1
|
Liu FYL, Twible LE, Colenbrander Nelson TE, Whaley-Martin K, Yan Y, Arrey JLS, Warren LA. Microbial sulfur cycling determinants and implications for environmental impacts. CHEMOSPHERE 2025; 372:144084. [PMID: 39798717 DOI: 10.1016/j.chemosphere.2025.144084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Sulfur-oxidizing bacteria (SOB) play a vital role in the occurrence of sulfur oxidation intermediate (SOI) compounds often recalcitrant to currently available, abiotic treatment within metal mine tailings impoundments (TI). As inadvertent SOI discharge post-treatment can lead to the uncontrolled acidification of receiving environments, it becomes increasingly important to elucidate the environmental controls on SOB identities and sulfur cycling within these relatively unstudied systems. Here, results identified controlling factors on SOB community differentiation and associated metabolic pathway occurrence through integrated physicochemical, geochemical, and microbial field and experimental investigation across three summers (2016, 2017, 2021) in a stratified Northern Ontario base metal TI. Dynamic shifts in SOB communities and sulfur oxidation pathways were primarily driven by [S2O32-] and further influenced by pH, [O2], and conductivity. At [S2O32-] above 0.03 mM, Halothiobacillus spp. was observed to dominate in lower pH, higher conductivity conditions where complete SOI oxidation, mediated through the complete Sox pathway, is suggested to reduced [SOI] in treated discharge waters. At [S2O32-] below 0.03 mM, an SOB assemblage (Thiovirga spp., Thiobacillus spp., and Sediminibacterium spp.) was observed to collectively dominate under higher pH and lower conductivity, associated with SOI persistence due to SOI recycling pathways (incomplete Sox, rDSR, S4I). Targeted SOB enrichment cultures confirmed the importance of S2O32- availability in driving SOB community shifts and the capability of Halothiobacillus to outcompete other SOB under oxygenated, high [S2O32-] conditions. Trends observed here for mine TI associated SOB were found to also occur across a broader suite of contexts using literature data, indicating their wider ecological relevance in interpreting outcomes associated with SOB activity. Results also provide new insights into improved, biologically informed management of sulfur associated risks with potential SOB manipulation through [S2O32-], pH, and/or [O2] controls.
Collapse
Affiliation(s)
- Felicia Y L Liu
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Lauren E Twible
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Tara E Colenbrander Nelson
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Kelly Whaley-Martin
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Yunyun Yan
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - James L S Arrey
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
2
|
Heterologous expression and biochemical comparison of two homologous SoxX proteins of endosymbiontic Candidatus Vesicomyosocius okutanii and free-living Hydrogenovibrio crunogenus from deep-sea vent environments. Protein Expr Purif 2022; 200:106157. [PMID: 35987324 DOI: 10.1016/j.pep.2022.106157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Candidatus Vesicomyosocius okutanii is a currently uncultured endosymbiotic bacterium of the clam Pheragena okutanii, which lives in deep-sea vent environments. The genome of Ca. V. okutanii encodes a sulfur-oxidizing (Sox) enzyme complex, presumably generating biological energy for the host from inorganic sulfur compounds. Here, Ca. V. okutanii SoxX (VoSoxX), a mono-heme cytochrome c component of the Sox complex, was shown to be phylogenetically related to its homologous counterpart (HcSoxX) from a free-living deep-sea vent bacterium, Hydrogenovibrio crunogenus. Both proteins were heterologously expressed in Escherichia coli cells with co-expressing cytochrome c maturation genes. Biochemical analysis using the recombinant proteins showed that VoSoxX had a significantly lower thermal stability than HcSoxX, possibly due to structural differences. For example, the Asn-60 residue in VoSoxX may be hydrophobically disadvantageous compared with the spatially corresponding Val-73 residue in HcSoxX. This study represents the first successful case of heterologous expression of genes from Ca. V. okutanii, suggesting that the endosymbiotic VoSoxX protein does not require stabilization, unlike the free-living HcSoxX protein.
Collapse
|
3
|
Wu Y, Li YH, Shang JY, Wang ET, Chen L, Huo B, Sui XH, Tian CF, Chen WF, Chen WX. Multiple Genes of Symbiotic Plasmid and Chromosome in Type II Peanut Bradyrhizobium Strains Corresponding to the Incompatible Symbiosis With Vigna radiata. Front Microbiol 2020; 11:1175. [PMID: 32655513 PMCID: PMC7324677 DOI: 10.3389/fmicb.2020.01175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/07/2020] [Indexed: 11/19/2022] Open
Abstract
Rhizobia are capable of establishing compatible symbiosis with their hosts of origin and plants in the cross-nodulation group that the hosts of origin belonged to. However, different from the normal peanut Bradyrhizobium (Type I strains), the Type II strains showed incompatible symbiosis with Vigna radiata. Here, we employed transposon mutagenesis to identify the genetic loci related to this incompatibility in Type II strain CCBAU 53363. As results, seven Tn5 transposon insertion mutants resulted in an increase in nodule number on V. radiata. By sequencing analysis of the sequence flanking Tn5 insertion, six mutants were located in the chromosome of CCBAU 53363, respectively encoding acyltransferase (L265) and hypothetical protein (L615)—unique to CCBAU 53363, two hypothetical proteins (L4 and L82), tripartite tricarboxylate transporter substrate binding protein (L373), and sulfur oxidation c-type cytochrome SoxA (L646), while one mutant was in symbiotic plasmid encoding alanine dehydrogenase (L147). Significant differences were observed in L147 gene sequences and the deduced protein 3D structures between the Type II (in symbiotic plasmid) and Type I strains (in chromosome). Conversely, strains in both types shared high homologies in the chromosome genes L373 and L646 and in their protein 3D structures. These data indicated that the symbiotic plasmid gene in Type II strains might have directly affected their symbiosis incompatibility, whereas the chromosome genes might be indirectly involved in this process by regulating the plasmid symbiosis genes. The seven genes may initially explain the complication associated with symbiotic incompatibility.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yong Hua Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiao Ying Shang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - En Tao Wang
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - La Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bin Huo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Hua Sui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Feng Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Bhatnagar S, Cowley ES, Kopf SH, Pérez Castro S, Kearney S, Dawson SC, Hanselmann K, Ruff SE. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. ENVIRONMENTAL MICROBIOME 2020; 15:3. [PMID: 33902727 PMCID: PMC8066431 DOI: 10.1186/s40793-019-0348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/25/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. RESULTS Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. CONCLUSIONS The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.
