1
|
Barske T, Hagemann M. The regulatory impact of serine/threonine-specific protein phosphorylation among cyanobacteria. FRONTIERS IN PLANT SCIENCE 2025; 16:1540914. [PMID: 40012730 PMCID: PMC11863333 DOI: 10.3389/fpls.2025.1540914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025]
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis. To thrive under environmental fluctuations, photosynthesis and metabolic activities needs to be adjusted. Previous studies showed that the acclimation of primary carbon metabolism to fluctuating carbon/nitrogen levels is mainly regulated at post-transcriptional level including diverse posttranslational modifications (PTMs). Protein phosphorylation is regarded as main PTM in the sensing and balancing metabolic changes. In this review we aim to summarize the knowledge on serine/threonine-specific protein phosphorylation among cyanobacteria. Phosphoproteome studies identified several hundred phosphoproteins bearing many more specific phosphorylation sites. On the other hand, only relatively few serine/threonine-specific protein kinases were annotated in cyanobacterial genomes, for example 12 in the model cyanobacterium Synechocystis sp. PCC 6803. Systematic mutation of the kinase-encoding genes revealed first insights into their specific functions and substrates. Future research is needed to address how a limited number of protein kinases can specifically modify hundreds of phosphoproteins and to uncover their roles in the regulatory networks of cyanobacterial metabolism.
Collapse
Affiliation(s)
| | - Martin Hagemann
- Department Plant Physiology, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Zorina AA, Los DA, Klychnikov OI. Serine-Threonine Protein Kinases of Cyanobacteria. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S287-S311. [PMID: 40164163 DOI: 10.1134/s0006297924604507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 04/02/2025]
Abstract
Protein phosphorylation is a pivotal mechanism for signal transduction, regulation of biochemical processes essential for reproduction, growth, and adaptation of organisms to changing conditions. Bacteria, which emerged more than 3.5 billion years ago, faced the need to adapt to a variety of ecological niches from the very beginning of their existence. It is not surprising that they developed a wide range of different types of kinases and target amino acid residues for phosphorylation. To date, many examples of phosphorylation of serine, threonine, tyrosine, histidine, arginine, lysine, aspartate, and cysteine have been discovered. Bacterial histidine kinases as part of two-component systems have been studied in most detail. More recently eukaryotic type serine-threonine and tyrosine kinases based on the conserved catalytic domain have been described in the genomes of many bacteria. The term "eukaryotic" is misleading, since evolutionary origin of these enzymes goes back to the last common universal ancestor - LUCA. Bioinformatics, molecular genetics, omics, and biochemical strategies combined provide new tools for researchers to establish relationship between the kinase abundance/activity and proteome changes, including studying of the kinase signaling network (kinome) within the cell. This manuscript presents several approaches to investigation of the serine-threonine protein kinases of cyanobacteria, as well as their combination, which allow to suggest new hypotheses and strategies for researchers.
Collapse
Affiliation(s)
- Anna A Zorina
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Oleg I Klychnikov
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Koskinen S, Kurkela J, Linhartová M, Tyystjärvi T. The genome sequence of Synechocystis sp. PCC 6803 substrain GT-T and its implications for the evolution of PCC 6803 substrains. FEBS Open Bio 2023; 13:701-712. [PMID: 36792971 PMCID: PMC10068330 DOI: 10.1002/2211-5463.13576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Synechocystis sp. PCC 6803 is a model cyanobacterium, glucose-tolerant substrains of which are commonly used as laboratory strains. In recent years, it has become evident that 'wild-type' strains used in different laboratories show some differences in their phenotypes. We report here the chromosome sequence of our Synechocystis sp. PCC 6803 substrain, named substrain GT-T. The chromosome sequence of GT-T was compared to those of two other commonly used laboratory substrains, GT-S and PCC-M. We identified 11 specific mutations in the GT-T substrain, whose physiological consequences are discussed. We also provide an update on evolutionary relationships between different Synechocystis sp. PCC 6803 substrains.
