1
|
Hayashi T. [Genome analysis-based studies on bacterial genetic diversity]. Nihon Saikingaku Zasshi 2022; 77:145-160. [PMID: 36418109 DOI: 10.3412/jsb.77.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
There are a huge number of bacterial species on earth, and a huge intra-species genomic diversity are also observed in many bacteria. The high ability of bacteria to acquire foreign DNA and the presence of various mobile genetic elements contribute the generation of such genomic diversity. During the biochemical and genetic analysis of a Pseudomonas aeruginosa toxin, called cytotoxin, and its converting phage, which I first engaged in my research carrier, I became very interested in the genetic diversity of bacteria and mobile genetic elements such as bacteriophages, and realized the usefulness and power of genome analysis. Since then, I have been involved in genome analyses of various pathogenic bacteria such as enterohemorrhagic Escherichia coli (EHEC), commensal bacteria of human and other animals, and bacteria or bacterial communities in natural environments. I was so lucky that I jumped in this research field at the very begging of genome analyses and experienced a very exciting time of surprisingly rapid advance in genome sequencing technologies which revolutionized a wide range of biology. In this article, I first review the main findings which our group obtained from the genome analyses on the P. aeruginosa cytotoxin converting phage and those on the evolution and genomic diversity of EHEC and related bacteria. The results of our analyses of Rickettsiaceae family genomes, which show surprisingly very low genomic diversity, and genome sequence-based analyses of an intrahospital bacterial outbreak and within-host genomic diversity are also summarized.
Collapse
Affiliation(s)
- Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University
| |
Collapse
|
2
|
Romão FT, Martins FH, Hernandes RT, Ooka T, Santos FF, Yamamoto D, Bonfim-Melo A, Jones N, Hayashi T, Elias WP, Sperandio V, Gomes TAT. Genomic Properties and Temporal Analysis of the Interaction of an Invasive Escherichia albertii With Epithelial Cells. Front Cell Infect Microbiol 2020; 10:571088. [PMID: 33392102 PMCID: PMC7772469 DOI: 10.3389/fcimb.2020.571088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Diarrhea is one of the main causes of infant mortality worldwide, mainly in the developing world. Among the various etiologic agents, Escherichia albertii is emerging as an important human enteropathogen. E. albertii promote attaching and effacing (AE) lesions due to the presence of the locus of enterocyte effacement (LEE) that encodes a type three secretion system (T3SS), the afimbrial adhesin intimin and its translocated receptor, Tir, and several effector proteins. We previously showed that E. albertii strain 1551-2 invades several epithelial cell lineages by a process that is dependent on the intimin-Tir interaction. To understand the contribution of T3SS-dependent effectors present in E. albertii 1551-2 during the invasion process, we performed a genetic analysis of the LEE and non-LEE genes and evaluated the expression of the LEE operons in various stages of bacterial interaction with differentiated intestinal Caco-2 cells. The kinetics of the ability of the 1551-2 strain to colonize and form AE lesions was also investigated in epithelial HeLa cells. We showed that the LEE expression was constant during the early stages of infection but increased at least 4-fold during bacterial persistence in the intracellular compartment. An in silico analysis indicated the presence of a new tccP/espFU subtype, named tccP3. We found that the encoded protein colocalizes with Tir and polymerized F-actin during the infection process in vitro. Moreover, assays performed with Nck null cells demonstrated that the 1551-2 strain can trigger F-actin polymerization in an Nck-independent pathway, despite the fact that TccP3 is not required for this phenotype. Our study highlights the importance of the T3SS during the invasion process and for the maintenance of E. albertii 1551-2 inside the cells. In addition, this work may help to elucidate the versatility of the T3SS for AE pathogens, which are usually considered extracellular and rarely reach the intracellular environment.
Collapse
Affiliation(s)
- Fabiano T Romão
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fernando H Martins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Rodrigo T Hernandes
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Fernanda F Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Denise Yamamoto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil.,Universidade Santo Amaro, São Paulo, Brazil
| | - Alexis Bonfim-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| |
Collapse
|
3
|
Hernandes RT, Hazen TH, dos Santos LF, Richter TKS, Michalski JM, Rasko DA. Comparative genomic analysis provides insight into the phylogeny and virulence of atypical enteropathogenic Escherichia coli strains from Brazil. PLoS Negl Trop Dis 2020; 14:e0008373. [PMID: 32479541 PMCID: PMC7289442 DOI: 10.1371/journal.pntd.0008373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/11/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background Atypical enteropathogenic Escherichia coli (aEPEC) are one of the most frequent intestinal E. coli pathotypes isolated from diarrheal patients in Brazil. Isolates of aEPEC contain the locus of enterocyte effacement, but lack the genes of the bundle-forming pilus of typical EPEC, and the Shiga toxin of enterohemorrhagic E. coli (EHEC). The objective of this study was to evaluate the phylogeny and the gene content of Brazilian aEPEC genomes compared to a global aEPEC collection. Methodology Single nucleotide polymorphism (SNP)-based phylogenomic analysis was used to compare 106 sequenced Brazilian aEPEC with 221 aEPEC obtained from other geographic origins. Additionally, Large-Scale BLAST Score Ratio was used to determine the shared versus unique gene content of the aEPEC studied. Principal Findings Phylogenomic analysis demonstrated the 106 Brazilian aEPEC were present in phylogroups B1 (47.2%, 50/106), B2 (23.6%, 25/106), A (22.6%, 24/106), and E (6.6%, 7/106). Identification of EPEC and EHEC phylogenomic lineages demonstrated that 42.5% (45/106) of the Brazilian aEPEC were in four of the previously defined lineages: EPEC10 (17.9%, 19/106), EPEC9 (10.4%, 11/106), EHEC2 (7.5%, 8/106) and EPEC7 (6.6%, 7/106). Interestingly, an additional 28.3% (30/106) of the Brazilian aEPEC were identified in five novel lineages: EPEC11 (14.2%, 15/106), EPEC12 (4.7%, 5/106), EPEC13 (1.9%, 2/106), EPEC14 (5.7%, 6/106) and EPEC15 (1.9%, 2/106). We identified 246 genes that were more frequent among the aEPEC isolates from Brazil compared to the global aEPEC collection, including espG2, espT and espC (P<0.001). Moreover, the nleF gene was more frequently identified among Brazilian aEPEC isolates obtained from diarrheagenic patients when compared to healthy subjects (69.7% vs 41.2%, P<0.05). Conclusion The current study demonstrates significant genomic diversity among aEPEC from Brazil, with the identification of Brazilian aEPEC isolates to five novel EPEC lineages. The greater prevalence of some virulence genes among Brazilian aEPEC genomes could be important to the specific virulence strategies used by aEPEC in Brazil to cause diarrheal disease. Atypical EPEC (aEPEC) is one of the most frequent diarrheagenic Escherichia coli pathotypes isolated from patients in Brazil and is associated with diarrheal outbreaks. This study is the first to sequence the genomes of a collection of aEPEC isolates from a South American country, Brazil, and compare their phylogenetic relationships and gene content with a global collection of aEPEC. This approach identified Brazilian aEPEC genomes in previously characterized EPEC/EHEC phylogenomic lineages and resulted in the identification of five novel EPEC phylogenomic lineages, designated EPEC11 to EPEC15. We also observed that virulence genes, such as espG2, espT and espC were more frequently identified among the Brazilian aEPEC genomes, demonstrating potential differences in the virulence repertoire of this pathogen in Brazil.