Collapse
Affiliation(s)
- Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, Calgary, AB Canada
| | - Elise S. Cowley
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado, Boulder, CO USA
| | - Sherlynette Pérez Castro
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| | - Sean Kearney
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Scott C. Dawson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA USA
| | | | - S. Emil Ruff
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| |
Collapse
|
5
|
Bacterial Intracellular Sulphur Globules. BACTERIAL ORGANELLES AND ORGANELLE-LIKE INCLUSIONS 2020. [DOI: 10.1007/978-3-030-60173-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Seo D, Kitashima M, Sakurai T, Inoue K. Kinetics of NADP +/NADPH reduction-oxidation catalyzed by the ferredoxin-NAD(P) + reductase from the green sulfur bacterium Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2016; 130:479-489. [PMID: 27341807 DOI: 10.1007/s11120-016-0285-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Ferredoxin-NAD(P)+ oxidoreductase (FNR, [EC 1.18.1.2], [EC 1.18.1.3]) from the green sulfur bacterium Chlorobaculum tepidum (CtFNR) is a homodimeric flavoprotein with significant structural homology to bacterial NADPH-thioredoxin reductases. CtFNR homologs have been found in many bacteria, but only in green sulfur bacteria among photoautotrophs. In this work, we examined the reactions of CtFNR with NADP+, NADPH, and (4S-2H)-NADPD by stopped-flow spectrophotometry. Mixing CtFNRox with NADPH yielded a rapid decrease of the absorbance in flavin band I centered at 460 nm within 1 ms, and then the absorbance further decreased gradually. The magnitude of the decrease increased with increasing NADPH concentration, but even with ~50-fold molar excess NADPH, the absorbance change was only ~45 % of that expected for fully reduced protein. The absorbance in the charge transfer (CT) band centered around 600 nm increased rapidly within 1 ms, then slowly decreased to about 70 % of the maximum. When CtFNRred was mixed with excess NADP+, the absorbance in the flavin band I increased to about 70 % of that of CtFNRox with an apparent rate of ~4 s-1, whereas almost no absorption changes were observed in the CT band. Obtained data suggest that the reaction between CtFNR and NADP+/NADPH is reversible, in accordance with its physiological function.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Masaharu Kitashima
- Department of Biological Sciences, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
- Research Institute for Integrated Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
| | - Takeshi Sakurai
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kazuhito Inoue
- Department of Biological Sciences, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
- Research Institute for Integrated Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
| |
Collapse
|
7
|
Complete genome sequence of the haloalkaliphilic, obligately chemolithoautotrophic thiosulfate and sulfide-oxidizing γ-proteobacterium Thioalkalimicrobium cyclicum type strain ALM 1 (DSM 14477(T)). Stand Genomic Sci 2016; 11:38. [PMID: 27274784 PMCID: PMC4891895 DOI: 10.1186/s40793-016-0162-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/24/2016] [Indexed: 02/01/2023] Open
Abstract
Thioalkalimicrobium cyclicum Sorokin et al. 2002 is a member of the family Piscirickettsiaceae in the order Thiotrichales. The γ-proteobacterium belongs to the colourless sulfur-oxidizing bacteria isolated from saline soda lakes with stable alkaline pH, such as Lake Mono (California) and Soap Lake (Washington State). Strain ALM 1T is characterized by its adaptation to life in the oxic/anoxic interface towards the less saline aerobic waters (mixolimnion) of the stable stratified alkaline salt lakes. Strain ALM 1T is the first representative of the genus Thioalkalimicrobium whose genome sequence has been deciphered and the fourth genome sequence of a type strain of the Piscirickettsiaceae to be published. The 1,932,455 bp long chromosome with its 1,684 protein-coding and 50 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.
