human factors, environmental conditions and bacterial virulence determine the extent and form of human disease. MTBC virulence is a composite of different clinical phenotypes such as transmission rate and disease severity among others. Clinical phenotypes are also influenced by cellular and immunological phenotypes. MTBC phenotypes are determined by the genotype, therefore finding genotypes responsible for clinical phenotypes would allow discovering MTBC virulence factors. Different MTBC strains display different cellular and clinical phenotypes. Strains from Lineage 5 and Lineage 6 are metabolically different, grow slower, and are less virulent. Also, at least certain groups of Lineage 2 and Lineage 4 strains are more virulent in terms of disease severity and human-to-human transmission. Because phenotypic differences are ultimately caused by genotypic differences, different genomic loci have been related to various cellular and clinical phenotypes. However, defining the impact of specific bacterial genomic loci on virulence when other bacterial determinants, human and environmental factors are also impacting the phenotype would contribute to a better knowledge of tuberculosis virulence and ultimately benefit tuberculosis control.
Collapse
|
14
|
Desjardins CA, Cohen KA, Munsamy V, Abeel T, Maharaj K, Walker BJ, Shea TP, Almeida DV, Manson AL, Salazar A, Padayatchi N, O'Donnell MR, Mlisana KP, Wortman J, Birren BW, Grosset J, Earl AM, Pym AS. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nat Genet 2016; 48:544-51. [PMID: 27064254 PMCID: PMC4848111 DOI: 10.1038/ng.3548] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 03/18/2016] [Indexed: 12/19/2022]
Abstract
A more complete understanding of the genetic basis of drug resistance in Mycobacterium tuberculosis is critical for prompt diagnosis and optimal treatment, particularly for toxic second-line drugs such as D-cycloserine. Here we used the whole-genome sequences from 498 strains of M. tuberculosis to identify new resistance-conferring genotypes. By combining association and correlated evolution tests with strategies for amplifying signal from rare variants, we found that loss-of-function mutations in ald (Rv2780), encoding L-alanine dehydrogenase, were associated with unexplained drug resistance. Convergent evolution of this loss of function was observed exclusively among multidrug-resistant strains. Drug susceptibility testing established that ald loss of function conferred resistance to D-cycloserine, and susceptibility to the drug was partially restored by complementation of ald. Clinical strains with mutations in ald and alr exhibited increased resistance to D-cycloserine when cultured in vitro. Incorporation of D-cycloserine resistance in novel molecular diagnostics could allow for targeted use of this toxic drug among patients with susceptible infections.
Collapse
Affiliation(s)
| | - Keira A Cohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Durban, South Africa
| | - Vanisha Munsamy
- KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Durban, South Africa
| | - Thomas Abeel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, the Netherlands
| | - Kashmeel Maharaj
- KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Durban, South Africa
| | - Bruce J Walker
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Terrance P Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Deepak V Almeida
- KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Durban, South Africa
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Abigail L Manson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alex Salazar
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, the Netherlands
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Max R O'Donnell
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Epidemiology, Columbia Mailman School of Public Health, New York, New York, USA
| | - Koleka P Mlisana
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- National Health Laboratory Service, Durban, South Africa
| | - Jennifer Wortman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Bruce W Birren
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jacques Grosset
- KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Durban, South Africa
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ashlee M Earl
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alexander S Pym
- KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Durban, South Africa
| |
Collapse
|
15
|
Abstract
Metabolism is a biochemical activity of all cells, thought to fuel the physiologic needs of a given cell in a quantitative, rather than qualitatively specific, manner. Mycobacterium tuberculosis is a chronic facultative intracellular pathogen that resides in humans as its only known host and reservoir. Within humans, M. tuberculosis resides chiefly in the macrophage phagosome, the cell type and compartment most committed to its eradication. M. tuberculosis thus occupies the majority of its decades-long life cycle in a state of slowed or arrested replication. At the same time, M. tuberculosis remains poised to reenter the cell cycle to ensure its propagation as a species. M. tuberculosis has thus evolved its metabolic network to both maintain and propagate its survival as a species within a single host. Knowledge of the specific ways in which its metabolic network serves these distinct though interdependent functions, however, remains highly incomplete. In this article we review existing knowledge of M. tuberculosis's central carbon metabolism as reported by studies of its basic genetic and biochemical composition, regulation, and organization, with the hope that such knowledge will inform our understanding of M. tuberculosis's ability to traverse the stringent and heterogeneous niches encountered in the host.
Collapse
|
16
|
Noy T, Vergnolle O, Hartman TE, Rhee KY, Jacobs WR, Berney M, Blanchard JS. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis. J Biol Chem 2016; 291:7060-9. [PMID: 26858255 DOI: 10.1074/jbc.m115.707430] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb.