Collapse
Affiliation(s)
- Rodrigo T. Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Botucatu, SP, Brasil
- * E-mail:
| | - Tracy H. Hazen
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | - Taylor K. S. Richter
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jane M. Michalski
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David A. Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
EspFu-Mediated Actin Assembly Enhances Enteropathogenic Escherichia coli Adherence and Activates Host Cell Inflammatory Signaling Pathways. mBio 2020; 11:mBio.00617-20. [PMID: 32291304 PMCID: PMC7157822 DOI: 10.1128/mbio.00617-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
EPEC is among the leading causes of diarrheal disease worldwide. The colonization of the gut mucosa by EPEC results in actin pedestal formation at the site of bacterial attachment. These pedestals are referred to as attaching and effacing (AE) lesions. Here, we exploit the different molecular mechanisms used by EPEC to induce AE lesions on epithelial cells, showing that the effector EspFu is associated with increased bacterial attachment and enhanced epithelial colonization compared to the Tir-Nck pathway. Moreover, we also showed that actin pedestal formation can counterbalance the anti-inflammatory activity induced by EPEC, especially when driven by EspFu. Collectively, our findings provide new insights into virulence mechanisms employed by EPEC to colonize epithelial cells, as well as the host response to this enteric pathogen. The translocation of effectors into the host cell through type 3 secretion systems (T3SS) is a sophisticated strategy employed by pathogenic bacteria to subvert host responses and facilitate colonization. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) utilize the Tir and EspFu (also known as TccP) effectors to remodel the host cytoskeleton, culminating in the formation of attaching and effacing (AE) lesions on enterocytes. While some EPEC strains require tyrosine phosphorylation of Tir and recruitment of the host Nck to trigger actin polymerization, EHEC and certain EPEC strains, whose Tir is not phosphorylated, rely on the effector EspFu for efficient actin remodeling. Here, we investigated the role played by Tir-Nck and Tir-EspFu actin polymerization pathways during the infection of epithelial cells, as well as the host transcriptional response to the AE lesion formation induced by EPEC. We found that EspFu-mediated actin assembly promotes bacterial attachment and epithelial colonization more efficiently than Tir-Nck. Moreover, we showed that both actin polymerization mechanisms can activate inflammatory pathways and reverse the anti-inflammatory response induced by EPEC in epithelial cells. However, this activity is remarkably more evident in infections with EspFu-expressing EPEC strains. This study demonstrates the complex interactions between effector-mediated actin remodeling and inflammation. Different strains carry different combinations of these two effectors, highlighting the plasticity of pathogenic E. coli enteric infections.
Collapse
|
5
|
Ogura Y, Seto K, Morimoto Y, Nakamura K, Sato MP, Gotoh Y, Itoh T, Toyoda A, Ohnishi M, Hayashi T. Genomic Characterization of β-Glucuronidase-Positive Escherichia coli O157:H7 Producing Stx2a. Emerg Infect Dis 2019; 24:2219-2227. [PMID: 30457544 PMCID: PMC6256406 DOI: 10.3201/eid2412.180404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among Shiga toxin (Stx)–producing Escherichia coli (STEC) O157:H7 strains, those producing Stx2a cause more severe diseases. Atypical STEC O157:H7 strains showing a β-glucuronidase–positive phenotype (GP STEC O157:H7) have rarely been isolated from humans, mostly from persons with asymptomatic or mild infections; Stx2a-producing strains have not been reported. We isolated, from a patient with bloody diarrhea, a GP STEC O157:H7 strain (PV15-279) that produces Stx2a in addition to Stx1a and Stx2c. Genomic comparison with other STEC O157 strains revealed that PV15-279 recently emerged from the stx1a/stx2c-positive GP STEC O157:H7 clone circulating in Japan. Major virulence genes are shared between typical (β-glucuronidase–negative) and GP STEC O157:H7 strains, and the Stx2-producing ability of PV15-279 is comparable to that of typical STEC O157:H7 strains; therefore, PV15-279 presents a virulence potential similar to that of typical STEC O157:H7. This study reveals the importance of GP O157:H7 as a source of highly pathogenic STEC clones.