Collapse
|
8
|
Kilmartin JR, Bernhardt PV, Dhouib R, Hanson GR, Riley MJ, Kappler U. Effects of mutations in active site heme ligands on the spectroscopic and catalytic properties of SoxAX cytochromes. J Inorg Biochem 2016; 162:309-318. [PMID: 27112898 DOI: 10.1016/j.jinorgbio.2016.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
By attaching a sulfur substrate to a conserved cysteine of the SoxYZ carrier protein SoxAX cytochromes initiate the reaction cycle of the Sox (sulfur oxidation) multienzyme complex, which is the major pathway for microbial reoxidation of sulfur compounds in the environment. Despite their important role in this process, the reaction mechanism of the SoxAX cytochromes has not been fully elucidated. Here we report the effects of several active site mutations on the spectroscopic and enzymatic properties of the type II SoxAX protein from Starkeya novella, which in addition to two heme groups also contains a Cu redox centre. All substituted proteins contained these redox centres except for His231Ala which was unable to bind Cu(II). Substitution of the SoxA active site heme cysteine ligand with histidine resulted in increased microheterogeneity around the SoxA heme as determined by CW-EPR, while a SnSoxAXC236A substituted protein revealed a completely new, nitrogenous SoxA heme ligand. The same novel ligand was present in SnSoxAXH231A CW-EPR spectra, the first time that a ligand switch of the SoxA heme involving a nearby amino acid has been demonstrated. Kinetically, SnSoxAXC236A and SnSoxAXC236H showed reduced turnover, and in assays containing SoxYZ these mutants retained only ~25% of the wildtype activity. Together, these data indicate that the Cu redox centre can mediate a low level of activity, and that a possible ligand switch can occur during catalysis. It also appears that the SoxA heme cysteine ligand (and possibly the low redox potential) is important for an efficient reaction with SnSoxYZ/thiosulfate.
Collapse
Affiliation(s)
- James R Kilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Rabeb Dhouib
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Graeme R Hanson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Mark J Riley
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
9
|
Hamilton TL, Bovee RJ, Thiel V, Sattin SR, Mohr W, Schaperdoth I, Vogl K, Gilhooly WP, Lyons TW, Tomsho LP, Schuster SC, Overmann J, Bryant DA, Pearson A, Macalady JL. Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake. GEOBIOLOGY 2014; 12:451-68. [PMID: 24976102 DOI: 10.1111/gbi.12092] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/30/2014] [Indexed: 05/10/2023]
Abstract
Mahoney Lake represents an extreme meromictic model system and is a valuable site for examining the organisms and processes that sustain photic zone euxinia (PZE). A single population of purple sulfur bacteria (PSB) living in a dense phototrophic plate in the chemocline is responsible for most of the primary production in Mahoney Lake. Here, we present metagenomic data from this phototrophic plate--including the genome of the major PSB, as obtained from both a highly enriched culture and from the metagenomic data--as well as evidence for multiple other taxa that contribute to the oxidative sulfur cycle and to sulfate reduction. The planktonic PSB is a member of the Chromatiaceae, here renamed Thiohalocapsa sp. strain ML1. It produces the carotenoid okenone, yet its closest relatives are benthic PSB isolates, a finding that may complicate the use of okenone (okenane) as a biomarker for ancient PZE. Favorable thermodynamics for non-phototrophic sulfide oxidation and sulfate reduction reactions also occur in the plate, and a suite of organisms capable of oxidizing and reducing sulfur is apparent in the metagenome. Fluctuating supplies of both reduced carbon and reduced sulfur to the chemocline may partly account for the diversity of both autotrophic and heterotrophic species. Collectively, the data demonstrate the physiological potential for maintaining complex sulfur and carbon cycles in an anoxic water column, driven by the input of exogenous organic matter. This is consistent with suggestions that high levels of oxygenic primary production maintain episodes of PZE in Earth's history and that such communities should support a diversity of sulfur cycle reactions.
Collapse
Affiliation(s)
- T L Hamilton
- Department of Geosciences, Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Crowe SA, Maresca JA, Jones C, Sturm A, Henny C, Fowle DA, Cox RP, Delong EF, Canfield DE. Deep-water anoxygenic photosythesis in a ferruginous chemocline. GEOBIOLOGY 2014; 12:322-339. [PMID: 24923179 DOI: 10.1111/gbi.12089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Ferruginous Lake Matano, Indonesia hosts one of the deepest anoxygenic photosynthetic communities on Earth. This community is dominated by low-light adapted, BChl e-synthesizing green sulfur bacteria (GSB), which comprise ~25% of the microbial community immediately below the oxic-anoxic boundary (OAB; 115-120 m in 2010). The size of this community is dependent on the mixing regime within the lake and the depth of the OAB-at ~117 m, the GSB live near their low-light limit. Slow growth and C-fixation rates suggest that the Lake Matano GSB can be supported by sulfide even though it only accumulates to scarcely detectable (low μm to nm) concentrations. A model laboratory strain (Chlorobaculum tepidum) is indeed able to access HS- for oxidation at nm concentrations. Furthermore, the GSB in Lake Matano possess a full complement of S-oxidizing genes. Together, this physiological and genetic information suggests that deep-water GSB can be supported by a S-cycle, even under ferruginous conditions. The constraints we place on the metabolic capacity and physiology of GSB have important geobiological implications. Biomarkers diagnostic of GSB would be a good proxy for anoxic conditions but could not discriminate between euxinic and ferruginous states, and though GSB biomarkers could indicate a substantial GSB community, such a community may exist with very little metabolic activity. The light requirements of GSB indicate that at light levels comparable to those in the OAB of Lake Matano or the Black Sea, GSB would have contributed little to global ocean primary production, nutrient cycling, and banded iron formation (BIF) deposition in the Precambrian. Before the proliferation of oxygenic photosynthesis, shallower OABs and lower light absorption in the ocean's surface waters would have permitted greater light availability to GSB, potentially leading to a greater role for GSB in global biogeochemical cycles.