Collapse
Affiliation(s)
- Satu Koskinen
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| | - Juha Kurkela
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| | - Markéta Linhartová
- Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Taina Tyystjärvi
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| |
Collapse
|
4
|
Dai W, Chen G, Bi X, Zhong H, Wang X, Dong S, Lv D, Zhang S, Zhang D, Wang N. Light limitation inducing overcompensatory growth of cyanobacteria and function of serine/threonine kinase (STK) genes involved. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1347-1356. [PMID: 33767041 DOI: 10.2166/wst.2021.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid overcompensatory growth that appears when cyanobacteria are supplied with adequate resources after a period of resource deprivation might contribute to the occurrence of cyanobacterial blooms. We investigated the changing characteristics of overcompensatory growth and serine/threonine kinase (STK) genes expression of cyanobacterium Microcystis aeruginosa in response to light limitation. The results showed M. aeruginosa exhibited overcompensatory growth for 2 days after light recovery, during which the increase in growth was inversely related to light intensity. Expression of STK genes, such as spkD, was upregulated significantly at 0.5-4 h after light recovery (P < 0.05). To investigate the function of STK genes in the overcompensatory growth, M. aeruginosa spkD was heterologously expressed in Synechocystis. Transgenic Synechocystis exhibited greater and longer overcompensatory growth than wild-type Synechocystis after light recovery. Relative expression levels of STK genes in transgenic Synechocystis were significantly higher than those in wild-type Synechocystis at 24 h of light recovery (P < 0.05). Heterologous expression of Microcystis spkD might stimulate overcompensatory growth of Synechocystis by affecting its STK gene expression.
Collapse
Affiliation(s)
- Wei Dai
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China E-mail: ; † Wei Dai and Gao Chen are co-first authors of the article
| | - Gao Chen
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China and Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Ji'nan, China; † Wei Dai and Gao Chen are co-first authors of the article
| | - Xiangdong Bi
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China E-mail:
| | - Huairong Zhong
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China and Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Ji'nan, China
| | - Xueying Wang
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China E-mail:
| | - Shaojie Dong
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China E-mail:
| | - Dong Lv
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China E-mail:
| | - Shulin Zhang
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China E-mail:
| | - Dajuan Zhang
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China E-mail:
| | - Na Wang
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China E-mail:
| |
Collapse
|
5
|
Luimstra VM, Schuurmans JM, Hellingwerf KJ, Matthijs HCP, Huisman J. Blue light induces major changes in the gene expression profile of the cyanobacterium Synechocystis sp. PCC 6803. PHYSIOLOGIA PLANTARUM 2020; 170:10-26. [PMID: 32141606 PMCID: PMC7496141 DOI: 10.1111/ppl.13086] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 05/18/2023]
Abstract
Although cyanobacteria absorb blue light, they use it less efficiently for photosynthesis than other colors absorbed by their photosynthetic pigments. A plausible explanation for this enigmatic phenomenon is that blue light is not absorbed by phycobilisomes and, hence, causes an excitation shortage at photosystem II (PSII). This hypothesis is supported by recent physiological studies, but a comprehensive understanding of the underlying changes in gene expression is still lacking. In this study, we investigate how a switch from artificial white light to blue, orange or red light affects the transcriptome of the cyanobacterium Synechocystis sp. PCC 6803. In total, 145 genes were significantly regulated in response to blue light, whereas only a few genes responded to orange and red light. In particular, genes encoding the D1 and D2 proteins of PSII, the PSII chlorophyll-binding protein CP47 and genes involved in PSII repair were upregulated in blue light, whereas none of the photosystem I (PSI) genes responded to blue light. These changes were accompanied by a decreasing PSI:PSII ratio. Furthermore, many genes involved in gene transcription and translation and several ATP synthase genes were transiently downregulated, concurrent with a temporarily decreased growth rate in blue light. After 6-7 days, when cell densities had strongly declined, the growth rate recovered and the expression of these growth-related genes returned to initial levels. Hence, blue light induces major changes in the transcriptome of cyanobacteria, in an attempt to increase the photosynthetic activity of PSII and cope with the adverse growth conditions imposed by blue light.