Collapse
|
6
|
Ingle DJ, Tauschek M, Edwards DJ, Hocking DM, Pickard DJ, Azzopardi KI, Amarasena T, Bennett-Wood V, Pearson JS, Tamboura B, Antonio M, Ochieng JB, Oundo J, Mandomando I, Qureshi S, Ramamurthy T, Hossain A, Kotloff KL, Nataro JP, Dougan G, Levine MM, Robins-Browne RM, Holt KE. Evolution of atypical enteropathogenic E. coli by repeated acquisition of LEE pathogenicity island variants. Nat Microbiol 2016; 1:15010. [PMID: 27571974 DOI: 10.1038/nmicrobiol.2015.10] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/02/2015] [Indexed: 01/25/2023]
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) is an umbrella term given to E. coli that possess a type III secretion system encoded in the locus of enterocyte effacement (LEE), but lack the virulence factors (stx, bfpA) that characterize enterohaemorrhagic E. coli and typical EPEC, respectively. The burden of disease caused by aEPEC has recently increased in industrialized and developing nations, yet the population structure and virulence profile of this emerging pathogen are poorly understood. Here, we generated whole-genome sequences of 185 aEPEC isolates collected during the Global Enteric Multicenter Study from seven study sites in Asia and Africa, and compared them with publicly available E. coli genomes. Phylogenomic analysis revealed ten distinct widely distributed aEPEC clones. Analysis of genetic variation in the LEE pathogenicity island identified 30 distinct LEE subtypes divided into three major lineages. Each LEE lineage demonstrated a preferred chromosomal insertion site and different complements of non-LEE encoded effector genes, indicating distinct patterns of evolution of these lineages. This study provides the first detailed genomic framework for aEPEC in the context of the EPEC pathotype and will facilitate further studies into the epidemiology and pathogenicity of EPEC by enabling the detection and tracking of specific clones and LEE variants.
Collapse
Affiliation(s)
- Danielle J Ingle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.,Centre for Systems Genomics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marija Tauschek
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - David J Edwards
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.,Centre for Systems Genomics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dianna M Hocking
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Derek J Pickard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kristy I Azzopardi
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Jaclyn S Pearson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Boubou Tamboura
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | - Martin Antonio
- Medical Research Council Unit (United Kingdom), Fajara, The Gambia
| | - John B Ochieng
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Joseph Oundo
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça, (CISM), CP 1929, Maputo, Mozambique.,Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Shahida Qureshi
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi 74800, Pakistan
| | | | - Anowar Hossain
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Karen L Kotloff
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Roy M Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.,Murdoch Childrens Research Institute, Royal Children's Hospital, Victoria 3052, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.,Centre for Systems Genomics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
The Shiga toxin 2 production level in enterohemorrhagic Escherichia coli O157:H7 is correlated with the subtypes of toxin-encoding phage. Sci Rep 2015; 5:16663. [PMID: 26567959 PMCID: PMC4645166 DOI: 10.1038/srep16663] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/19/2015] [Indexed: 01/21/2023] Open
Abstract
Enterohemorrhagic E. coli (EHEC) causes diarrhea and hemorrhagic colitis with life-threatening complications, such as hemolytic uremic syndrome. Their major virulence factor is Shiga toxin (Stx), which is encoded by bacteriophages. Of the two types of Stx, the production of Stx2, particularly that of Stx2a (a subtype of Stx2), is a major risk factor for severe EHEC infections, but the Stx2 production level is highly variable between strains. Here, we define four major and two minor subtypes of Stx2a-encoding phages according to their replication proteins. The subtypes are correlated with Stx2a titers produced by the host O157 strains, suggesting a critical role of the phage subtype in determining the Stx2a production level. We further show that one of the two subclades in the clade 8, a proposed hyper-virulent lineage of O157, carries the Stx2 phage subtype that confers the highest Stx2 production to the host strain. The presence of this subclade may explain the proposed high virulence potential of clade 8. These results provide novel insights into the variation in virulence among O157 strains and highlight the role of phage variation in determining the production level of the virulence factors that phages encode.
Collapse
|
8
|
Ooka T, Ogura Y, Katsura K, Seto K, Kobayashi H, Kawano K, Tokuoka E, Furukawa M, Harada S, Yoshino S, Seto J, Ikeda T, Yamaguchi K, Murase K, Gotoh Y, Imuta N, Nishi J, Gomes TA, Beutin L, Hayashi T. Defining the Genome Features of Escherichia albertii, an Emerging Enteropathogen Closely Related to Escherichia coli. Genome Biol Evol 2015; 7:3170-9. [PMID: 26537224 PMCID: PMC4700944 DOI: 10.1093/gbe/evv211] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Escherichia albertii is a recently recognized close relative of Escherichia coli. This emerging enteropathogen possesses a type III secretion system (T3SS) encoded by the locus of enterocyte effacement, similar to enteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC). Shiga toxin-producing strains have also been identified. The genomic features of E. albertii, particularly differences from other Escherichia species, have not yet been well clarified. Here, we sequenced the genome of 29 E. albertii strains (3 complete and 26 draft sequences) isolated from multiple sources and performed intraspecies and intragenus genomic comparisons. The sizes of the E. albertii genomes range from 4.5 to 5.1 Mb, smaller than those of E. coli strains. Intraspecies genomic comparisons identified five phylogroups of E. albertii. Intragenus genomic comparison revealed that the possible core genome of E. albertii comprises 3,250 genes, whereas that of the genus Escherichia comprises 1,345 genes. Our analysis further revealed several unique or notable genetic features of E. albertii, including those responsible for known biochemical features and virulence factors and a possibly active second T3SS known as ETT2 (E. coli T3SS 2) that is inactivated in E. coli. Although this organism has been observed to be nonmotile in vitro, genes for flagellar biosynthesis are fully conserved; chemotaxis-related genes have been selectively deleted. Based on these results, we have developed a nested polymerase chain reaction system to directly detect E. albertii. Our data define the genomic features of E. albertii and provide a valuable basis for future studies of this important emerging enteropathogen.
