1
|
Majdi C, Meffre P, Benfodda Z. Recent advances in the development of bacterial response regulators inhibitors as antibacterial and/or antibiotic adjuvant agent: A new approach to combat bacterial resistance. Bioorg Chem 2024; 150:107606. [PMID: 38968903 DOI: 10.1016/j.bioorg.2024.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
The number of new antibacterial agents currently being discovered is insufficient to combat bacterial resistance. It is extremely challenging to find new antibiotics and to introduce them to the pharmaceutical market. Therefore, special attention must be given to find new strategies to combat bacterial resistance and prevent bacteria from developing resistance. Two-component system is a transduction system and the most prevalent mechanism employed by bacteria to respond to environmental changes. This signaling system consists of a membrane sensor histidine kinase that perceives environmental stimuli and a response regulator which acts as a transcription factor. The approach consisting of developing response regulators inhibitors with antibacterial activity or antibiotic adjuvant activity is a novel approach that has never been previously reviewed. In this review we report for the first time, the importance of targeting response regulators and summarizing all existing studies carried out from 2008 until now on response regulators inhibitors as antibacterial agents or / and antibiotic adjuvants. Moreover, we describe the antibacterial activity and/or antibiotic adjuvants activity against the studied bacterial strains and the mechanism of different response regulator inhibitors when it's possible.
Collapse
|
2
|
Chen H, Yu C, Wu H, Li G, Li C, Hong W, Yang X, Wang H, You X. Recent Advances in Histidine Kinase-Targeted Antimicrobial Agents. Front Chem 2022; 10:866392. [PMID: 35860627 PMCID: PMC9289397 DOI: 10.3389/fchem.2022.866392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
The prevalence of antimicrobial-resistant pathogens significantly limited the number of effective antibiotics available clinically, which urgently requires new drug targets to screen, design, and develop novel antibacterial drugs. Two-component system (TCS), which is comprised of a histidine kinase (HK) and a response regulator (RR), is a common mechanism whereby bacteria can sense a range of stimuli and make an appropriate adaptive response. HKs as the sensor part of the bacterial TCS can regulate various processes such as growth, vitality, antibiotic resistance, and virulence, and have been considered as a promising target for antibacterial drugs. In the current review, we highlighted the structural basis and functional importance of bacterial TCS especially HKs as a target in the discovery of new antimicrobials, and summarize the latest research progress of small-molecule HK-inhibitors as potential novel antimicrobial drugs reported in the past decade.
Collapse
Affiliation(s)
- Hongtong Chen
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengqi Yu
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Han Wu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Guoqing Li
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congran Li
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Hong
- Beijing Institute of Collaborative Innovation, Beijing, China
| | - Xinyi Yang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Xuefu You
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Bialer MG, Ferrero MC, Delpino MV, Ruiz-Ranwez V, Posadas DM, Baldi PC, Zorreguieta A. Adhesive Functions or Pseudogenization of Type Va Autotransporters in Brucella Species. Front Cell Infect Microbiol 2021; 11:607610. [PMID: 33987105 PMCID: PMC8111173 DOI: 10.3389/fcimb.2021.607610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Adhesion to host cells is a key step for successful infection of many bacterial pathogens and may define tropism to different host tissues. To do so, bacteria display adhesins on their surfaces. Brucella is an intracellular pathogen capable of proliferating in a wide variety of cell types. It has been described that BmaC, a large protein that belongs to the classical (type Va) autotransporter family, is required for efficient adhesion of Brucella suis strain 1330 to epithelial cells and fibronectin. Here we show that B. suis 1330 harbors two other type Va autotransporters (BmaA and BmaB), which, although much smaller, share significant sequence similarities with BmaC and contain the essential domains to mediate proper protein translocation to the bacterial surface. Gain and loss of function studies indicated that BmaA, BmaB, and BmaC contribute, to a greater or lesser degree, to adhesion of B. suis 1330 to different cells such as synovial fibroblasts, osteoblasts, trophoblasts, and polarized epithelial cells as well as to extracellular matrix components. It was previously shown that BmaC localizes to a single bacterial pole. Interestingly, we observed here that, similar to BmaC, the BmaB adhesin is localized mostly at a single cell pole, reinforcing the hypothesis that Brucella displays an adhesive pole. Although Brucella species have strikingly similar genomes, they clearly differ in their host preferences. Mainly, the differences identified between species appear to be at loci encoding surface proteins. A careful in silico analysis of the putative type Va autotransporter orthologues from several Brucella strains showed that the bmaB locus from Brucella abortus and both, the bmaA and bmaC loci from Brucella melitensis are pseudogenes in all strains analyzed. Results reported here evidence that all three autotransporters play a role in the adhesion properties of B. suis 1330. However, Brucella spp. exhibit extensive variations in the repertoire of functional adhesins of the classical autotransporter family that can be displayed on the bacterial surface, making them an interesting target for future studies on host preference and tropism.