Collapse
Affiliation(s)
- Tahel Noy
- From the Departments of Biochemistry and
| | | | - Travis E Hartman
- the Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10021
| | - Kyu Y Rhee
- the Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10021
| | - William R Jacobs
- the Department of Microbiology and Immunology, Howard Hughes Medical Institute at Albert Einstein College of Medicine, New York, New York 10461, and Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York 10461
| | - Michael Berney
- Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York 10461,
| | | |
Collapse
|
17
|
Lofthouse EK, Wheeler PR, Beste DJV, Khatri BL, Wu H, Mendum T, Kierzek AM, McFadden J. Systems-based approaches to probing metabolic variation within the Mycobacterium tuberculosis complex. PLoS One 2013; 8:e75913. [PMID: 24098743 PMCID: PMC3783153 DOI: 10.1371/journal.pone.0075913] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/16/2013] [Indexed: 01/11/2023] Open
Abstract
The Mycobacterium tuberculosis complex includes bovine and human strains of the tuberculosis bacillus, including Mycobacterium tuberculosis, Mycobacterium bovis and the Mycobacterium bovis BCG vaccine strain. M. bovis has evolved from a M. tuberculosis-like ancestor and is the ancestor of the BCG vaccine. The pathogens demonstrate distinct differences in virulence, host range and metabolism, but the role of metabolic differences in pathogenicity is poorly understood. Systems biology approaches have been used to investigate the metabolism of M. tuberculosis, but not to probe differences between tuberculosis strains. In this study genome scale metabolic networks of M. bovis and M. bovis BCG were constructed and interrogated, along with a M. tuberculosis network, to predict substrate utilisation, gene essentiality and growth rates. The models correctly predicted 87-88% of high-throughput phenotype data, 75-76% of gene essentiality data and in silico-predicted growth rates matched measured rates. However, analysis of the metabolic networks identified discrepancies between in silico predictions and in vitro data, highlighting areas of incomplete metabolic knowledge. Additional experimental studies carried out to probe these inconsistencies revealed novel insights into the metabolism of these strains. For instance, that the reduction in metabolic capability observed in bovine tuberculosis strains, as compared to M. tuberculosis, is not reflected by current genetic or enzymatic knowledge. Hence, the in silico networks not only successfully simulate many aspects of the growth and physiology of these mycobacteria, but also provide an invaluable tool for future metabolic studies.
Collapse
Affiliation(s)
- Emma K. Lofthouse
- Animal Health and Veterinary Laboratories Agency (Weybridge), Department for Bovine Tuberculosis, New Haw, Surrey, United Kingdom
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, Surrey, United Kingdom
| | - Paul R. Wheeler
- Animal Health and Veterinary Laboratories Agency (Weybridge), Department for Bovine Tuberculosis, New Haw, Surrey, United Kingdom
| | - Dany J. V. Beste
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, Surrey, United Kingdom
| | - Bhagwati L. Khatri
- Animal Health and Veterinary Laboratories Agency (Weybridge), Department for Bovine Tuberculosis, New Haw, Surrey, United Kingdom
| | - Huihai Wu
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, Surrey, United Kingdom
| | - Tom A. Mendum
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, Surrey, United Kingdom
| | - Andrzej M. Kierzek
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, Surrey, United Kingdom
| | - Johnjoe McFadden
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Zhang B, Xu C, Zhou S, Feng S, Zhang L, He Y, Liao M. Comparative proteomic analysis of a Haemophilus parasuis SC096 mutant deficient in the outer membrane protein P5. Microb Pathog 2012; 52:117-24. [DOI: 10.1016/j.micpath.2011.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
|
19
|
ald of Mycobacterium tuberculosis encodes both the alanine dehydrogenase and the putative glycine dehydrogenase. J Bacteriol 2011; 194:1045-54. [PMID: 22210765 DOI: 10.1128/jb.05914-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown.
Collapse
|
20
|
Kahla IB, Henry M, Boukadida J, Drancourt M. Pyrosequencing assay for rapid identification of Mycobacterium tuberculosis complex species. BMC Res Notes 2011; 4:423. [PMID: 22011383 PMCID: PMC3214197 DOI: 10.1186/1756-0500-4-423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 10/19/2011] [Indexed: 11/10/2022] Open
Abstract
Background Identification of the Mycobacterium tuberculosis complex organisms to the species level is important for diagnostic, therapeutic and epidemiologic perspectives. Indeed, isolates are routinely identified as belonging to the M. tuberculosis complex without further discrimination in agreement with the high genomic similarity of the M. tuberculosis complex members and the resulting complex available identification tools. Findings We herein develop a pyrosequencing assay analyzing polymorphisms within glpK, pykA and gyrB genes to identify members of the M. tuberculosis complex at the species level. The assay was evaluated with 22 M. tuberculosis, 21 M. bovis, 3 M. caprae, 3 M. microti, 2 M. bovis BCG, 2 M. pinnipedii, 1 M. canettii and 1 M. africanum type I isolates. The resulted pyrograms were consistent with conventional DNA sequencing data and successfully identified all isolates. Additionally, 127 clinical M. tuberculosis complex isolates were analyzed and were unambiguously identified as M. tuberculosis. Conclusion We proposed a pyrosequencing-based scheme for the rapid identification of M. tuberculosis complex isolates at the species level. The assay is robust, specific, rapid and can be easily introduced in the routine activity.
