1
|
Tsurumaki M, Sato A, Saito M, Kanai A. Comprehensive analysis of insertion sequences within rRNA genes of CPR bacteria and biochemical characterization of a homing endonuclease encoded by these sequences. J Bacteriol 2024; 206:e0007424. [PMID: 38856219 PMCID: PMC11270868 DOI: 10.1128/jb.00074-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/11/2024] [Indexed: 06/11/2024] Open
Abstract
The Candidate Phyla Radiation (CPR) represents an extensive bacterial clade comprising primarily uncultured lineages and is distinguished from other bacteria by a significant prevalence of insertion sequences (ISs) within their rRNA genes. However, our understanding of the taxonomic distribution and characteristics of these ISs remains limited. In this study, we used a comprehensive approach to systematically determine the nature of the rRNA ISs in CPR bacteria. The analysis of hundreds of rRNA gene sequences across 65 CPR phyla revealed that ISs are present in 48% of 16S rRNA genes and 82% of 23S rRNA genes, indicating a broad distribution across the CPR clade, with exceptions in the 16S and 23S rRNA genes of Candidatus (Ca.) Saccharibacteria and the 16S rRNA genes of Ca. Peregrinibacteria. Over half the ISs display a group-I-intron-like structure, whereas specific 16S rRNA gene ISs display features reminiscent of group II introns. The ISs frequently encode proteins with homing endonuclease (HE) domains, centered around the LAGLIDADG motif. The LAGLIDADG HE (LHE) proteins encoded by the rRNA ISs of CPR bacteria predominantly have a single-domain structure, deviating from the usual single- or double-domain configuration observed in typical prokaryotic LHEs. Experimental analysis of one LHE protein, I-ShaI from Ca. Shapirobacteria, confirmed that its endonuclease activity targets the DNA sequence of its insertion site, and chemical cross-linking experiments demonstrated its capacity to form homodimers. These results provide robust evidence supporting the hypothesis that the explosive proliferation of rRNA ISs in CPR bacteria was facilitated by mechanisms involving LHEs. IMPORTANCE Insertion sequences (ISs) in rRNA genes are relatively limited and infrequent in most bacterial phyla. With a comprehensive bioinformatic analysis, we show that in CPR bacteria, these ISs occur in 48% of 16S rRNA genes and 82% of 23S rRNA genes. We also report the systematic and biochemical characterization of the LAGLIDADG homing endonucleases (LHEs) encoded by these ISs in the first such analysis of the CPR bacteria. This study significantly extends our understanding of the phylogenetic positions of rRNA ISs within CPR bacteria and the biochemical features of their LHEs.
Collapse
Affiliation(s)
- Megumi Tsurumaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
2
|
Yılmaz E, Mann DG, Gastineau R, Trobajo R, Solak CN, Górecka E, Turmel M, Lemieux C, Ertorun N, Witkowski A. Description of Naviculavanseea sp. nov. (Naviculales, Naviculaceae), a new species of diatom from the highly alkaline Lake Van (Republic of Türkiye) with complete characterisation of its organellar genomes and multigene phylogeny. PHYTOKEYS 2024; 241:27-48. [PMID: 38628637 PMCID: PMC11019260 DOI: 10.3897/phytokeys.241.118903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024]
Abstract
The current article describes Naviculavanseeasp. nov., a new species of diatom from Lake Van, a highly alkaline lake in Eastern Anatolia (Türkiye). The description is based on light and scanning electron microscopy performed on two monoclonal cultures. The complete nuclear rRNA clusters and plastid genomes have been sequenced for these two strains and the complete mitogenome for one of them. The plastome of both strains shows the probable loss of a functional ycf35 gene. They also exhibit two IB4 group I introns in their rrl, each encoding for a putative LAGLIDADG homing endonuclease, with the first L1917 IB4 intron reported amongst diatoms. The Maximum Likelihood phylogeny inferred from a concatenated alignment of 18S, rbcL and psbC distinguishes N.vanseea sp. nov. from the morphologically similar species Naviculacincta and Naviculamicrodigitoradiata.