Collapse
Affiliation(s)
- Magalí G. Bialer
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
| | - Mariana C. Ferrero
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Diana M. Posadas
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
| | - Pablo C. Baldi
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
5
|
Characterization of permissive and non-permissive peptide insertion sites in chloramphenicol acetyltransferase. Microb Pathog 2020; 149:104395. [DOI: 10.1016/j.micpath.2020.104395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/02/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
|
6
|
Generating asymmetry in a changing environment: cell cycle regulation in dimorphic alphaproteobacteria. Biol Chem 2020; 401:1349-1363. [DOI: 10.1515/hsz-2020-0235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Abstract
AbstractWhile many bacteria divide by symmetric binary fission, some alphaproteobacteria have strikingly asymmetric cell cycles, producing offspring that differs significantly in their morphology and reproductive state. To establish this asymmetry, these species employ a complex cell cycle regulatory pathway based on two-component signaling cascades. At the center of this network is the essential DNA-binding response regulator CtrA, which acts as a transcription factor controlling numerous genes with cell cycle-relevant functions as well as a regulator of chromosome replication. The DNA-binding activity of CtrA is controlled at the level of both protein phosphorylation and stability, dependent on an intricate network of regulatory proteins, whose function is tightly coordinated in time and space. CtrA is differentially activated in the two (developing) offspring, thereby establishing distinct transcriptional programs that ultimately determine their distinct cell fates. Phase-separated polar microdomains of changing composition sequester proteins involved in the (in-)activation and degradation of CtrA specifically at each pole. In this review, we summarize the current knowledge of the CtrA pathway and discuss how it has evolved to regulate the cell cycle of morphologically distinct alphaproteobacteria.
Collapse
|
7
|
Poncin K, Gillet S, De Bolle X. Learning from the master: targets and functions of the CtrA response regulator in Brucella abortus and other alpha-proteobacteria. FEMS Microbiol Rev 2018; 42:500-513. [PMID: 29733367 DOI: 10.1093/femsre/fuy019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
The α-proteobacteria are a fascinating group of free-living, symbiotic and pathogenic organisms, including the Brucella genus, which is responsible for a worldwide zoonosis. One common feature of α-proteobacteria is the presence of a conserved response regulator called CtrA, first described in the model bacterium Caulobacter crescentus, where it controls gene expression at different stages of the cell cycle. Here, we focus on Brucella abortus and other intracellular α-proteobacteria in order to better assess the potential role of CtrA in the infectious context. Comparative genomic analyses of the CtrA control pathway revealed the conservation of specific modules, as well as the acquisition of new factors during evolution. The comparison of CtrA regulons also suggests that specific clades of α-proteobacteria acquired distinct functions under its control, depending on the essentiality of the transcription factor. Other CtrA-controlled functions, for instance motility and DNA repair, are proposed to be more ancestral. Altogether, these analyses provide an interesting example of the plasticity of a regulation network, subject to the constraints of inherent imperatives such as cell division and the adaptations to diversified environmental niches.