Collapse
Affiliation(s)
- Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Katsura
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| | - Kazuko Seto
- Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Hideki Kobayashi
- Center for Animal Disease Control and Prevention, National Institute of Animal Health, Ibaraki, Japan
| | - Kimiko Kawano
- Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki, Japan
| | - Eisuke Tokuoka
- Division of Microbiology, Kumamoto Prefectural Institute of Public Health and Environmental Science, Kumamoto, Japan
| | - Masato Furukawa
- Division of Microbiology, Kumamoto Prefectural Institute of Public Health and Environmental Science, Kumamoto, Japan
| | - Seiya Harada
- Division of Microbiology, Kumamoto Prefectural Institute of Public Health and Environmental Science, Kumamoto, Japan
| | - Shuji Yoshino
- Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki, Japan
| | - Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Tetsuya Ikeda
- Department of Infection Diseases Bacteriology, Hokkaido Institute of Public Health, Hokkaido, Japan
| | - Keiji Yamaguchi
- Department of Infection Diseases Bacteriology, Hokkaido Institute of Public Health, Hokkaido, Japan
| | - Kazunori Murase
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| | - Yasuhiro Gotoh
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| | - Naoko Imuta
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Junichiro Nishi
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Tânia A Gomes
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Lothar Beutin
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Farrugia DN, Elbourne LDH, Mabbutt BC, Paulsen IT. A novel family of integrases associated with prophages and genomic islands integrated within the tRNA-dihydrouridine synthase A (dusA) gene. Nucleic Acids Res 2015; 43:4547-57. [PMID: 25883135 PMCID: PMC4482086 DOI: 10.1093/nar/gkv337] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/01/2015] [Indexed: 12/12/2022] Open
Abstract
Genomic islands play a key role in prokaryotic genome plasticity. Genomic islands integrate into chromosomal loci such as transfer RNA genes and protein coding genes, whilst retaining various cargo genes that potentially bestow novel functions on the host organism. A gene encoding a putative integrase was identified at a single site within the 5′ end of the dusA gene in the genomes of over 200 bacteria. This integrase was discovered to be a component of numerous genomic islands, which appear to share a target site within the dusA gene. dusA encodes the tRNA-dihydrouridine synthase A enzyme, which catalyses the post-transcriptional reduction of uridine to dihydrouridine in tRNA. Genomic islands encoding homologous dusA-associated integrases were found at a much lower frequency within the related dusB and dusC genes, and non-dus genes. Excision of these dusA-associated islands from the chromosome as circularized intermediates was confirmed by polymerase chain reaction. Analysis of the dusA-associated islands indicated that they were highly diverse, with the integrase gene representing the only universal common feature.
Collapse
Affiliation(s)
- Daniel N Farrugia
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Liam D H Elbourne
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Bridget C Mabbutt
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
10
|
van Overbeek LS, van Doorn J, Wichers JH, van Amerongen A, van Roermund HJW, Willemsen PTJ. The arable ecosystem as battleground for emergence of new human pathogens. Front Microbiol 2014; 5:104. [PMID: 24688484 PMCID: PMC3960585 DOI: 10.3389/fmicb.2014.00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/27/2014] [Indexed: 01/10/2023] Open
Abstract
Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh) vegetables, sprouts, and occasionally fruits made clear that these pathogens are not only transmitted to humans via the "classical" routes of meat, eggs, and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure), water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.
Collapse
Affiliation(s)
- Leonard S van Overbeek
- Plant Research International, Wageningen University and Research Centre Wageningen, Netherlands
| | - Joop van Doorn
- Applied Plant Research, Wageningen University and Research Centre Lisse, Netherlands
| | - Jan H Wichers
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Aart van Amerongen
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Herman J W van Roermund
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| | - Peter T J Willemsen
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| |
Collapse
|
11
|
Refining the pathovar paradigm via phylogenomics of the attaching and effacing Escherichia coli. Proc Natl Acad Sci U S A 2013; 110:12810-5. [PMID: 23858472 DOI: 10.1073/pnas.1306836110] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The attaching and effacing Escherichia coli (AEEC) are characterized by the presence of a type III secretion system encoded by the locus of enterocyte effacement (LEE). Enterohemorrhagic E. coli (EHEC) are often identified as isolates that are LEE+ and carry the Shiga toxin (stx)-encoding phage, which are labeled Shiga toxin-producing E. coli; whereas enteropathogenic E. coli (EPEC) are LEE+ and often carry the EPEC adherence factor plasmid-encoded bundle-forming pilus (bfp) genes. All other LEE+/bfp-/stx- isolates have been historically designated atypical EPEC. These groups have been defined based on the presence or absence of a limited number of virulence factors, many of which are encoded on mobile elements. This study describes the comparative analysis of the genomes of 114 LEE+ E. coli isolates. Based on a whole-genome phylogeny and analysis of type III secretion system effectors, the AEEC are divided into five distinct genomic lineages. The LEE+/stx+/bfp- genomes were primarily divided into two genomic lineages, the O157/O55 EHEC1 and non-O157 EHEC2. The LEE+/bfp+/stx- AEEC isolates sequenced in this study separated into the EPEC1, EPEC2, and EPEC4 genomic lineages. A multiplex PCR assay for identification of each of these AEEC genomic lineages was developed. Of the 114 AEEC genomes analyzed, 31 LEE+ isolates were not in any of the known AEEC lineages and thus represent unclassified AEEC that in most cases are more similar to other E. coli pathovars than to text modification AEEC. Our findings demonstrate evolutionary relationships among diverse AEEC pathogens and the utility of phylogenomics for lineage-specific identification of AEEC clinical isolates.