Collapse
Affiliation(s)
- Elif Yılmaz
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, PL70–383 Poland
| | - David G. Mann
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, UK
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, PL70–383 Poland
| | - Rosa Trobajo
- Marine and Continental Waters, Institute for Food and Agricultural Research and Technology (IRTA), Crta de Poble Nou Km 5.5, E-43540 La Ràpita, Catalunya, Spain
| | - Cüneyt Nadir Solak
- Department of Biology, Faculty of Science & Art, Dumlupınar University, 43000 Kütahya, Türkiye
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, PL70–383 Poland
| | - Monique Turmel
- Département de biochimie, de microbiologie et de bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Nesil Ertorun
- Department of Biology, Science Faculty, Eskişehir Technical University, 26000 Eskişehir, Türkiye
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, PL70–383 Poland
- Deceased
| |
Collapse
|
3
|
Abstract
The phylum "Candidatus Omnitrophica" (candidate division OP3) is ubiquitous in anaerobic habitats but is currently characterized only by draft genomes from metagenomes and single cells. We had visualized cells of the phylotype OP3 LiM in methanogenic cultures on limonene as small epibiotic cells. In this study, we enriched OP3 cells by double density gradient centrifugation and obtained the first closed genome of an apparently clonal OP3 cell population by applying metagenomics and PCR for gap closure. Filaments of acetoclastic Methanosaeta, the largest morphotype in the culture community, contained empty cells, cells devoid of rRNA or of both rRNA and DNA, and dead cells according to transmission electron microscopy (TEM), thin-section TEM, scanning electron microscopy (SEM), catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), and LIVE/DEAD imaging. OP3 LiM cells were ultramicrobacteria (200 to 300 nm in diameter) and showed two physiological stages in CARD-FISH fluorescence signals: strong signals of OP3 LiM cells attached to Bacteria and to Archaea indicated many rRNA molecules and an active metabolism, whereas free-living OP3 cells had weak signals. Metaproteomics revealed that OP3 LiM lives with highly expressed secreted proteins involved in depolymerization and uptake of macromolecules and an active glycolysis and energy conservation by the utilization of pyruvate via a pyruvate:ferredoxin oxidoreductase and an Rnf complex (ferredoxin:NAD oxidoreductase). Besides sugar fermentation, a nucleotidyl transferase may contribute to energy conservation by phosphorolysis, the phosphate-dependent depolymerization of nucleic acids. Thin-section TEM showed distinctive structures of predation. Our study demonstrated a predatory metabolism for OP3 LiM cells, and therefore, we propose the name "Candidatus Velamenicoccus archaeovorus" gen. nov., sp. nov., for OP3 LiM. IMPORTANCE Epibiotic bacteria are known to live on and off bacterial cells. Here, we describe the ultramicrobacterial anaerobic epibiont OP3 LiM living on Archaea and Bacteria. We detected sick and dead cells of the filamentous archaeon Methanosaeta in slowly growing methanogenic cultures. OP3 LiM lives as a sugar fermenter, likely on polysaccharides from outer membranes, and has the genomic potential to live as a syntroph. The predatory lifestyle of OP3 LiM was supported by its genome, the first closed genome for the phylum "Candidatus Omnitrophica," and by images of cell-to-cell contact with prey cells. We propose naming OP3 LiM "Candidatus Velamenicoccus archaeovorus." Its metabolic versatility explains the ubiquitous presence of "Candidatus Omnitrophica" 3 in anoxic habitats and gives ultramicrobacterial epibionts an important role in the recycling and remineralization of microbial biomass. The removal of polysaccharides from outer membranes by ultramicrobacteria may also influence biological interactions between pro- and eukaryotes.