Collapse
Affiliation(s)
- Katy Poncin
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Sébastien Gillet
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Xavier De Bolle
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| |
Collapse
|
8
|
Transposon Sequencing of Brucella abortus Uncovers Essential Genes for Growth In Vitro and Inside Macrophages. Infect Immun 2018; 86:IAI.00312-18. [PMID: 29844240 DOI: 10.1128/iai.00312-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022] Open
Abstract
Brucella abortus is a class III zoonotic bacterial pathogen able to survive and replicate inside host cells, including macrophages. Here we report a multidimensional transposon sequencing analysis to identify genes essential for Brucella abortus growth in rich medium and replication in RAW 264.7 macrophages. The construction of a dense transposon mutant library and mapping of 929,769 unique mini-Tn5 insertion sites in the genome allowed identification of 491 essential coding sequences and essential segments in the B. abortus genome. Chromosome II carries a lower proportion (5%) of essential genes than chromosome I (19%), supporting the hypothesis of a recent acquisition of a megaplasmid as the origin of chromosome II. Temporally resolved transposon sequencing analysis as a function of macrophage infection stages identified 79 genes with a specific attenuation phenotype in macrophages, at either 2, 5, or 24 h postinfection, and 86 genes for which the attenuated mutant phenotype correlated with a growth defect on plates. We identified 48 genes required for intracellular growth, including the virB operon, encoding the type IV secretion system, which supports the validity of the screen. The remaining genes encode amino acid and pyrimidine biosynthesis, electron transfer systems, transcriptional regulators, and transporters. In particular, we report the need of an intact pyrimidine nucleotide biosynthesis pathway in order for B. abortus to proliferate inside RAW 264.7 macrophages.
Collapse
|
9
|
Cardona ST, Choy M, Hogan AM. Essential Two-Component Systems Regulating Cell Envelope Functions: Opportunities for Novel Antibiotic Therapies. J Membr Biol 2017; 251:75-89. [DOI: 10.1007/s00232-017-9995-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 01/22/2023]
|
10
|
Ehrle HM, Guidry JT, Iacovetto R, Salisbury AK, Sandidge DJ, Bowman GR. Polar Organizing Protein PopZ Is Required for Chromosome Segregation in Agrobacterium tumefaciens. J Bacteriol 2017; 199:e00111-17. [PMID: 28630129 PMCID: PMC5553026 DOI: 10.1128/jb.00111-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
Abstract
Despite being perceived as relatively simple organisms, many bacteria exhibit an impressive degree of subcellular organization. In Caulobacter crescentus, the evolutionarily conserved polar organizing protein PopZ facilitates cytoplasmic organization by recruiting chromosome centromeres and regulatory proteins to the cell poles. Here, we characterize the localization and function of PopZ in Agrobacterium tumefaciens, a genetically related species with distinct anatomy. In this species, we find that PopZ molecules are relocated from the old pole to the new pole in the minutes following cell division. PopZ is not required for the localization of the histidine kinases DivJ and PdhS1, which become localized to the old pole after PopZ relocation is complete. The histidine kinase PdhS2 is temporally and spatially related to PopZ in that it localizes to transitional poles just before they begin to shed PopZ and disappears from the old pole after PopZ relocalization. At the new pole, PopZ is required for tethering the centromere of at least one of multiple replicons (chromosome I), and the loss of popZ results in a severe chromosome segregation defect, aberrant cell division, and cell mortality. After cell division, the daughter that inherits polar PopZ is shorter in length and delayed in chromosome I segregation compared to its sibling. In this cell type, PopZ completes polar relocation well before the onset of chromosome segregation. While A. tumefaciens PopZ resembles its C. crescentus homolog in chromosome tethering activity, other aspects of its localization and function indicate distinct properties related to differences in cell organization.IMPORTANCE Members of the Alphaproteobacteria exhibit a wide range of phenotypic diversity despite sharing many conserved genes. In recent years, the extent to which this diversity is reflected at the level of subcellular organization has become increasingly apparent. However, which factors control such organization and how they have changed to suit different body plans are poorly understood. This study focuses on PopZ, which is essential for many aspects of polar organization in Caulobacter crescentus, but its role in other species is unclear. We explore the similarities and differences in PopZ functions between Agrobacterium tumefaciens and Caulobacter crescentus and conclude that PopZ lies at a point of diversification in the mechanisms that control cytoplasmic organization and cell cycle regulation in Alphaproteobacteria.