Collapse
Affiliation(s)
- S A Crowe
- Nordic Center for Earth Evolution and Institute of Biology, University of Southern Denmark, Odense, Denmark; Departments of Microbiology & Immunology and Earth, Ocean, & Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Watanabe T, Kojima H, Fukui M. Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: genetic insights into the sulfur oxidation pathway of betaproteobacteria. Syst Appl Microbiol 2014; 37:387-95. [PMID: 25017294 DOI: 10.1016/j.syapm.2014.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
Despite detailed studies of marine sulfur-oxidizing bacteria, our knowledge concerning their counterparts in freshwater lake ecosystems is limited. Genome sequencing of the freshwater sulfur-oxidizing betaproteobacteria Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H have been completed. Strain skB26 possessed a circular plasmid of 86.6-kbp in addition to its chromosome, and an approximate 18-kbp region of the plasmid was occupied by an arxA-like operon, encoding a new clade of anaerobic arsenite oxidase. Multilocus sequence analysis showed that strain skB26 could not be assigned to any existing order; thus a novel order, Sulfuricellales, is proposed. The genomes of strains skB26 and sk43H were examined, focusing on the composition and the phylogeny of genes involved in the oxidation of inorganic sulfur compounds. Strains skB26 and sk43H shared a common pathway, which consisted of Sqr, SoxEF, SoxXYZAB, Dsr proteins, AprBA, Sat, and SoeABC. Comparative genomics of betaproteobacterial sulfur oxidizers showed that this pathway was also shared by the freshwater sulfur oxidizers Thiobacillus denitrificans and Sideroxydans lithotrophicus. It also revealed the presence of a conserved gene cluster, which was located immediately upstream of the betaproteobacterial dsr operon.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
| | - Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
12
|
Function and Evolution of the Sox Multienzyme Complex in the Marine Gammaproteobacterium Congregibacter litoralis. ISRN MICROBIOLOGY 2014; 2014:597418. [PMID: 25006520 PMCID: PMC4003848 DOI: 10.1155/2014/597418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/23/2014] [Indexed: 11/24/2022]
Abstract
Core sets of sox genes were detected in several genome sequenced members of the environmental important OM60/NOR5 clade of marine gammaproteobacteria. However, emendation of media with thiosulfate did not result in stimulation of growth in two of these strains and cultures of Congregibacter litoralis DSM 17192T did not oxidize thiosulfate to sulfate in concentrations of one mmol L−1 or above. On the other hand, a significant production of sulfate was detected upon growth with the organic sulfur compounds, cysteine and glutathione. It was found that degradation of glutathione resulted in the formation of submillimolar amounts of thiosulfate in the closely related sox-negative strain Chromatocurvus halotolerans DSM 23344T. It is proposed that the Sox multienzyme complex in Congregibacter litoralis and related members of the OM60/NOR5 clade is adapted to the oxidation of submillimolar amounts of thiosulfate and nonfunctional at higher concentrations of reduced inorganic sulfur compounds. Pelagic bacteria thriving in the oxic zones of marine environments may rarely encounter amounts of thiosulfate, which would allow its utilization as electron donor for lithoautotrophic or mixotrophic growth. Consequently, in evolution the Sox multienzyme complex in some of these bacteria may have been optimized for the effective utilization of trace amounts of thiosulfate generated from the degradation of organic sulfur compounds.
Collapse
|
13
|
Yu LJ, Unno M, Kimura Y, Yanagimoto K, Oh-oka H, Wang-Otomo ZY. Structure analysis and characterization of the cytochrome c-554 from thermophilic green sulfur photosynthetic bacterium Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2013; 118:249-258. [PMID: 24052268 DOI: 10.1007/s11120-013-9922-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
The cytochrome (Cyt) c-554 in thermophilic green photosynthetic bacterium Chlorobaculum tepidum serves as an intermediate electron carrier, transferring electrons to the membrane-bound Cyt c z from various enzymes involved in the oxidations of sulfide, thiosulfate, and sulfite compounds. Spectroscopically, this protein exhibits an asymmetric α-absorption band for the reduced form and particularly large paramagnetic (1)H NMR shifts for the heme methyl groups with an unusual shift pattern in the oxidized form. The crystal structure of the Cyt c-554 has been determined at high resolution. The overall fold consists of four α-helices and is characterized by a remarkably long and flexible loop between the α3 and α4 helices. The axial ligand methionine has S-chirality at the sulfur atom with its C(ε)H3 group pointing toward the heme pyrrole ring I. This configuration corresponds to an orientation of the lone-pair orbital of the sulfur atom directed at the pyrrole ring II and explains the lowest-field (1)H NMR shift arising from the 18(1) heme methyl protons. Differing from most other class I Cyts c, no hydrogen bond was formed between the methionine sulfur atom and polypeptide chain. Lack of this hydrogen bond may account for the observed large paramagnetic (1)H NMR shifts of the heme methyl protons. The surface-exposed heme pyrrole ring II edge is in a relatively hydrophobic environment surrounded by several electronically neutral residues. This portion is considered as an electron transfer gateway. The structure of the Cyt c-554 is compared with those of other Cyts c, and possible interactions of this protein with its electron transport partners are discussed.