Collapse
|
4
|
Moses AS, Millar JA, Bonazzi M, Beare PA, Raghavan R. Horizontally Acquired Biosynthesis Genes Boost Coxiella burnetii's Physiology. Front Cell Infect Microbiol 2017; 7:174. [PMID: 28540258 PMCID: PMC5423948 DOI: 10.3389/fcimb.2017.00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/21/2017] [Indexed: 01/21/2023] Open
Abstract
Coxiella burnetii, the etiologic agent of acute Q fever and chronic endocarditis, has a unique biphasic life cycle, which includes a metabolically active intracellular form that occupies a large lysosome-derived acidic vacuole. C. burnetii is the only bacterium known to thrive within such an hostile intracellular niche, and this ability is fundamental to its pathogenicity; however, very little is known about genes that facilitate Coxiella's intracellular growth. Recent studies indicate that C. burnetii evolved from a tick-associated ancestor and that the metabolic capabilities of C. burnetii are different from that of Coxiella-like bacteria found in ticks. Horizontally acquired genes that allow C. burnetii to infect and grow within mammalian cells likely facilitated the host shift; however, because of its obligate intracellular replication, C. burnetii would have lost most genes that have been rendered redundant due to the availability of metabolites within the host cell. Based on these observations, we reasoned that horizontally derived biosynthetic genes that have been retained in the reduced genome of C. burnetii are ideal candidates to begin to uncover its intracellular metabolic requirements. Our analyses identified a large number of putative foreign-origin genes in C. burnetii, including tRNAGlu2 that is potentially required for heme biosynthesis, and genes involved in the production of lipopolysaccharide—a virulence factor, and of critical metabolites such as fatty acids and biotin. In comparison to wild-type C. burnetii, a strain that lacks tRNAGlu2 exhibited reduced growth, indicating its importance to Coxiella's physiology. Additionally, by using chemical agents that block heme and biotin biosyntheses, we show that these pathways are promising targets for the development of new anti-Coxiella therapies.
Collapse
Affiliation(s)
- Abraham S Moses
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortland, OR, USA
| | - Jess A Millar
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortland, OR, USA
| | - Matteo Bonazzi
- Centre National de la Recherche Scientifique, Formation de Recherche en Évolution 3689, Centre d'Études d'Agents Pathogènes et Biotechnologies Pour la Santé, Université MontpellierMontpellier, France
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of HealthHamilton, MT, USA
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortland, OR, USA
| |
Collapse
|
5
|
Kojima H, Umezawa K, Fukui M. Caldimicrobium thiodismutans sp. nov., a sulfur-disproportionating bacterium isolated from a hot spring, and emended description of the genus Caldimicrobium. Int J Syst Evol Microbiol 2016; 66:1828-1831. [PMID: 26842785 DOI: 10.1099/ijsem.0.000947] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A novel autotrophic, thermophilic bacterium, strain TF1T, was isolated from a hot spring in Japan. Cells of strain TF1T were motile, Gram-stain-negative, rod-shaped, 1.0-2.0 μm in length and 0.5-0.6 μm in width. Major components in the cellular fatty acid profile were C16:0, C18:0 and anteiso-C17:0. The temperature range for growth was 40-77 °C, and optimum temperature was 75 °C. The pH range for growth was 5.9-9.5, and the optimum pH was 7.5-8.8. Strain TF1T grew chemolithoautotrophically by disproportionation of sulfur, thiosulfate and sulfite. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs to the family Thermodesulfobacteriaceae. The closest cultivated relative was Caldimicrobium rimae DST, with highest 16S rRNA gene sequence similarity of 96%. The genome of strain TF1T consists of one circular chromosome, with a size of 1.8 Mbp and G+C content of 38.30 mol%. On the basis of its phylogenetic and phenotypic properties, strain TF1T (=DSM 29380T=NBRC 110713T) is proposed as the type strain of a novel species, Caldimicrobium thiodismutans sp. nov.