Collapse
Affiliation(s)
- Haley M Ehrle
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Jacob T Guidry
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Rebecca Iacovetto
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Anne K Salisbury
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - D J Sandidge
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Grant R Bowman
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
11
|
Hallez R, Delaby M, Sanselicio S, Viollier PH. Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat Rev Microbiol 2017; 15:137-148. [PMID: 28138140 DOI: 10.1038/nrmicro.2016.183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The class Alphaproteobacteria includes Gram-negative free-living, symbiotic and obligate intracellular bacteria, as well as important plant, animal and human pathogens. Recent work has established the key antagonistic roles that phosphorylated guanosines, cyclic-di-GMP (c-di-GMP) and the alarmones guanosine tetraphosphate and guanosine pentaphosphate (collectively referred to as (p)ppGpp), have in the regulation of the cell cycle in these bacteria. In this Review, we discuss the insights that have been gained into the regulation of the initiation of DNA replication and cytokinesis by these second messengers, with a particular focus on the cell cycle of Caulobacter crescentus. We explore how the fluctuating levels of c-di-GMP and (p)ppGpp during the progression of the cell cycle and under conditions of stress control the synthesis and proteolysis of key regulators of the cell cycle. As these signals also promote bacterial interactions with host cells, the enzymes that control (p)ppGpp and c-di-GMP are attractive antibacterial targets.
Collapse
Affiliation(s)
- Régis Hallez
- Bacterial Cell cycle and Development (BCcD), Unité de recherche en biologie des micro-organismes (URBM), University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Marie Delaby
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefano Sanselicio
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.,Present address: Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
12
|
Cell cycle control in Alphaproteobacteria. Curr Opin Microbiol 2016; 30:107-113. [PMID: 26871482 DOI: 10.1016/j.mib.2016.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/22/2022]
Abstract
Alphaproteobacteria include many medically and environmentally important organisms. Despite the diversity of their niches and lifestyles, from free-living to host-associated, they usually rely on very similar mechanisms to control their cell cycles. Studies on Caulobacter crescentus still lay the foundation for understanding the molecular details of pathways regulating DNA replication and cell division and coordinating these two processes with other events of the cell cycle. This review highlights recent discoveries on the regulation and the mode of action of conserved global regulators and small molecules like c-di-GMP and (p)ppGpp, which play key roles in cell cycle control. It also describes several newly identified mechanisms that modulate cell cycle progression in response to stresses or environmental conditions.
Collapse
|
13
|
De Bolle X, Crosson S, Matroule JY, Letesson JJ. Brucella abortus Cell Cycle and Infection Are Coordinated. Trends Microbiol 2015; 23:812-821. [PMID: 26497941 DOI: 10.1016/j.tim.2015.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/09/2015] [Accepted: 09/24/2015] [Indexed: 12/29/2022]
Abstract
Brucellae are facultative intracellular pathogens. The recent development of methods and genetically engineered strains allowed the description of cell-cycle progression of Brucella abortus, including unipolar growth and the ordered initiation of chromosomal replication. B. abortus cell-cycle progression is coordinated with intracellular trafficking in the endosomal compartments. Bacteria are first blocked at the G1 stage, growth and chromosome replication being resumed shortly before reaching the intracellular proliferation compartment. The control mechanisms of cell cycle are similar to those reported for the bacterium Caulobacter crescentus, and they are crucial for survival in the host cell. The development of single-cell analyses could also be applied to other bacterial pathogens to investigate their cell-cycle progression during infection.