Collapse
Affiliation(s)
- Veerle M. Luimstra
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Wetsus – Center of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
| | - J. Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Klaas J. Hellingwerf
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Hans C. P. Matthijs
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
6
|
Factors Controlling Floc Formation and Structure in the Cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol 2019; 201:JB.00344-19. [PMID: 31262837 PMCID: PMC6755745 DOI: 10.1128/jb.00344-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Motile strains of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 readily aggregate into flocs, or floating multicellular assemblages, when grown in liquid culture. As described here, we used confocal imaging to probe the structure of these flocs, and we developed a quantitative assay for floc formation based on fluorescence imaging of 6-well plates. The flocs are formed from strands of linked cells, sometimes packed into dense clusters but also containing voids with very few cells. Cells within the dense clusters show signs of nutrient stress, as judged by the subcellular distribution of green fluorescent protein (GFP)-tagged Vipp1 protein. We analyzed the effects on flocculation of a series of mutations that alter piliation and motility, including Δhfq, ΔpilB1, ΔpilT1, and ΔushA mutations and deletion mutations affecting major and minor pilins. The extent of flocculation is increased in the hyperpiliated ΔpilT1 mutant, but active cycles of pilus extension and retraction are not required for flocculation. Deletion of PilA1, the major subunit of type IV pili, has no effect on flocculation; however, flocculation is lost in mutants lacking an operon coding for the minor pilins PilA9 to -11. Therefore, minor pilins appear crucial for flocculation. We show that flocculation is a tightly regulated process that is promoted by blue light perception by the cyanobacteriochrome Cph2. Floc formation also seems to be a highly cooperative process. A proportion of nonflocculating Δhfq cells can be incorporated into wild-type flocs, but the presence of a high proportion of Δhfq cells disrupts the large-scale architecture of the floc.IMPORTANCE Some bacteria form flocs, which are multicellular floating assemblages of many thousands of cells. Flocs have been relatively little studied compared to surface-adherent biofilms, but flocculation could play many physiological roles, be a crucial factor in marine carbon burial, and enable more efficient biotechnological cell harvesting. We studied floc formation and architecture in the model cyanobacterium Synechocystis sp. strain PCC 6803, using mutants to identify specific cell surface structures required for floc formation. We show that floc formation is regulated by blue and green light perceived by the photoreceptor Cph2. The flocs have a characteristic structure based on strands of linked cells aggregating into dense clusters. Cells within the dense clusters show signs of nutrient stress, pointing to a disadvantage of floc formation.
Collapse
|
7
|
Calzadilla PI, Zhan J, Sétif P, Lemaire C, Solymosi D, Battchikova N, Wang Q, Kirilovsky D. The Cytochrome b 6 f Complex Is Not Involved in Cyanobacterial State Transitions. THE PLANT CELL 2019; 31:911-931. [PMID: 30852554 PMCID: PMC6501608 DOI: 10.1105/tpc.18.00916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 05/03/2023]
Abstract
Photosynthetic organisms must sense and respond to fluctuating environmental conditions in order to perform efficient photosynthesis and to avoid the formation of dangerous reactive oxygen species. The excitation energy arriving at each photosystem permanently changes due to variations in the intensity and spectral properties of the absorbed light. Cyanobacteria, like plants and algae, have developed a mechanism, named "state transitions," that balances photosystem activities. Here, we characterize the role of the cytochrome b 6 f complex and phosphorylation reactions in cyanobacterial state transitions using Synechococcus elongatus PCC 7942 and Synechocystis PCC 6803 as model organisms. First, large photosystem II (PSII) fluorescence quenching was observed in State II, a result that does not appear to be related to energy transfer from PSII to PSI (spillover). This membrane-associated process was inhibited by betaine, Suc, and high concentrations of phosphate. Then, using different chemicals affecting the plastoquinone pool redox state and cytochrome b 6 f activity, we demonstrate that this complex is not involved in state transitions in S. elongatus or Synechocystis PCC6803. Finally, by constructing and characterizing 21 protein kinase and phosphatase mutants and using chemical inhibitors, we demonstrate that phosphorylation reactions are not essential for cyanobacterial state transitions. Thus, signal transduction is completely different in cyanobacterial and plant (green alga) state transitions.