Collapse
|
12
|
Deng W, Yu HB, de Hoog CL, Stoynov N, Li Y, Foster LJ, Finlay BB. Quantitative proteomic analysis of type III secretome of enteropathogenic Escherichia coli reveals an expanded effector repertoire for attaching/effacing bacterial pathogens. Mol Cell Proteomics 2012; 11:692-709. [PMID: 22661456 DOI: 10.1074/mcp.m111.013672] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Type III secretion systems are central to the pathogenesis and virulence of many important Gram-negative bacterial pathogens, and elucidation of the secretion mechanism and identification of the secreted substrates are critical to our understanding of their pathogenic mechanisms and developing potential therapeutics. Stable isotope labeling with amino acids in cell culture-based mass spectrometry is a quantitative and highly sensitive proteomics tool that we have previously used to successfully analyze the type III secretomes of Citrobacter rodentium and Salmonella enterica serovar Typhimurium. In this report, stable isotope labeling with amino acids in cell culture was used to analyze the type III secretome of enteropathogenic Escherichia coli (EPEC), an important human pathogen, which, together with enterohemorrhagic E. coli and C. rodentium, represents the family of attaching and effacing bacterial pathogens. We not only confirmed all 25 known EPEC type III-secreted proteins and effectors previously identified by conventional molecular and bioinformatical techniques but also identified several new type III-secreted proteins, including two novel effectors, C_0814/NleJ and LifA, that were shown to be translocated into host cells. LifA is a known virulence factor believed to act as a toxin as well as an adhesin, but its mechanism of secretion and function is not understood. With a predicted molecular mass of 366 kDa, LifA is the largest type III effector identified thus far in any pathogen. We further demonstrated that Efa1, ToxB, and Z4332 (homologs of LifA in enterohemorrhagic E. coli) are also type III effectors. This study has comprehensively characterized the type III secretome of EPEC, expanded the repertoire of type III-secreted effectors for the attaching and effacing pathogens, and provided new insights into the mode of function for LifA/Efa1/ToxB/Z4332, an important family of virulence factors.
Collapse
Affiliation(s)
- Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Genetic background and mobility of variants of the gene nleA in attaching and effacing Escherichia coli. Appl Environ Microbiol 2011; 77:8705-13. [PMID: 22003022 DOI: 10.1128/aem.06492-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we characterized the genetic background of various nleA variants in 106 Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) strains. The flanking regions of eight nleA variants were analyzed by DNA sequencing and compared with the corresponding regions of five previously described NleA-encoding prophages. The analyzed nleA variants were all located downstream of the DNA region responsible for phage morphogenesis. In particular, the type III effector genes avrA, ospB, nleH, and nleG and IS elements were detected in the neighborhood of nleA. The structure of the eight analyzed regions flanking nleA primarily resembled the corresponding region of the NleA₄₇₉₅-encoding prophage BP-4795. Using PCR, the gene order flanking 13 nleA variants in strains of different serogroups was compared to the respective regions in reference strains. The analyses showed that strains which harbor prophages with conserved flanking regions of a particular nleA variant predominantly occurred, and IS elements were additionally detected in these regions. We were able to mobilize nleA by transduction in 20% of strains determined, which comprised in particular EPEC strains harboring an nleA variant, the gene encoding the protein known as "EspI-like." Plaque hybridization was used to identify phages that harbor the genes stx and nleA. However, only two strains harbored variant nleA₄₇₉₅ in the genome of an Stx1 prophage.
Collapse
|
14
|
Ogura Y. [Genomic analyses of mechanisms of virulence evolution in enterohemorrhagic E. coli and enteropathogenic E. coli]. Nihon Saikingaku Zasshi 2011; 66:175-86. [PMID: 21952352 DOI: 10.3412/jsb.66.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yoshitoshi Ogura
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
15
|
Mainil JG, Bardiau M, Ooka T, Ogura Y, Murase K, Etoh Y, Ichihara S, Horikawa K, Buvens G, Piérard D, Itoh T, Hayashi T. Typing of O26 enterohaemorrhagic and enteropathogenic Escherichia coli isolated from humans and cattle with IS621 multiplex PCR-based fingerprinting. J Appl Microbiol 2011; 111:773-86. [PMID: 21707882 DOI: 10.1111/j.1365-2672.2011.05089.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIMS This study evaluated a typing method of O26:H11 enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) based on the variation in genomic location and copy numbers of IS621. METHODS AND RESULTS Two multiplex PCRs, targeting either the left (5') or right (3') IS/chromosome junction of 12 IS621 insertion sites and one PCR specific of another truncated copy, were developed. Thirty-eight amplification profiles were observed amongst a collection of 69 human and bovine O26:H11 EHEC and EPEC. Seventy-one per cent of the 45 EHEC and EPEC with identical IS621 fingerprints within groups of two, three or four isolates had >85% pulsed field gel electrophoresis (PFGE) profile similarity, including four groups of epidemiologically related EHEC or EPEC, while most of the groups had <85% similarity between each others. Epidemiologically related EHEC from each of three independent outbreaks in Japan and Belgium also exhibited identical IS621 fingerprints and PFGE profiles. CONCLUSIONS The IS621 fingerprinting and the PFGE are complementary typing assays of EHEC and EPEC; though, the former is less discriminatory. SIGNIFICANCE AND IMPACT OF THE STUDY The IS621 printing method represents a rapid (24 h) first-line surveillance and typing assay, to compare and trace back O26:H11 EHEC and EPEC during surveys in farms, multiple human cases and outbreaks.