Collapse
Affiliation(s)
- Xavier De Bolle
- University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Sean Crosson
- University of Chicago, Gordon Center for Integrative Science W125, 929 E. 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
14
|
Francez-Charlot A, Kaczmarczyk A, Vorholt JA. The branched CcsA/CckA-ChpT-CtrA phosphorelay of Sphingomonas melonis controls motility and biofilm formation. Mol Microbiol 2015; 97:47-63. [PMID: 25825287 DOI: 10.1111/mmi.13011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2015] [Indexed: 11/29/2022]
Abstract
The CckA-ChpT-CtrA phosphorelay is central to the regulation of the cell cycle in Caulobacter crescentus. The three proteins are conserved in Alphaproteobacteria, but little is known about their roles in most members of this class. Here, we characterized the system in Sphingomonas melonis. We found that the transcription factor CtrA is the master regulator of flagella synthesis genes, the hierarchical transcriptional organization of which is herein described. CtrA also regulates genes involved in exopolysaccharide synthesis and cyclic-di-GMP signaling, and is important for biofilm formation. In addition, the ctrA mutant exhibits an aberrant morphology, suggesting a role for CtrA in cell division. An analysis of the regulation of CtrA indicates that the phosphorelay composed of CckA and ChpT is conserved and that the absence of the bifunctional kinase/phosphatase CckA apparently results in overactivation of CtrA through ChpT. Suppressors of this phenotype identified the hybrid histidine kinase CcsA. Phosphorelays initiated by CckA or CcsA were reconstituted in vitro, suggesting that in S. melonis, CtrA phosphorylation is controlled by a branched pathway upstream of ChpT. This study thus suggests that signals can directly converge at the level of ChpT phosphorylation through multiple hybrid kinases to coordinate a number of important physiological processes.
Collapse
Affiliation(s)
| | | | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
15
|
Sinorhizobium meliloti CtrA Stability Is Regulated in a CbrA-Dependent Manner That Is Influenced by CpdR1. J Bacteriol 2015; 197:2139-2149. [PMID: 25897034 DOI: 10.1128/jb.02593-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED CbrA is a DivJ/PleC-like histidine kinase of DivK that is required for cell cycle progression and symbiosis in the alphaproteobacterium Sinorhizobium meliloti. Loss of cbrA results in increased levels of CtrA as well as its phosphorylation. While many of the known Caulobacter crescentus regulators of CtrA phosphorylation and proteolysis are phylogenetically conserved within S. meliloti, the latter lacks the PopA regulator that is required for CtrA degradation in C. crescentus. In order to investigate whether CtrA proteolysis occurs in S. meliloti, CtrA stability was assessed. During exponential growth, CtrA is unstable and therefore likely to be degraded in a cell cycle-regulated manner. Loss of cbrA significantly increases CtrA stability, but this phenotype is restored to that of the wild type by constitutive ectopic expression of a CpdR1 variant that cannot be phosphorylated (CpdR1(D53A)). Addition of CpdR1(D53A) fully suppresses cbrA mutant cell cycle defects, consistent with regulation of CtrA stability playing a key role in mediating proper cell cycle progression in S. meliloti. Importantly, the cbrA mutant symbiosis defect is also suppressed in the presence of CpdR1(D53A). Thus, regulation of CtrA stability by CbrA and CpdR1 is associated with free-living cell cycle outcomes and symbiosis. IMPORTANCE The cell cycle is a fundamental process required for bacterial growth, reproduction, and developmental differentiation. Our objective is to understand how a two-component signal transduction network directs cell cycle events during free-living growth and host colonization. The Sinorhizobium meliloti nitrogen-fixing symbiosis with plants is associated with novel cell cycle events. This study identifies a link between the regulated stability of an essential response regulator, free-living cell cycle progression, and symbiosis.