Collapse
Affiliation(s)
- Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Kazuhiro Umezawa
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
6
|
Walter MC, Öhrman C, Myrtennäs K, Sjödin A, Byström M, Larsson P, Macellaro A, Forsman M, Frangoulidis D. Genome sequence of Coxiella burnetii strain Namibia. Stand Genomic Sci 2014; 9:22. [PMID: 25593636 PMCID: PMC4286197 DOI: 10.1186/1944-3277-9-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 11/17/2014] [Indexed: 11/28/2022] Open
Abstract
We present the whole genome sequence and annotation of the Coxiella burnetii strain Namibia. This strain was isolated from an aborting goat in 1991 in Windhoek, Namibia. The plasmid type QpRS was confirmed in our work. Further genomic typing placed the strain into a unique genomic group. The genome sequence is 2,101,438 bp long and contains 1,979 protein-coding and 51 RNA genes, including one rRNA operon. To overcome the poor yield from cell culture systems, an additional DNA enrichment with whole genome amplification (WGA) methods was applied. We describe a bioinformatics pipeline for improved genome assembly including several filters with a special focus on WGA characteristics.
Collapse
Affiliation(s)
- Mathias C Walter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Genome-Oriented Bioinformatics, Center of Life and Food Science Weihenstephan, Technische Universität München, Freising, Germany
| | - Caroline Öhrman
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - Kerstin Myrtennäs
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - Andreas Sjödin
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - Mona Byström
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - Pär Larsson
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - Anna Macellaro
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - Mats Forsman
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | | |
Collapse
|
7
|
I-PfoP3I: a novel nicking HNH homing endonuclease encoded in the group I intron of the DNA polymerase gene in Phormidium foveolarum phage Pf-WMP3. PLoS One 2012; 7:e43738. [PMID: 22952751 PMCID: PMC3428280 DOI: 10.1371/journal.pone.0043738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/27/2012] [Indexed: 11/19/2022] Open
Abstract
Homing endonucleases encoded in a group I self-splicing intron in a protein-coding gene in cyanophage genomes have not been reported, apart from some free-standing homing edonucleases. In this study, a nicking DNA endonuclease, I-PfoP3I, encoded in a group IA2 intron in the DNA polymerase gene of a T7-like cyanophage Pf-WMP3, which infects the freshwater cyanobacterium Phormidium foveolarum is described. The Pf-WMP3 intron splices efficiently in vivo and self-splices in vitro simultaneously during transcription. I-PfoP3I belongs to the HNH family with an unconventional C-terminal HNH motif. I-PfoP3I nicks the intron-minus Pf-WMP3 DNA polymerase gene more efficiently than the Pf-WMP4 DNA polymerase gene that lacks any intervening sequence in vitro, indicating the variable capacity of I-PfoP3I. I-PfoP3I cleaves 4 nt upstream of the intron insertion site on the coding strand of EXON 1 on both intron-minus Pf-WMP3 and Pf-WMP4 DNA polymerase genes. Using an in vitro cleavage assay and scanning deletion mutants of the intronless target site, the minimal recognition site was determined to be a 14 bp region downstream of the cut site. I-PfoP3I requires Mg2+, Ca2+ or Mn2+ for nicking activity. Phylogenetic analysis suggests that the intron and homing endonuclease gene elements might be inserted in Pf-WMP3 genome individually after differentiation from Pf-WMP4. To our knowledge, this is the first report of the presence of a group I self-splicing intron encoding a functional homing endonuclease in a protein-coding gene in a cyanophage genome.
Collapse
|
8
|
Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria. Proc Natl Acad Sci U S A 2012; 109:4203-8. [PMID: 22371583 DOI: 10.1073/pnas.1120192109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene encoding the small subunit rRNA serves as a prominent tool for the phylogenetic analysis and classification of Bacteria and Archaea owing to its high degree of conservation and its fundamental function in living organisms. Here we show that the 16S rRNA genes of not-yet-cultivated large sulfur bacteria, among them the largest known bacterium Thiomargarita namibiensis, regularly contain numerous self-splicing introns of variable length. The 16S rRNA genes can thus be enlarged to up to 3.5 kb. Remarkably, introns have never been identified in bacterial 16S rRNA genes before, although they are the most frequently sequenced genes today. This may be caused in part by a bias during the PCR amplification step that discriminates against longer homologs, as we show experimentally. Such length heterogeneity of 16S rRNA genes has so far never been considered when constructing 16S rRNA-based clone libraries, even though an elongation of rRNA genes due to intervening sequences has been reported previously. The detection of elongated 16S rRNA genes has profound implications for common methods in molecular ecology and may cause systematic biases in several techniques. In this study, catalyzed reporter deposition-fluorescence in situ hybridization on both ribosomes and rRNA precursor molecules as well as in vitro splicing experiments were performed and confirmed self-splicing of the introns. Accordingly, the introns do not inhibit the formation of functional ribosomes.