Collapse
Affiliation(s)
- J G Mainil
- Bacteriology, Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bugarel M, Martin A, Fach P, Beutin L. Virulence gene profiling of enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains: a basis for molecular risk assessment of typical and atypical EPEC strains. BMC Microbiol 2011; 11:142. [PMID: 21689465 PMCID: PMC3133550 DOI: 10.1186/1471-2180-11-142] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/21/2011] [Indexed: 11/22/2022] Open
Abstract
Background Enterohaemorrhagic E. coli (EHEC) can cause severe disease such as bloody diarrhoea and haemolytic uraemic syndrome in humans. Besides production of Shiga toxins, the presence of LEE (eae-gene) and non-LEE (nle) encoded effector genes harboured on O-islands OI-122, OI-71 and OI-57 is associated with EHEC virulence and their frequency in outbreaks. Genes encoded by the EHEC-plasmid are putative virulence markers of EHEC. EHEC-plasmids, LEE and non-LEE effector genes have also been detected in some strains of enteropathogenic E. coli (EPEC). The objective of this study was to analyze the relationship between EHEC and EPEC for virulence genes encoded by genomic O-islands and by the EHEC-plasmids. Results Nle genes ent/espL2, nleB and nleE (OI-122), nleA, nleF and nleH1-2 (OI-71), nleG5-2 and nleG6-2 (OI-57), espK (CP-933N) and the EHEC-plasmid encoded genes ehxA, espP, etpD and katP were searched in 73 typical and in 235 atypical enteropathogenic E. coli (EPEC) strains. Typical and atypical EPEC each fall into two clusters. Cluster 1 typical (n = 46) and atypical (n = 129) EPEC strains were characterized by the presence of OI-122 encoded genes and grouped together with 64 investigated EHEC strains. Cluster 2 typical (n = 27) and atypical (n = 106) strains grouped together with 52 LEE-negative, Shiga toxin-producing E. coli (STEC) and with 21 apathogenic E. coli strains. Typical EPEC Cluster 1 strains belonged to serotypes frequently involved in severe illness and outbreaks in children (O111:H2, O114:H2, O55:H6, O127:H6 and O142:H6). Atypical EPEC Cluster 1 strains were characterized by serotypes related to EHEC (O26:H11, O55:H7, O145:H28, O103:H2 and O103:H25). Conclusion The OI-122 encoded nleB gene was found to be most closely associated with Cluster 1 strains and may serve as a diagnostic tool for the identification of virulent EHEC and EPEC seropathotypes. OI-71 encoded genes nleA, nleF and nleH1-2 are less associated with Cluster 1 strains. EHEC-plasmid, OI-57 and CP-933 associated genes showed only weak similarities with virulent Cluster 1 EHEC and EPEC strains.
Collapse
Affiliation(s)
- Marie Bugarel
- National Reference Laboratory for Escherichia coli (NRL-E,coli), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | |
Collapse
|
17
|
NleC, a type III secretion protease, compromises NF-κB activation by targeting p65/RelA. PLoS Pathog 2010; 6:e1001231. [PMID: 21187904 PMCID: PMC3002990 DOI: 10.1371/journal.ppat.1001231] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/15/2010] [Indexed: 02/06/2023] Open
Abstract
The NF-κB signaling pathway is central to the innate and adaptive immune responses. Upon their detection of pathogen-associated molecular patterns, Toll-like receptors on the cell surface initiate signal transduction and activate the NF-κB pathway, leading to the production of a wide array of inflammatory cytokines, in attempt to eradicate the invaders. As a countermeasure, pathogens have evolved ways to subvert and manipulate this system to their advantage. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are closely related bacteria responsible for major food-borne diseases worldwide. Via a needle-like protein complex called the type three secretion system (T3SS), these pathogens deliver virulence factors directly to host cells and modify cellular functions, including by suppressing the inflammatory response. Using gain- and loss-of-function screenings, we identified two bacterial effectors, NleC and NleE, that down-regulate the NF-κB signal upon being injected into a host cell via the T3SS. A recent report showed that NleE inhibits NF-κB activation, although an NleE-deficient pathogen was still immune-suppressive, indicating that other anti-inflammatory effectors are involved. In agreement, our present results showed that NleC was also required to inhibit inflammation. We found that NleC is a zinc protease that disrupts NF-κB activation by the direct cleavage of NF-κB's p65 subunit in the cytoplasm, thereby decreasing the available p65 and reducing the total nuclear entry of active p65. More importantly, we showed that a mutant EPEC/EHEC lacking both NleC and NleE (ΔnleC ΔnleE) caused greater inflammatory response than bacteria carrying ΔnleC or ΔnleE alone. This effect was similar to that of a T3SS-defective mutant. In conclusion, we found that NleC is an anti-inflammatory bacterial zinc protease, and that the cooperative function of NleE and NleC disrupts the NF-κB pathway and accounts for most of the immune suppression caused by EHEC/EPEC. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) cause food-borne diseases, including watery diarrhea or severe bloody diarrhea and life-threatening kidney disease (hemolytic uremic syndrome). Upon ingestion, EPEC/EHEC colonize the cells of the epithelial lining in the intestinal tract. In response, the affected cells initiate an immune response by secreting cytokines that attract immune cells. To prevent their early elimination by the host, these bacteria have developed strategies to prevent the host immune response. They do this by injecting bacterial effectors into the host cells to disrupt the NF-κB pathway, an essential effector of the host cell immune response. In the current study, we report the discovery of an NF-κB suppressive effector in EPEC/EHEC called NleC, and its novel mechanism. We found that NleC is a zinc protease that can digest p65, a critical component of the NF-κB pathway, thus dampening the host inflammatory response. NleE is another recently identified anti-inflammatory effector. We show here that an EPEC/EHEC mutant deficient in both NleC and NleE loses most of its ability to suppress the host inflammatory response. Our findings show how two different bacterial effectors can function in cooperation to modify the host immune response.