Collapse
Affiliation(s)
- Long-Jiang Yu
- Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, 310-8512, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Bobadilla Fazzini RA, Cortés MP, Padilla L, Maturana D, Budinich M, Maass A, Parada P. Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (Riscs) in Acidithiobacillus thiooxidans. Biotechnol Bioeng 2013; 110:2242-51. [PMID: 23436458 DOI: 10.1002/bit.24875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 11/09/2022]
Abstract
The prokaryotic oxidation of reduced inorganic sulfur compounds (RISCs) is a topic of utmost importance from a biogeochemical and industrial perspective. Despite sulfur oxidizing bacterial activity is largely known, no quantitative approaches to biological RISCs oxidation have been made, gathering all the complex abiotic and enzymatic stoichiometry involved. Even though in the case of neutrophilic bacteria such as Paracoccus and Beggiatoa species the RISCs oxidation systems are well described, there is a lack of knowledge for acidophilic microorganisms. Here, we present the first experimentally validated stoichiometric model able to assess RISCs oxidation quantitatively in Acidithiobacillus thiooxidans (strain DSM 17318), the archetype of the sulfur oxidizing acidophilic chemolithoautotrophs. This model was built based on literature and genomic analysis, considering a widespread mix of formerly proposed RISCs oxidation models combined and evaluated experimentally. Thiosulfate partial oxidation by the Sox system (SoxABXYZ) was placed as central step of sulfur oxidation model, along with abiotic reactions. This model was coupled with a detailed stoichiometry of biomass production, providing accurate bacterial growth predictions. In silico deletion/inactivation highlights the role of sulfur dioxygenase as the main catalyzer and a moderate function of tetrathionate hydrolase in elemental sulfur catabolism, demonstrating that this model constitutes an advanced instrument for the optimization of At. thiooxidans biomass production with potential use in biohydrometallurgical and environmental applications.
Collapse
|
15
|
Kappler U, Maher MJ. The bacterial SoxAX cytochromes. Cell Mol Life Sci 2013; 70:977-92. [PMID: 22907414 PMCID: PMC11113948 DOI: 10.1007/s00018-012-1098-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX proteins have a wide phylogenetic distribution and form a family with at least three distinct types of SoxAX protein. The types of SoxAX cytochromes differ in terms of the number of heme groups present in the proteins (there are diheme and triheme versions) as well as in their subunit structure. While two of the SoxAX protein types are heterodimers, the third group contains an additional subunit, SoxK, that stabilizes the complex of the SoxA and SoxX proteins. Crystal structures are available for representatives of the two heterodimeric SoxAX protein types and both of these have shown that the cysteine ligand to the SoxA active site heme carries a modification to a cysteine persulfide that implicates this ligand in catalysis. EPR studies of SoxAX proteins have also revealed a high complexity of heme dependent signals associated with this active site heme; however, the exact mechanism of catalysis is still unclear at present, as is the exact number and types of redox centres involved in the reaction.
Collapse
Affiliation(s)
- Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | | |
Collapse
|
16
|
Bradley JM, Marritt SJ, Kihlken MA, Haynes K, Hemmings AM, Berks BC, Cheesman MR, Butt JN. Redox and chemical activities of the hemes in the sulfur oxidation pathway enzyme SoxAX. J Biol Chem 2012; 287:40350-9. [PMID: 23060437 DOI: 10.1074/jbc.m112.396192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND SoxAX enzymes initiate microbial oxidation of reduced inorganic sulfur compounds. Their catalytic mechanism is unknown. RESULTS Cyanide displaces the CysS(-) ligand to the active site heme following reduction by S(2)O(4)(2-) but not Eu(II). CONCLUSION An active site heme ligand becomes labile on exposure to substrate analogs. SIGNIFICANCE Elucidation of SoxAX mechanism is necessary to understand a widespread pathway for sulfur compound oxidation. SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (E(m)) at pH 7.0 of approximately +210, -340, and -400 mV for the His/Met, His/Cys(-), and active site His/CysS(-)-ligated heme, respectively. Exposing SoxAX to S(2)O(4)(2-), a substrate analog with E(m) ~-450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (E(m) ~-1140 mV), allows cyanide to displace the cysteine persulfide (CysS(-)) ligand to the active site heme. This provides the first evidence for the dissociation of CysS(-) that has been proposed as a key event in SoxAX catalysis.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Denkmann K, Grein F, Zigann R, Siemen A, Bergmann J, van Helmont S, Nicolai A, Pereira IAC, Dahl C. Thiosulfate dehydrogenase: a widespread unusual acidophilicc-type cytochrome. Environ Microbiol 2012; 14:2673-88. [DOI: 10.1111/j.1462-2920.2012.02820.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Comparative and Functional Genomics of Anoxygenic Green Bacteria from the Taxa Chlorobi, Chloroflexi, and Acidobacteria. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Quantitative proteomics of Chlorobaculum tepidum: insights into the sulfur metabolism of a phototrophic green sulfur bacterium. FEMS Microbiol Lett 2011; 323:142-50. [DOI: 10.1111/j.1574-6968.2011.02370.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 12/29/2022] Open
|
20
|
Kilmartin JR, Maher MJ, Krusong K, Noble CJ, Hanson GR, Bernhardt PV, Riley MJ, Kappler U. Insights into structure and function of the active site of SoxAX cytochromes. J Biol Chem 2011; 286:24872-81. [PMID: 21592966 PMCID: PMC3137062 DOI: 10.1074/jbc.m110.212183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/20/2011] [Indexed: 11/06/2022] Open
Abstract