Collapse
|
9
|
Minnick MF, Raghavan R. Developmental biology of Coxiella burnetii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 984:231-48. [PMID: 22711635 DOI: 10.1007/978-94-007-4315-1_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The biphasic developmental cycle of Coxiella burnetii is central to the pathogen's natural history and survival. A small, dormant cell morphotype (the small-cell variant or SCV) allows this obligate intracellular bacterium to persist for extended periods outside of host cells, resist environmental conditions that would be lethal to most prokaryotes, and is the major infectious stage encountered by eukaryotic hosts. In contrast, a large, metabolically-active morphotype (the large-cell variant or LCV) provides for replication of the agent within acidified parasitophorous vacuoles (PVs) of a host cell. The marked physiological changes, differential gene expression, and the regulatory and structural components involved in Coxiella's morphogenesis from LCV to SCV and back to the LCV are fascinating attributes of the pathogen and are reviewed in this chapter.
Collapse
Affiliation(s)
- Michael F Minnick
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | |
Collapse
|
10
|
Abstract
Coxiella burnetii is an extremely infectious, zoonotic agent that causes Q fever in humans. With the exception of New Zealand, the bacterium is distributed worldwide. Coxiella is classified as a select agent based on its past and potential use as a bioweapon and its threat to public health. Despite decades of research, we know relatively little regarding Coxiella?s molecular pathogenesis, and a vaccine is not widely available. This article briefly reviews the unusual genetics of C. burnetii; a pathogen that retains telltale genetic mementos collected over the course of its evolutionary path from a free-living bacterium to an obligate intracellular parasite of eukaryotic host cell phagosomes. Understanding why these genetic elements are maintained may help us better understand the biology of this fascinating pathogen.
Collapse
Affiliation(s)
- Michael F Minnick
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | |
Collapse
|
11
|
Rolain JM, Fenollar F, Raoult D. In vitro activity of pentamidine against Tropheryma whipplei. Int J Antimicrob Agents 2011; 38:545-7. [PMID: 22005072 DOI: 10.1016/j.ijantimicag.2011.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/29/2011] [Indexed: 12/17/2022]
Abstract
Pentamidine is a group I intron splice inhibitor used as a chemotherapeutic agent to treat parasitic infections. It was recently found to be efficient intracellularly against Coxiella burnetii, the bacterial agent of Q fever. This in vitro activity was linked to the presence of self-splicing group I introns that disrupt the 23S rRNA of C. burnetii. However, there are several indications that pentamidine may have a wider range of antibacterial activity. The aim of this study was to determine the in vitro activity of pentamidine against Tropheryma whipplei, the agent of Whipple's disease, a chronic disease for which antibiotic treatment remains challenging. In vitro susceptibility testing of pentamidine and doxycycline was assessed both in axenic medium and in cell culture against three clinical isolates of T. whipplei using a quantitative real-time polymerase chain reaction (PCR) assay as previously described. Both doxycycline and pentamidine were found to be active against T. whipplei strains both in axenic medium and in cell culture, with minimum inhibitory concentration ranges of 0.5-1mg/L and 0.125-0.25mg/L for doxycycline and pentamidine, respectively. Pentamidine was effective in vitro against T. whipplei both intracellularly and in axenic medium. This is the first evidence of the direct efficacy of pentamidine against T. whipplei grown in axenic medium and in cells. Since pentamidine has been widely used in humans, we believe that it could be an alternative drug for the treatment of this chronic disease that should be further studied in clinical trials.