Collapse
|
18
|
Creuzburg K, Middendorf B, Mellmann A, Martaler T, Holz C, Fruth A, Karch H, Schmidt H. Evolutionary analysis and distribution of type III effector genes in pathogenic Escherichia coli from human, animal and food sources. Environ Microbiol 2010; 13:439-52. [PMID: 20880329 DOI: 10.1111/j.1462-2920.2010.02349.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular analysis of Shiga toxin-producing Escherichia coli (STEC) from different sources is considered as a major approach to assess their risk potential. However, only limited data are available about the correlation of evolutionary relationship, the presence of major virulence factor genes and the putative risk of an STEC strain for human infection. In this study, we analysed the evolutionary relationship of 136 pathogenic E. coli strains from human, animal and food sources by multi-locus sequence typing (MLST) and molecular subtyping of their Shiga toxin (stx) and intimin (eae) genes. Moreover, the distribution of three type III effector genes, encoded within the locus of enterocyte effacement (LEE), and 16 effector genes, which are encoded outside the LEE, was analysed. One hundred and five strains from different sources harboured 5-15 of the analysed non-LEE-encoded effector genes. In 101 of these strains, the LEE genes eae, map, espF and espG were present simultaneously. Thirty-one isolates deriving mainly from food and patients suffering from haemolytic uraemic syndrome (HUS) were eae-negative and did not carry any of the analysed effector genes. By combination of MLST and virulence gene data, we defined five genetic clusters. Within these clusters a clear-cut affiliation of particular sequence types and the occurrence of certain effector genes was observed. However, in contrast to other studies, a significant correlation between the amount and type of effector genes and the risk to cause HUS could not be demonstrated.
Collapse
Affiliation(s)
- Kristina Creuzburg
- Department of Food Microbiology, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Deng W, de Hoog CL, Yu HB, Li Y, Croxen MA, Thomas NA, Puente JL, Foster LJ, Finlay BB. A comprehensive proteomic analysis of the type III secretome of Citrobacter rodentium. J Biol Chem 2009; 285:6790-800. [PMID: 20034934 DOI: 10.1074/jbc.m109.086603] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium belong to the family of attaching and effacing (A/E) bacterial pathogens. They intimately attach to host intestinal epithelial cells, trigger the effacement of intestinal microvilli, and cause diarrheal disease. Central to their pathogenesis is a type III secretion system (T3SS) encoded by a pathogenicity island called the locus of enterocyte effacement (LEE). The T3SS is used to inject both LEE- and non-LEE-encoded effector proteins into the host cell, where these effectors modulate host signaling pathways and immune responses. Identifying the effectors and elucidating their functions are central to understanding the molecular pathogenesis of these pathogens. Here we analyzed the type III secretome of C. rodentium using the highly sensitive and quantitative SILAC (stable isotope labeling with amino acids in cell culture)-based mass spectrometry. This approach not only confirmed nearly all known secreted proteins and effectors previously identified by conventional biochemical and proteomic techniques, but also identified several new secreted proteins. The T3SS-dependent secretion of these new proteins was validated, and five of them were translocated into cultured cells, representing new or additional effectors. Deletion mutants for genes encoding these effectors were generated in C. rodentium and tested in a murine infection model. This study comprehensively characterizes the type III secretome of C. rodentium, expands the repertoire of type III secreted proteins and effectors for the A/E pathogens, and demonstrates the simplicity and sensitivity of using SILAC-based quantitative proteomics as a tool for identifying substrates for protein secretion systems.
Collapse
Affiliation(s)
- Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci U S A 2009; 106:17939-44. [PMID: 19815525 DOI: 10.1073/pnas.0903585106] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Among the various pathogenic Escherichia coli strains, enterohemorrhagic E. coli (EHEC) is the most devastating. Although serotype O157:H7 strains are the most prevalent, strains of different serotypes also possess similar pathogenic potential. Here, we present the results of a genomic comparison between EHECs of serotype O157, O26, O111, and O103, as well as 21 other, fully sequenced E. coli/Shigella strains. All EHECs have much larger genomes (5.5-5.9 Mb) than the other strains and contain surprisingly large numbers of prophages and integrative elements (IEs). The gene contents of the 4 EHECs do not follow the phylogenetic relationships of the strains, and they share virulence genes for Shiga toxins and many other factors. We found many lambdoid phages, IEs, and virulence plasmids that carry the same or similar virulence genes but have distinct evolutionary histories, indicating that independent acquisition of these mobile genetic elements has driven the evolution of each EHEC. Particularly interesting is the evolution of the type III secretion system (T3SS). We found that the T3SS of EHECs is composed of genes that were introduced by 3 different types of genetic elements: an IE referred to as the locus of enterocyte effacement, which encodes a central part of the T3SS; SpLE3-like IEs; and lambdoid phages carrying numerous T3SS effector genes and other T3SS-related genes. Our data demonstrate how E. coli strains of different phylogenies can independently evolve into EHECs, providing unique insights into the mechanisms underlying the parallel evolution of complex virulence systems in bacteria.
Collapse
|
21
|
Arbeloa A, Blanco M, Moreira FC, Bulgin R, López C, Dahbi G, Blanco JE, Mora A, Alonso MP, Mamani RC, Gomes TAT, Blanco J, Frankel G. Distribution of espM and espT among enteropathogenic and enterohaemorrhagic Escherichia coli. J Med Microbiol 2009; 58:988-995. [PMID: 19528152 PMCID: PMC2884945 DOI: 10.1099/jmm.0.010231-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) translocate dozens of type III secretion system effectors, including the WxxxE effectors Map, EspM and EspT that activate Rho GTPases. While map, which is carried on the LEE pathogenicity island, is absolutely conserved among EPEC and EHEC strains, the prevalence of espM and espT is not known. Here we report the results of a large screen aimed at determining the prevalence of espM and espT among clinical EPEC and EHEC isolates. The results suggest that espM, detected in 51 % of the tested strains, is more commonly found in EPEC and EHEC serogroups that are linked to severe human infections. In contrast, espT was absent from all the EHEC isolates and was found in only 1.8 % of the tested EPEC strains. Further characterization of the virulence gene repertoire of the espT-positive strains led to the identification of a new zeta2 intimin variant. All the espT-positive strains but two contained the tccP gene. espT was first found in Citrobacter rodentium and later in silico in EPEC E110019, which is of particular interest as this strain was responsible for a particularly severe diarrhoeal outbreak in Finland in 1987 that affected 650 individuals in a school complex and an additional 137 associated household members. Comparing the protein sequences of EspT to that of E110019 showed a high level of conservation, with only three strains encoding EspT that differed in 6 amino acids. At present, it is not clear why espT is so rare, and what impact EspM and EspT have on EPEC and EHEC infection.