SoxAX cytochromes catalyze the formation of heterodisulfide bonds between inorganic sulfur compounds and a carrier protein, SoxYZ. They contain unusual His/Cys-ligated heme groups with complex spectroscopic signatures. The heme-ligating cysteine has been implicated in SoxAX catalysis, but neither the SoxAX spectroscopic properties nor its catalysis are fully understood at present. We have solved the first crystal structure for a group 2 SoxAX protein (SnSoxAX), where an N-terminal extension of SoxX forms a novel structure that supports dimer formation. Crystal structures of SoxAX with a heme ligand substitution (C236M) uncovered an inherent flexibility of this SoxA heme site, with both bonding distances and relative ligand orientation differing between asymmetric units and the new residue, Met(236), representing an unusual rotamer of methionine. The flexibility of the SnSoxAX(C236M) SoxA heme environment is probably the cause of the four distinct, new EPR signals, including a high spin ferric heme form, that were observed for the enzyme. Despite the removal of the catalytically active cysteine heme ligand and drastic changes in the redox potential of the SoxA heme (WT, -479 mV; C236M, +85 mV), the substituted enzyme was catalytically active in glutathione-based assays although with reduced turnover numbers (WT, 3.7 s(-1); C236M, 2.0 s(-1)). SnSoxAX(C236M) was also active in assays using SoxYZ and thiosulfate as the sulfur substrate, suggesting that Cys(236) aids catalysis but is not crucial for it. The SoxYZ-based SoxAX assay is the first assay for an isolated component of the Sox multienzyme system.
Collapse
Affiliation(s)
- James R. Kilmartin
- From the Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, and
| | - Megan J. Maher
- the Structural Biology Program, Centenary Institute, Locked Bag 6, Sydney, New South Wales 2042, Australia
- the School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia, and
| | - Kuakarun Krusong
- the Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Christopher J. Noble
- the Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Graeme R. Hanson
- the Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Paul V. Bernhardt
- From the Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, and
| | - Mark J. Riley
- From the Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, and
| | - Ulrike Kappler
- From the Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, and
| |
Collapse
|
21
|
Gregersen LH, Bryant DA, Frigaard NU. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol 2011; 2:116. [PMID: 21833341 PMCID: PMC3153061 DOI: 10.3389/fmicb.2011.00116] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/11/2011] [Indexed: 11/13/2022] Open
Abstract
Green sulfur bacteria (GSB) constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains, the distribution and phylogeny of enzymes involved in their oxidative sulfur metabolism was investigated. At least one homolog of sulfide:quinone oxidoreductase (SQR) is present in all strains. In all sulfur-oxidizing GSB strains except the earliest diverging Chloroherpeton thalassium, the sulfide oxidation product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR) system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two different mechanisms that have different evolutionary origins: adenosine-5'-phosphosulfate reductase or polysulfide reductase-like complex 3. Thiosulfate utilization by the SOX system in GSB has apparently been acquired horizontally from Proteobacteria. SoxCD does not occur in GSB, and its function in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic element. Thus, the last common ancestor of currently known GSB was probably photoautotrophic, hydrogenotrophic, and contained SQR but not DSR or SOX. In addition, the predominance of the Chlorobium-Chlorobaculum-Prosthecochloris lineage among cultured GSB could be due to the horizontally acquired DSR and SOX systems. Finally, based upon structural, biochemical, and phylogenetic analyses, a uniform nomenclature is suggested for sqr genes in prokaryotes.
Collapse
Affiliation(s)
- Lea H. Gregersen
- Department of Biology, University of CopenhagenHelsingør, Denmark
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | | |
Collapse
|
22
|
Holkenbrink C, Barbas SO, Mellerup A, Otaki H, Frigaard NU. Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system. Microbiology (Reading) 2011; 157:1229-1239. [DOI: 10.1099/mic.0.044669-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Green sulfur bacteria (GSB) oxidize sulfide and thiosulfate to sulfate, with extracellular globules of elemental sulfur as an intermediate. Here we investigated which genes are involved in the formation and consumption of these sulfur globules in the green sulfur bacterium Chlorobaculum tepidum. We show that sulfur globule oxidation is strictly dependent on the dissimilatory sulfite reductase (DSR) system. Deletion of dsrM/CT2244 or dsrT/CT2245, or the two dsrCABL clusters (CT0851–CT0854, CT2247–2250), abolished sulfur globule oxidation and prevented formation of sulfate from sulfide, whereas deletion of dsrU/CT2246 had no effect. The DSR system also seems to be involved in the formation of thiosulfate, because thiosulfate was released from wild-type cells during sulfide oxidation, but not from the dsr mutants. The dsr mutants incapable of complete substrate oxidation oxidized sulfide and thiosulfate about twice as fast as the wild-type, while having only slightly lower growth rates (70–80 % of wild-type). The increased oxidation rates seem to compensate for the incomplete substrate oxidation to satisfy the requirement for reducing equivalents during growth. A mutant in which two sulfide : quinone oxidoreductases (sqrD/CT0117 and sqrF/CT1087) were deleted exhibited a decreased sulfide oxidation rate (∼50 % of wild-type), yet formation and consumption of sulfur globules were not affected. The observation that mutants lacking the DSR system maintain efficient growth suggests that the DSR system is dispensable in environments with sufficiently high sulfide concentrations. Thus, the DSR system in GSB may have been acquired by horizontal gene transfer as a response to a need for enhanced substrate utilization in sulfide-limiting habitats.