Collapse
Affiliation(s)
- Jean-Marc Rolain
- Unité de Recherche sur Maladies Infectieuses et Tropicales Emergents, CNRS-IRD, UMR 6236, Faculté de Médecine et de Pharmacie, Université de Méditerranée Aix-Marseille II, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France.
| | | | | |
Collapse
|
12
|
Ribozyme stability, exon skipping, and a potential role for RNA helicase in group I intron splicing by Coxiella burnetii. J Bacteriol 2011; 193:5292-9. [PMID: 21803999 DOI: 10.1128/jb.05472-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The 23S rRNA gene of Coxiella burnetii, the agent of Q fever in humans, contains an unusually high number of conserved, selfish genetic elements, including two group I introns, termed Cbu.L1917 (L1917) and Cbu.L1951 (L1951). To better understand the role that introns play in Coxiella's biology, we determined the intrinsic stability time periods (in vitro half-lives) of the encoded ribozymes to be ∼15 days for L1917 and ∼5 days for L1951, possibly due to differences in their sizes (551 and 1,559 bases, respectively), relative degrees of compactness of the respective RNA structures, and amounts of single-stranded RNA. In vivo half-lives for both introns were also determined to be ∼11 min by the use of RNase protection assays and an Escherichia coli model. Intron RNAs were quantified in synchronous cultures of C. burnetii and found to closely parallel those of 16S rRNA; i.e., ribozyme levels significantly increased between days 0 and 3 and then remained stable until 8 days postinfection. Both 16S rRNA and ribozyme levels fell during the stationary and death phases (days 8 to 14). The marked stability of the Coxiella intron RNAs is presumably conferred by their association with ribosomes, a stoichiometric relationship that was determined to be one ribozyme, of either type, per 500 ribosomes. Inaccuracies in splicing (exon 2 skipping) were found to increase during the first 5 days in culture, with a rate of approximately one improperly spliced 23S rRNA per 1.3 million copies. The in vitro efficiency of L1917 intron splicing was significantly enhanced in the presence of a recombinant Coxiella RNA DEAD-box helicase (CBU_0670) relative to that of controls, suggesting that this enzyme may serve as an intron RNA splice facilitator in vivo.
Collapse
|
13
|
Minnick MF, Hicks LD, Battisti JM, Raghavan R. Pentamidine inhibits Coxiella burnetii growth and 23S rRNA intron splicing in vitro. Int J Antimicrob Agents 2011; 36:380-2. [PMID: 20599360 DOI: 10.1016/j.ijantimicag.2010.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/28/2010] [Accepted: 05/27/2010] [Indexed: 01/26/2023]
Abstract
Coxiella burnetii is the bacterial agent of Q fever in humans. Acute Q fever generally manifests as a flu-like illness and is typically self-resolving. In contrast, chronic Q fever usually presents with endocarditis and is often life-threatening without appropriate antimicrobial therapy. Unfortunately, available options for the successful treatment of chronic Q fever are both limited and protracted (>18 months). Pentamidine, an RNA splice inhibitor used to treat fungal and protozoal infections, was shown to reduce intracellular growth of Coxiella by ca. 73% at a concentration of 1 microM (ca. 0.6 microg/mL) compared with untreated controls, with no detectable toxic effects on host cells. Bacterial targets of pentamidine include Cbu.L1917 and Cbu.L1951, two group I introns that disrupt the 23S rRNA gene of Coxiella, as demonstrated by the drug's ability to inhibit intron RNA splicing in vitro. Since both introns are highly conserved amongst all eight genotypes of the pathogen, pentamidine is predicted to be efficacious against numerous strains of C. burnetii. To our knowledge, this is the first report describing antibacterial activity for this antifungal/antiprotozoal agent.