Collapse
|
16
|
Interaction network and localization of Brucella abortus membrane proteins involved in the synthesis, transport, and succinylation of cyclic β-1,2-glucans. J Bacteriol 2015; 197:1640-8. [PMID: 25733613 DOI: 10.1128/jb.00068-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/22/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Cyclic β-1,2-glucans (CβG) are periplasmic homopolysaccharides that play an important role in the virulence and interaction of Brucella with the host. Once synthesized in the cytoplasm by the CβG synthase (Cgs), CβG are transported to the periplasm by the CβG transporter (Cgt) and succinylated by the CβG modifier enzyme (Cgm). Here, we used a bacterial two-hybrid system and coimmunoprecipitation techniques to study the interaction network between these three integral inner membrane proteins. Our results indicate that Cgs, Cgt, and Cgm can form both homotypic and heterotypic interactions. Analyses carried out with Cgs mutants revealed that the N-terminal region of the protein (Cgs region 1 to 418) is required to sustain the interactions with Cgt and Cgm as well as with itself. We demonstrated by single-cell fluorescence analysis that in Brucella, Cgs and Cgt are focally distributed in the membrane, particularly at the cell poles, whereas Cgm is mostly distributed throughout the membrane with a slight accumulation at the poles colocalizing with the other partners. In summary, our results demonstrate that Cgs, Cgt, and Cgm form a membrane-associated biosynthetic complex. We propose that the formation of a membrane complex could serve as a mechanism to ensure the fidelity of CβG biosynthesis by coordinating their synthesis with the transport and modification. IMPORTANCE In this study, we analyzed the interaction and localization of the proteins involved in the synthesis, transport, and modification of Brucella abortus cyclic β-1,2-glucans (CβG), which play an important role in the virulence and interaction of Brucella with the host. We demonstrate that these proteins interact, forming a complex located mainly at the cell poles; this is the first experimental evidence of the existence of a multienzymatic complex involved in the metabolism of osmoregulated periplasmic glucans in bacteria and argues for another example of pole differentiation in Brucella. We propose that the formation of this membrane complex could serve as a mechanism to ensure the fidelity of CβG biosynthesis by coordinating synthesis with the transport and modification.
Collapse
|
17
|
Sycz G, Carrica MC, Tseng TS, Bogomolni RA, Briggs WR, Goldbaum FA, Paris G. LOV Histidine Kinase Modulates the General Stress Response System and Affects the virB Operon Expression in Brucella abortus. PLoS One 2015; 10:e0124058. [PMID: 25993430 PMCID: PMC4438053 DOI: 10.1371/journal.pone.0124058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Brucella is the causative agent of the zoonotic disease brucellosis, and its success as an intracellular pathogen relies on its ability to adapt to the harsh environmental conditions that it encounters inside the host. The Brucella genome encodes a sensor histidine kinase containing a LOV domain upstream from the kinase, LOVHK, which plays an important role in light-regulated Brucella virulence. In this report we study the intracellular signaling pathway initiated by the light sensor LOVHK using an integrated biochemical and genetic approach. From results of bacterial two-hybrid assays and phosphotransfer experiments we demonstrate that LOVHK functionally interacts with two response regulators: PhyR and LovR, constituting a functional two-component signal-transduction system. LOVHK contributes to the activation of the General Stress Response (GSR) system in Brucella via PhyR, while LovR is proposed to be a phosphate-sink for LOVHK, decreasing its phosphorylation state. We also show that in the absence of LOVHK the expression of the virB operon is down-regulated. In conclusion, our results suggest that LOVHK positively regulates the GSR system in vivo, and has an effect on the expression of the virB operon. The proposed regulatory network suggests a similar role for LOVHK in other microorganisms.