Collapse
Affiliation(s)
- Carina Holkenbrink
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Santiago Ocón Barbas
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Anders Mellerup
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Hiroyo Otaki
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Niels-Ulrik Frigaard
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
23
|
Grein F, Venceslau SS, Schneider L, Hildebrandt P, Todorovic S, Pereira IAC, Dahl C. DsrJ, an Essential Part of the DsrMKJOP Transmembrane Complex in the Purple Sulfur Bacterium Allochromatium vinosum, Is an Unusual Triheme Cytochrome c. Biochemistry 2010; 49:8290-9. [DOI: 10.1021/bi1007673] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fabian Grein
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | - Sofia S. Venceslau
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, EAN, Apt 127, 2780-157 Oeiras, Portugal
| | - Lilian Schneider
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, EAN, Apt 127, 2780-157 Oeiras, Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, EAN, Apt 127, 2780-157 Oeiras, Portugal
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| |
Collapse
|
24
|
Azai C, Tsukatani Y, Itoh S, Oh-oka H. C-type cytochromes in the photosynthetic electron transfer pathways in green sulfur bacteria and heliobacteria. PHOTOSYNTHESIS RESEARCH 2010; 104:189-199. [PMID: 20091230 DOI: 10.1007/s11120-009-9521-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/17/2009] [Indexed: 05/28/2023]
Abstract
Green sulfur bacteria and heliobacteria are strictly anaerobic phototrophs that have homodimeric type 1 reaction center complexes. Within these complexes, highly reducing substances are produced through an initial charge separation followed by electron transfer reactions driven by light energy absorption. In order to attain efficient energy conversion, it is important for the photooxidized reaction center to be rapidly rereduced. Green sulfur bacteria utilize reduced inorganic sulfur compounds (sulfide, thiosulfate, and/or sulfur) as electron sources for their anoxygenic photosynthetic growth. Membrane-bound and soluble cytochromes c play essential roles in the supply of electrons from sulfur oxidation pathways to the P840 reaction center. In the case of gram-positive heliobacteria, the photooxidized P800 reaction center is rereduced by cytochrome c-553 (PetJ) whose N-terminal cysteine residue is modified with fatty acid chains anchored to the cytoplasmic membrane.
Collapse
Affiliation(s)
- Chihiro Azai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | |
Collapse
|
25
|
Sakurai H, Ogawa T, Shiga M, Inoue K. Inorganic sulfur oxidizing system in green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2010; 104:163-176. [PMID: 20143161 DOI: 10.1007/s11120-010-9531-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/16/2010] [Indexed: 05/28/2023]
Abstract
Green sulfur bacteria use various reduced sulfur compounds such as sulfide, elemental sulfur, and thiosulfate as electron donors for photoautotrophic growth. This article briefly summarizes what is known about the inorganic sulfur oxidizing systems of these bacteria with emphasis on the biochemical aspects. Enzymes that oxidize sulfide in green sulfur bacteria are membrane-bound sulfide-quinone oxidoreductase, periplasmic (sometimes membrane-bound) flavocytochrome c sulfide dehydrogenase, and monomeric flavocytochrome c (SoxF). Some green sulfur bacteria oxidize thiosulfate by the multienzyme system called either the TOMES (thiosulfate oxidizing multi-enzyme system) or Sox (sulfur oxidizing system) composed of the three periplasmic proteins: SoxB, SoxYZ, and SoxAXK with a soluble small molecule cytochrome c as the electron acceptor. The oxidation of sulfide and thiosulfate by these enzymes in vitro is assumed to yield two electrons and result in the transfer of a sulfur atom to persulfides, which are subsequently transformed to elemental sulfur. The elemental sulfur is temporarily stored in the form of globules attached to the extracellular surface of the outer membranes. The oxidation pathway of elemental sulfur to sulfate is currently unclear, although the participation of several proteins including those of the dissimilatory sulfite reductase system etc. is suggested from comparative genomic analyses.