Collapse
Affiliation(s)
- Ana Arbeloa
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Miguel Blanco
- Laboratorio de Referencia de E. coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Fabiana C. Moreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richard Bulgin
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Cecilia López
- Laboratorio de Referencia de E. coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Ghizlane Dahbi
- Laboratorio de Referencia de E. coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Jesús E. Blanco
- Laboratorio de Referencia de E. coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Azucena Mora
- Laboratorio de Referencia de E. coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - María Pilar Alonso
- Unidade de Microbioloxía Clínica, Complexo Hospitalario Xeral-Calde, Lugo, Spain
| | - Rosalia Ceferina Mamani
- Laboratorio de Referencia de E. coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Tânia A. T. Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jorge Blanco
- Laboratorio de Referencia de E. coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
22
|
Ooka T, Ogura Y, Asadulghani M, Ohnishi M, Nakayama K, Terajima J, Watanabe H, Hayashi T. Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. Genome Res 2009; 19:1809-16. [PMID: 19564451 DOI: 10.1101/gr.089615.108] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mobile genetic elements play important roles in the evolution and diversification of bacterial genomes. In enterohemorrhagic Escherichia coli O157, a major factor that affects genomic diversity is prophages, which generate most of the large-size structural polymorphisms (LSSPs) observed in O157 genomes. Here, we describe the results of a systematic analysis of numerous small-size structural polymorphisms (SSSPs) that were detected by comparing the genomes of eight clinical isolates with a sequenced strain, O157 Sakai. Most of the SSSPs were generated by genetic events associated with only two insertion sequence (IS) elements, IS629 and ISEc8, and a number of genes that were inactivated or deleted by these events were identified. Simple excisions of IS629 and small deletions (footprints) formed by the excision of IS629, both of which are rarely described in bacteria, were also detected. In addition, the distribution of IS elements was highly biased toward prophages, prophage-like integrative elements, and plasmids. Based on these and our previous results, we conclude that, in addition to prophages, these two IS elements are major contributors to the genomic diversification of O157 strains and that LSSPs have been generated mainly by bacteriophages and SSSPs by IS elements. We also suggest that IS elements possibly play a role in the inactivation and immobilization of incoming phages and plasmids. Taken together, our results reveal the true impact of IS elements on the diversification of bacterial genomes and highlight their novel role in genome evolution.
Collapse
Affiliation(s)
- Tadasuke Ooka
- Department of Infectious Diseases, University of Miyazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Comparative analysis of the locus of enterocyte effacement and its flanking regions. Infect Immun 2009; 77:3501-13. [PMID: 19506015 DOI: 10.1128/iai.00090-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The attaching-and-effacing (A/E) phenotype mediated by factors derived from the locus of enterocyte effacement (LEE) is a hallmark of clinically important intestinal pathotypes of Escherichia coli, including enteropathogenic (EPEC), atypical EPEC (ATEC), and enterohemorrhagic E. coli strains. Epidemiological studies indicate that the frequency of diarrhea outbreaks caused by ATEC is increasing. Hence, it is of major importance to further characterize putative factors contributing to the pathogenicity of these strains and to gain additional insight into the plasticity and evolutionary aspects of this emerging pathotype. Here, we analyzed the two clinical ATEC isolates B6 (O26:K60) and 9812 (O128:H2) and compared the genetic organizations, flanking regions, and chromosomal insertion loci of their LEE with those of the LEE of other A/E pathogens. Our analysis shows that the core LEE is largely conserved-particularly among genes coding for the type 3 secretion system-whereas genes encoding effector proteins display a higher variability. Chromosomal insertion loci appear to be restricted to selC, pheU, and pheV. In contrast, striking differences were found between the 5'- and 3'-associated flanking regions reflecting the different histories of the various strains and also possibly indicating different lines in evolution.
Collapse
|
24
|
Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. J Bacteriol 2008; 191:347-54. [PMID: 18952797 PMCID: PMC2612414 DOI: 10.1128/jb.01238-08] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) was the first pathovar of E. coli to be implicated in human disease; however, no EPEC strain has been fully sequenced until now. Strain E2348/69 (serotype O127:H6 belonging to E. coli phylogroup B2) has been used worldwide as a prototype strain to study EPEC biology, genetics, and virulence. Studies of E2348/69 led to the discovery of the locus of enterocyte effacement-encoded type III secretion system (T3SS) and its cognate effectors, which play a vital role in attaching and effacing lesion formation on gut epithelial cells. In this study, we determined the complete genomic sequence of E2348/69 and performed genomic comparisons with other important E. coli strains. We identified 424 E2348/69-specific genes, most of which are carried on mobile genetic elements, and a number of genetic traits specifically conserved in phylogroup B2 strains irrespective of their pathotypes, including the absence of the ETT2-related T3SS, which is present in E. coli strains belonging to all other phylogroups. The genome analysis revealed the entire gene repertoire related to E2348/69 virulence. Interestingly, E2348/69 contains only 21 intact T3SS effector genes, all of which are carried on prophages and integrative elements, compared to over 50 effector genes in enterohemorrhagic E. coli O157. As E2348/69 is the most-studied pathogenic E. coli strain, this study provides a genomic context for the vast amount of existing experimental data. The unexpected simplicity of the E2348/69 T3SS provides the first opportunity to fully dissect the entire virulence strategy of attaching and effacing pathogens in the genomic context.
Collapse
|