Collapse
Affiliation(s)
- Gabriela Sycz
- Laboratorio de Inmunología y Microbiología Molecular, Fundación Instituto Leloir (IIBBA-CONICET), Buenos Aires, Argentina
| | - Mariela Carmen Carrica
- Laboratorio de Inmunología y Microbiología Molecular, Fundación Instituto Leloir (IIBBA-CONICET), Buenos Aires, Argentina
| | - Tong-Seung Tseng
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Roberto A. Bogomolni
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Winslow R. Briggs
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Fernando A. Goldbaum
- Laboratorio de Inmunología y Microbiología Molecular, Fundación Instituto Leloir (IIBBA-CONICET), Buenos Aires, Argentina
| | - Gastón Paris
- Laboratorio de Inmunología y Microbiología Molecular, Fundación Instituto Leloir (IIBBA-CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
18
|
Peng J, Hao B, Liu L, Wang S, Ma B, Yang Y, Xie F, Li Y. RNA-Seq and microarrays analyses reveal global differential transcriptomes of Mesorhizobium huakuii 7653R between bacteroids and free-living cells. PLoS One 2014; 9:e93626. [PMID: 24695521 PMCID: PMC3973600 DOI: 10.1371/journal.pone.0093626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022] Open
Abstract
Mesorhizobium huakuii 7653R occurs either in nitrogen-fixing symbiosis with its host plant, Astragalus sinicus, or free-living in the soil. The M. huakuii 7653R genome has recently been sequenced. To better understand the complex biochemical and developmental changes that occur in 7653R during bacteroid development, RNA-Seq and Microarrays were used to investigate the differential transcriptomes of 7653R bacteroids and free-living cells. The two approaches identified several thousand differentially expressed genes. The most prominent up-regulation occurred in the symbiosis plasmids, meanwhile gene expression is concentrated to a set of genes (clusters) in bacteroids to fulfill corresponding functional requirements. The results suggested that the main energy metabolism is active while fatty acid metabolism is inactive in bacteroid and that most of genes relevant to cell cycle are down-regulated accordingly. For a global analysis, we reconstructed a protein-protein interaction (PPI) network for 7653R and integrated gene expression data into the network using Cytoscape. A highly inter-connected subnetwork, with function enrichment for nitrogen fixation, was found, and a set of hubs and previously uncharacterized genes participating in nitrogen fixation were identified. The results described here provide a broader biological landscape and novel insights that elucidate rhizobial bacteroid differentiation, nitrogen fixation and related novel gene functions.
Collapse
Affiliation(s)
- Jieli Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Baohai Hao
- Center for Bioinformatics, School of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Liu Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Shanming Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Binguang Ma
- Center for Bioinformatics, School of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Yi Yang
- Center for Bioinformatics, School of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Fuli Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- * E-mail:
| |
Collapse
|
19
|
Ruiz-Ranwez V, Posadas DM, Estein SM, Abdian PL, Martin FA, Zorreguieta A. The BtaF trimeric autotransporter of Brucella suis is involved in attachment to various surfaces, resistance to serum and virulence. PLoS One 2013; 8:e79770. [PMID: 24236157 PMCID: PMC3827427 DOI: 10.1371/journal.pone.0079770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/02/2013] [Indexed: 02/02/2023] Open
Abstract
The adhesion of bacterial pathogens to host cells is an event that determines infection, and ultimately invasion and intracellular multiplication. Several evidences have recently shown that this rule is also truth for the intracellular pathogen Brucella. Brucella suis displays the unipolar BmaC and BtaE adhesins, which belong to the monomeric and trimeric autotransporter (TA) families, respectively. It was previously shown that these adhesins are involved in bacterial adhesion to host cells and components of the extracellular matrix (ECM). In this work we describe the role of a new member of the TA family of B. suis (named BtaF) in the adhesive properties of the bacterial surface. BtaF conferred the bacteria that carried it a promiscuous adhesiveness to various ECM components and the ability to attach to an abiotic surface. Furthermore, BtaF was found to participate in bacterial adhesion to epithelial cells and was required for full virulence in mice. Similar to BmaC and BtaE, the BtaF adhesin was expressed in a small subpopulation of bacteria, and in all cases, it was detected at the new pole generated after cell division. Interestingly, BtaF was also implicated in the resistance of B. suis to porcine serum. Our findings emphasize the impact of TAs in the Brucella lifecycle.
Collapse
|
20
|
Van der Henst C, de Barsy M, Zorreguieta A, Letesson JJ, De Bolle X. The Brucella pathogens are polarized bacteria. Microbes Infect 2013; 15:998-1004. [PMID: 24141086 DOI: 10.1016/j.micinf.2013.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
Abstract
Brucella pathogens are responsible for brucellosis, a worldwide zoonosis. They are facultative intracellular pathogens characterized by their asymmetric division and their unipolar growth. This growth modality generates poles with specialized functions (through polar recruitment of polar adhesins or of cell cycle regulators) and progeny cells with potentially different fates.