Collapse
Affiliation(s)
- Michael F Minnick
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | | | | | |
Collapse
|
14
|
Leroy Q, Lebrigand K, Armougom F, Barbry P, Thiéry R, Raoult D. Coxiella burnetii transcriptional analysis reveals serendipity clusters of regulation in intracellular bacteria. PLoS One 2010; 5:e15321. [PMID: 21203564 PMCID: PMC3006202 DOI: 10.1371/journal.pone.0015321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/05/2010] [Indexed: 11/19/2022] Open
Abstract
Coxiella burnetii, the causative agent of the zoonotic disease Q
fever, is mainly transmitted to humans through an aerosol route. A spore-like
form allows C. burnetii to resist different environmental
conditions. Because of this, analysis of the survival strategies used by this
bacterium to adapt to new environmental conditions is critical for our
understanding of C. burnetii pathogenicity. Here, we report the
early transcriptional response of C. burnetii under temperature
stresses. Our data show that C. burnetii exhibited minor
changes in gene regulation under short exposure to heat or cold shock. While
small differences were observed, C. burnetii seemed to respond
similarly to cold and heat shock. The expression profiles obtained using
microarrays produced in-house were confirmed by quantitative RT-PCR. Under
temperature stresses, 190 genes were differentially expressed in at least one
condition, with a fold change of up to 4. Globally, the differentially expressed
genes in C. burnetii were associated with bacterial division,
(p)ppGpp synthesis, wall and membrane biogenesis and, especially,
lipopolysaccharide and peptidoglycan synthesis. These findings could be
associated with growth arrest and witnessed transformation of the bacteria to a
spore-like form. Unexpectedly, clusters of neighboring genes were differentially
expressed. These clusters do not belong to operons or genetic networks; they
have no evident associated functions and are not under the control of the same
promoters. We also found undescribed but comparable clusters of regulation in
previously reported transcriptomic analyses of intracellular bacteria, including
Rickettsia sp. and Listeria monocytogenes.
The transcriptomic patterns of C. burnetii observed under
temperature stresses permits the recognition of unpredicted clusters of
regulation for which the trigger mechanism remains unidentified but which may be
the result of a new mechanism of epigenetic regulation.
Collapse
Affiliation(s)
- Quentin Leroy
- Unité de Recherche en Maladies Infectieuses et Tropicales
Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine,
Université de la Méditerranée, Marseille,
France
| | - Kevin Lebrigand
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR
6079 CNRS/UNSA, Sophia Antipolis, France
| | - Fabrice Armougom
- Unité de Recherche en Maladies Infectieuses et Tropicales
Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine,
Université de la Méditerranée, Marseille,
France
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR
6079 CNRS/UNSA, Sophia Antipolis, France
| | - Richard Thiéry
- Unité de Pathologie des Ruminants, Agence Française de
Sécurité Sanitaire des Aliments (AFSSA) Sophia Antipolis,
France
| | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales
Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine,
Université de la Méditerranée, Marseille,
France
- * E-mail:
| |
Collapse
|
15
|
Group I introns and inteins: disparate origins but convergent parasitic strategies. J Bacteriol 2009; 191:6193-202. [PMID: 19666710 DOI: 10.1128/jb.00675-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
Abstract
Cbu.L1917, a group I intron present in the 23S rRNA gene of Coxiella burnetii, possesses a unique 3'-terminal adenine in place of a conserved guanine. Here, we show that, unlike all other group I introns, Cbu.L1917 utilizes a different cofactor for each splicing step and has a decreased self-splicing rate in vitro.
Collapse
|
17
|
Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 2008; 77:642-56. [PMID: 19047403 DOI: 10.1128/iai.01141-08] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetically distinct isolates of Coxiella burnetii, the cause of human Q fever, display different phenotypes with respect to in vitro infectivity/cytopathology and pathogenicity for laboratory animals. Moreover, correlations between C. burnetii genomic groups and human disease presentation (acute versus chronic) have been described, suggesting that isolates have distinct virulence characteristics. To provide a more-complete understanding of C. burnetii's genetic diversity, evolution, and pathogenic potential, we deciphered the whole-genome sequences of the K (Q154) and G (Q212) human chronic endocarditis isolates and the naturally attenuated Dugway (5J108-111) rodent isolate. Cross-genome comparisons that included the previously sequenced Nine Mile (NM) reference isolate (RSA493) revealed both novel gene content and disparate collections of pseudogenes that may contribute to isolate virulence and other phenotypes. While C. burnetii genomes are highly syntenous, recombination between abundant insertion sequence (IS) elements has resulted in genome plasticity manifested as chromosomal rearrangement of syntenic blocks and DNA insertions/deletions. The numerous IS elements, genomic rearrangements, and pseudogenes of C. burnetii isolates are consistent with genome structures of other bacterial pathogens that have recently emerged from nonpathogens with expanded niches. The observation that the attenuated Dugway isolate has the largest genome with the fewest pseudogenes and IS elements suggests that this isolate's lineage is at an earlier stage of pathoadaptation than the NM, K, and G lineages.