Collapse
Affiliation(s)
- Hidehiro Sakurai
- Research Institute for Photosynthetic Hydrogen Production, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | | | | | | |
Collapse
|
26
|
Geelhoed JS, Sorokin DY, Epping E, Tourova TP, Banciu HL, Muyzer G, Stams AJM, van Loosdrecht MCM. Microbial sulfide oxidation in the oxic-anoxic transition zone of freshwater sediment: involvement of lithoautotrophic Magnetospirillum strain J10. FEMS Microbiol Ecol 2009; 70:54-65. [PMID: 19659746 DOI: 10.1111/j.1574-6941.2009.00739.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The oxic-anoxic transition zone (OATZ) of freshwater sediments, where opposing gradients exist of reduced iron and sulfide with oxygen, creates a suitable environment for microorganisms that derive energy from the oxidation of iron or sulfide. Gradient microcosms incubated with freshwater sediment showed rapid microbial turnover of sulfide and oxygen compared with sterile systems. Microcosms with FeS as a substrate also showed growth at the OATZ and subsequent dilution series resulted in the isolation of three novel strains, of which strain J10 grows chemolithoautotrophically with reduced sulfur compounds under microaerobic conditions. All three strains are motile spirilla with bipolar flagella, related to the genera Magnetospirillum and Dechlorospirillum within the Alphaproteobacteria. Strain J10 is closely related to Magnetospirillum gryphiswaldense and is the first strain in this genus found to be capable of autotrophic growth. Thiosulfate was oxidized completely to sulfate, with a yield of 4 g protein mol(-1) thiosulfate, and autotrophic growth was evidenced by incorporation of (13)C derived from bicarbonate into biomass. A putative gene encoding ribulose 1,5-bisphosphate carboxylase/oxygenase type II was identified in strain J10, suggesting that the Calvin-Benson-Bassham cycle is used for autotrophic growth. Analogous genes are also present in other magnetospirilla, and in the autotrophically growing alphaproteobacterium magnetic vibrio MV-1.
Collapse
Affiliation(s)
- Jeanine S Geelhoed
- Department of Biotechnology, Environmental Biotechnology, Delft University of Technology, Delft, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sauvé V, Roversi P, Leath KJ, Garman EF, Antrobus R, Lea SM, Berks BC. Mechanism for the hydrolysis of a sulfur-sulfur bond based on the crystal structure of the thiosulfohydrolase SoxB. J Biol Chem 2009; 284:21707-18. [PMID: 19535341 DOI: 10.1074/jbc.m109.002709] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SoxB is an essential component of the bacterial Sox sulfur oxidation pathway. SoxB contains a di-manganese(II) site and is proposed to catalyze the release of sulfate from a protein-bound cysteine S-thiosulfonate. A direct assay for SoxB activity is described. The structure of recombinant Thermus thermophilus SoxB was determined by x-ray crystallography to a resolution of 1.5 A. Structures were also determined for SoxB in complex with the substrate analogue thiosulfate and in complex with the product sulfate. A mechanistic model for SoxB is proposed based on these structures.
Collapse
Affiliation(s)
- Véronique Sauvé
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Azai C, Tsukatani Y, Harada J, Oh-oka H. Sulfur oxidation in mutants of the photosynthetic green sulfur bacterium Chlorobium tepidum devoid of cytochrome c-554 and SoxB. PHOTOSYNTHESIS RESEARCH 2009; 100:57-65. [PMID: 19421892 DOI: 10.1007/s11120-009-9426-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 04/15/2009] [Indexed: 05/27/2023]
Abstract
A mutant devoid of cytochrome c-554 (CT0075) in Chlorobium tepidum (syn. Chlorobaculum tepidum) exhibited a decreased growth rate but normal growth yield when compared to the wild type. From quantitative determinations of sulfur compounds in media, the mutant was found to oxidize thiosulfate more slowly than the wild type but completely to sulfate as the wild type. This indicates that cytochrome c-554 would increase the rate of thiosulfate oxidation by serving as an efficient electron carrier but is not indispensable for thiosulfate oxidation itself. On the other hand, mutants in which a portion of the soxB gene (CT1021) was replaced with the aacC1 cassette did not grow at all in a medium containing only thiosulfate as an electron source. They exhibited partial growth yields in media containing only sulfide when compared to the wild type. This indicates that SoxB is not only essential for thiosulfate oxidation but also responsible for sulfide oxidation. An alternative electron carrier or electron transfer path would thus be operating between the Sox system and the reaction center in the mutant devoid of cytochrome c-554. Cytochrome c-554 might function in any other pathway(s) as well as the thiosulfate oxidation one, since even green sulfur bacteria that cannot oxidize thiosulfate contain a cycA gene encoding this electron carrier.
Collapse
Affiliation(s)
- Chihiro Azai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | | | | | | |
Collapse
|
29
|
Welte C, Hafner S, Krätzer C, Quentmeier A, Friedrich CG, Dahl C. Interaction between Sox proteins of two physiologically distinct bacteria and a new protein involved in thiosulfate oxidation. FEBS Lett 2009; 583:1281-6. [PMID: 19303410 DOI: 10.1016/j.febslet.2009.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/02/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
Organisms using the thiosulfate-oxidizing Sox enzyme system fall into two groups: group 1 forms sulfur globules as intermediates (Allochromatium vinosum), group 2 does not (Paracoccus pantotrophus). While several components of their Sox systems are quite similar, i.e. the proteins SoxXA, SoxYZ and SoxB, they differ by Sox(CD)(2) which is absent in sulfur globule-forming organisms. Still, the respective enzymes are partly exchangeable in vitro: P. pantotrophus Sox enzymes work productively with A. vinosum SoxYZ whereas A. vinosum SoxB does not cooperate with the P. pantotrophus enzymes. Furthermore, A. vinosum SoxL, a rhodanese-like protein encoded immediately downstream of soxXAK, appears to play an important role in recycling SoxYZ as it increases thiosulfate depletion velocity in vitro without increasing the electron yield.
Collapse
Affiliation(s)
- Cornelia Welte
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|