Collapse
Affiliation(s)
- Imen Ben Kahla
- URMITE, CNRS UMR6236, IRD198, IFR 48, Institut Méditerranée Infection, Aix-Marseille-Université, Marseille, France.
| | | | | | | |
Collapse
|
21
|
Mehaffy MC, Kruh-Garcia NA, Dobos KM. Prospective on Mycobacterium tuberculosis proteomics. J Proteome Res 2011; 11:17-25. [PMID: 21988637 DOI: 10.1021/pr2008658] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, remains one of the most prevalent human pathogens in the world. Knowledge regarding the bacilli's physiology as well as its mechanisms of virulence, immunogenicity, and pathogenesis has increased greatly in the last three decades. However, the function of about one-quarter of the Mtb coding genome and the precise activity and protein networks of most of the Mtb proteins are still unknown. Protein mass spectrometry and a new interest in research toward the field of functional proteomics have given a new light to the study of this bacillus and will be the focus of this review. We will also discuss new perspectives in the proteomics field, in particular targeted mass spectrometry methods and their potential applications in TB research and discovery.
Collapse
Affiliation(s)
- M Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, Colorado 80523, United States
| | | | | |
Collapse
|
22
|
Kirschner DE, Young D, Flynn JL. Tuberculosis: global approaches to a global disease. Curr Opin Biotechnol 2010; 21:524-31. [PMID: 20637596 DOI: 10.1016/j.copbio.2010.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
Abstract
Mycobacterium tuberculosis is a remarkably successful human pathogen. The interaction with the human host is complex and much remains unknown. Recent advances in systems biology have allowed the integration of data from humans and animal models into computational approaches. For example, mathematical models provide a platform for in silico manipulation of host-pathogen interactions to gain insight into this infection across temporal and biologic scales. Here, we review recent studies on global approaches toward identifying comprehensive responses of both host and bacillus during infection, and the potential for incorporation of these data into many types of useful computational systems. Systems biology approaches provide a unique opportunity to study interventions that may improve therapy and vaccines against this major killer.
Collapse
Affiliation(s)
- Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | |
Collapse
|
23
|
Understanding the role of PknJ in Mycobacterium tuberculosis: biochemical characterization and identification of novel substrate pyruvate kinase A. PLoS One 2010; 5:e10772. [PMID: 20520732 PMCID: PMC2875399 DOI: 10.1371/journal.pone.0010772] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/29/2010] [Indexed: 11/19/2022] Open
Abstract
Reversible protein phosphorylation is a prevalent signaling mechanism which modulates cellular metabolism in response to changing environmental conditions. In this study, we focus on previously uncharacterized Mycobacterium tuberculosis Ser/Thr protein kinase (STPK) PknJ, a putative transmembrane protein. PknJ is shown to possess autophosphorylation activity and is also found to be capable of carrying out phosphorylation on the artificial substrate myelin basic protein (MyBP). Previous studies have shown that the autophosphorylation activity of M. tuberculosis STPKs is dependent on the conserved residues in the activation loop. However, our results show that apart from the conventional conserved residues, additional residues in the activation loop may also play a crucial role in kinase activation. Further characterization of PknJ reveals that the kinase utilizes unusual ions (Ni2+, Co2+) as cofactors, thus hinting at a novel mechanism for PknJ activation. Additionally, as shown for other STPKs, we observe that PknJ possesses the capability to dimerize. In order to elucidate the signal transduction cascade emanating from PknJ, the M. tuberculosis membrane-associated protein fraction is treated with the active kinase and glycolytic enzyme Pyruvate kinase A (mtPykA) is identified as one of the potential substrates of PknJ. The phospholabel is found to be localized on serine and threonine residue(s), with Ser37 identified as one of the sites of phosphorylation. Since Pyk is known to catalyze the last step of glycolysis, our study shows that the fundamental pathways such as glycolysis can also be governed by STPK-mediated signaling.
Collapse
|
24
|
Boshoff HIM, Lun DS. Systems biology approaches to understanding mycobacterial survival mechanisms. ACTA ACUST UNITED AC 2010; 7:e75-e82. [PMID: 21072257 DOI: 10.1016/j.ddmec.2010.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The advent of high-throughput platforms for the interrogation of biological systems at the cellular and molecular level have allowed living cells to be observed and understood at a hitherto unprecedented level of detail and have enabled the construction of comprehensive, predictive in silico models. Here, we review the application of such high-throughput, systems-biological techniques to mycobacteria-specifically to the pernicious human pathogen Mycobacterium tuberculosis (MTb) and its ability to survive in human hosts. We discuss the development and application of transcriptomic, proteomic, regulomic, and metabolomic techniques for MTb as well as the development and application of genome-scale in silico models. Thus far, systems-biological approaches have largely focused on in vitro models of MTb growth; reliably extending these approaches to in vivo conditions relevant to infection is a significant challenge for the future that holds the ultimate promise of novel chemotherapeutic interventions.
Collapse
Affiliation(s)
- Helena I M Boshoff
- Tuberculosis Research Section, LCID, NIAID, NIH, Building 33, 9000 Rockville Pike, Bethesda, MD 20892
| | | |
Collapse
|