Collapse
|
18
|
Toxic introns and parasitic intein in Coxiella burnetii: legacies of a promiscuous past. J Bacteriol 2008; 190:5934-43. [PMID: 18606739 DOI: 10.1128/jb.00602-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The genome of the obligate intracellular pathogen Coxiella burnetii contains a large number of selfish genetic elements, including two group I introns (Cbu.L1917 and Cbu.L1951) and an intervening sequence that interrupts the 23S rRNA gene, an intein (Cbu.DnaB) within dnaB and 29 insertion sequences. Here, we describe the ability of the intron-encoded RNAs (ribozymes) to retard bacterial growth rate (toxicity) and examine the functionality and phylogenetic history of Cbu.DnaB. When expressed in Escherichia coli, both introns repressed growth, with Cbu.L1917 being more inhibitory. Both ribozymes were found to associate with ribosomes of Coxiella and E. coli. In addition, ribozymes significantly reduced in vitro luciferase translation, again with Cbu.L1917 being more inhibitory. We analyzed the relative quantities of ribozymes and genomes throughout a 14-day growth cycle of C. burnetii and found that they were inversely correlated, suggesting that the ribozymes have a negative effect on Coxiella's growth. We determined possible sites for ribozyme associations with 23S rRNA that could explain the observed toxicities. Further research is needed to determine whether the introns are being positively selected because they promote bacterial persistence or whether they were fixed in the population due to genetic drift. The intein, Cbu.DnaB, is able to self-splice, leaving the host protein intact and presumably functional. Similar inteins have been found in two extremophilic bacteria (Alkalilimnicola ehrlichei and Halorhodospira halophila) that are distantly related to Coxiella, making it difficult to determine whether the intein was acquired by horizontal gene transfer or was vertically inherited from a common ancestor.
Collapse
|
19
|
Sustained axenic metabolic activity by the obligate intracellular bacterium Coxiella burnetii. J Bacteriol 2008; 190:3203-12. [PMID: 18310349 DOI: 10.1128/jb.01911-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Growth of Coxiella burnetii, the agent of Q fever, is strictly limited to colonization of a viable eukaryotic host cell. Following infection, the pathogen replicates exclusively in an acidified (pH 4.5 to 5) phagolysosome-like parasitophorous vacuole. Axenic (host cell free) buffers have been described that activate C. burnetii metabolism in vitro, but metabolism is short-lived, with bacterial protein synthesis halting after a few hours. Here, we describe a complex axenic medium that supports sustained (>24 h) C. burnetii metabolic activity. As an initial step in medium development, several biological buffers (pH 4.5) were screened for C. burnetii metabolic permissiveness. Based on [(35)S]Cys-Met incorporation, C. burnetii displayed optimal metabolic activity in citrate buffer. To compensate for C. burnetii auxotrophies and other potential metabolic deficiencies, we developed a citrate buffer-based medium termed complex Coxiella medium (CCM) that contains a mixture of three complex nutrient sources (neopeptone, fetal bovine serum, and RPMI cell culture medium). Optimal C. burnetii metabolism occurred in CCM with a high chloride concentration (140 mM) while the concentrations of sodium and potassium had little effect on metabolism. CCM supported prolonged de novo protein and ATP synthesis by C. burnetii (>24 h). Moreover, C. burnetii morphological differentiation was induced in CCM as determined by the transition from small-cell variant to large-cell variant. The sustained in vitro metabolic activity of C. burnetii in CCM provides an important tool to investigate the physiology of this organism including developmental transitions and responses to antimicrobial factors associated with the host cell.
Collapse
|