Collapse
Affiliation(s)
- Charles Van der Henst
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Sadowski CS, Wilson D, Schallies KB, Walker G, Gibson KE. The Sinorhizobium meliloti sensor histidine kinase CbrA contributes to free-living cell cycle regulation. MICROBIOLOGY-SGM 2013; 159:1552-1563. [PMID: 23728626 DOI: 10.1099/mic.0.067504-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sinorhizobium meliloti is alternately capable of colonizing the soil as a free-living bacterium or establishing a chronic intracellular infection with its legume host for the purpose of nitrogen fixation. We previously identified the S. meliloti two-component sensor histidine kinase CbrA as playing an important role in regulating exopolysaccharide production, flagellar motility and symbiosis. Phylogenetic analysis of CbrA has highlighted its evolutionary relatedness to the Caulobacter crescentus sensor histidine kinases PleC and DivJ, which are involved in CtrA-dependent cell cycle regulation through the shared response regulator DivK. We therefore became interested in testing whether CbrA plays a role in regulating S. meliloti cell cycle processes. We find the loss of cbrA results in filamentous cell growth accompanied by cells that contain an aberrant genome complement, indicating CbrA plays a role in regulating cell division and possibly DNA segregation. S. meliloti DivK localizes to the old cell pole during distinct phases of the cell cycle in a phosphorylation-dependent manner. Loss of cbrA results in a significantly decreased rate of DivK polar localization when compared with the wild-type, suggesting CbrA helps regulate cell cycle processes by modulating DivK phosphorylation status as a kinase. Consistent with a presumptive decrease in DivK phosphorylation and activity, we also find the steady-state level of CtrA increased in cbrA mutants. Our data therefore demonstrate that CbrA contributes to free-living cell cycle regulation, which in light of its requirement for symbiosis, points to the potential importance of cell cycle regulation for establishing an effective host interaction.
Collapse
Affiliation(s)
- Craig S Sadowski
- Department of Biology, 100 Morrissey Boulevard, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Daniel Wilson
- Department of Biology, 100 Morrissey Boulevard, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Karla B Schallies
- Department of Biology, 100 Morrissey Boulevard, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Graham Walker
- Department of Biology, 31 Ames Street, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katherine E Gibson
- Department of Biology, 100 Morrissey Boulevard, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
22
|
BtaE, an adhesin that belongs to the trimeric autotransporter family, is required for full virulence and defines a specific adhesive pole of Brucella suis. Infect Immun 2013; 81:996-1007. [PMID: 23319562 DOI: 10.1128/iai.01241-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brucella is responsible for brucellosis, one of the most common zoonoses worldwide that causes important economic losses in several countries. Increasing evidence indicates that adhesion of Brucella spp. to host cells is an important step to establish infection. We have previously shown that the BmaC unipolar monomeric autotransporter mediates the binding of Brucella suis to host cells through cell-associated fibronectin. Our genome analysis shows that the B. suis genome encodes several additional potential adhesins. In this work, we characterized a predicted trimeric autotransporter that we named BtaE. By expressing btaE in a nonadherent Escherichia coli strain and by phenotypic characterization of a B. suis ΔbtaE mutant, we showed that BtaE is involved in the binding of B. suis to hyaluronic acid. The B. suis ΔbtaE mutant exhibited a reduction in the adhesion to HeLa and A549 epithelial cells compared with the wild-type strain, and it was outcompeted by the wild-type strain in the binding to HeLa cells. The knockout btaE mutant showed an attenuated phenotype in the mouse model, indicating that BtaE is required for full virulence. BtaE was immunodetected on the bacterial surface at one cell pole. Using old and new pole markers, we observed that both the BmaC and BtaE adhesins are consistently associated with the new cell pole, suggesting that, in Brucella, the new pole is functionally differentiated for adhesion. This is consistent with the inherent polarization of this bacterium, and its role in the invasion process.
Collapse
|