Collapse
Affiliation(s)
- Pablo I Calzadilla
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Jiao Zhan
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Pierre Sétif
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Claire Lemaire
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Daniel Solymosi
- Molecular Plant Biology Lab, Biochemistry Department, Faculty of Science and Engineering, University of Turku, Turku, FI-20014, Finland
| | - Natalia Battchikova
- Molecular Plant Biology Lab, Biochemistry Department, Faculty of Science and Engineering, University of Turku, Turku, FI-20014, Finland
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| |
Collapse
|
8
|
Xu W, Wang Y. Sequences, Domain Architectures, and Biological Functions of the Serine/Threonine and Histidine Kinases in Synechocystis sp. PCC 6803. Appl Biochem Biotechnol 2019; 188:1022-1065. [PMID: 30778824 DOI: 10.1007/s12010-019-02971-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a photoautotrophic prokaryote with plant-like photosynthetic machineries which significantly contribute to global carbon fixation and atmospheric oxygen production. Because of the relatively short cell doubling time, small size of the genome, and the ease for genetic manipulation, Synechocystis is a popular model organism for studies including photosynthesis and biofuel production. The cyanobacterium contains 12 eukaryotic type Ser/Thr kinases (SpkA-L) and 49 histidine kinases (Hik1-47 and Sll1334 and Sll5060 are named as Hik48 and Hik49, respectively, in this review) of the two-component system. All SpkA-L kinases have a eukaryotic kinase DFG signature in their A-loops. Based on the types of the kinase domains, the Spks can be separated into three groups: one group contains SpkA and SpkG which are related to human kinases, while SpkH-L are in another group that is distinct from human kinases. The third group contains SpkB-F which are between the first two groups. Four histidine kinases (Hiks17, 36, 45, and 48) lack a clear histidine kinase domain, and the conserved phosphorylatable histidine residue could not be identified for six histidine kinases (Hiks11, 18, 29, 37, 39, and 43) even though they have clear histidine kinase domains. Each of the remaining 39 has a histidine kinase domain with the conserved histidine residue. Eight hybrid histidine kinases contain one or two receiver domains, and they all, except Hik25 (Slr0222), have the conserved phosphorylatable aspartate. The disruptants of all kinases except hik13 and hik15 have been generated, and the majority of them have modest or no obvious phenotypes, indicating other kinases could functionally compensate the loss of a particular kinase. This review presents a comprehensive discussion including a spectrum of sequence, domain architecture, in vivo function, and proteomics investigations of Ser/Thr and histidine kinases. Understanding the sequences, domain architectures, and biology of the kinases will help to integrate "omic" data to clarify their exact biochemical functions.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing, 100101, China.
| |
Collapse
|
9
|
Abstract
As the transcriptional and post-transcriptional regulators of gene expression, small RNAs (sRNAs) play important roles in every domain of life in organisms. It has been discovered gradually that bacteria possess multiple means of gene regulation using RNAs. They have been continuously used as model organisms for photosynthesis, metabolism, biotechnology, evolution, and nitrogen fixation for many decades. Cyanobacteria, one of the most ancient life forms, constitute all kinds of photoautotrophic bacteria and exist in almost any environment on this planet. It is believed that a complex RNA-based regulatory mechanism functions in cyanobacteria to help them adapt to changes and stresses in diverse environments. Although lagging far behind other model microorganisms, such as yeast and Escherichia coli, more and more non-coding regulatory sRNAs have been recognized in cyanobacteria during the past decades. In this article, by focusing on cyanobacterial sRNAs, the approaches for detection and targeting of sRNAs will be summarized, four major mechanisms and regulatory functions will be generalized, eight types of cis-encoded sRNA and four types of trans-encoded sRNAs will be reviewed in detail, and their possible physiological functions will be further discussed.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Janczarek M, Vinardell JM, Lipa P, Karaś M. Hanks-Type Serine/Threonine Protein Kinases and Phosphatases in Bacteria: Roles in Signaling and Adaptation to Various Environments. Int J Mol Sci 2018; 19:ijms19102872. [PMID: 30248937 PMCID: PMC6213207 DOI: 10.3390/ijms19102872] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Reversible phosphorylation is a key mechanism that regulates many cellular processes in prokaryotes and eukaryotes. In prokaryotes, signal transduction includes two-component signaling systems, which involve a membrane sensor histidine kinase and a cognate DNA-binding response regulator. Several recent studies indicate that alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) also play an essential role in regulation of many different processes in bacteria, such as growth and cell division, cell wall biosynthesis, sporulation, biofilm formation, stress response, metabolic and developmental processes, as well as interactions (either pathogenic or symbiotic) with higher host organisms. Since these enzymes are not DNA-binding proteins, they exert the regulatory role via post-translational modifications of their protein targets. In this review, we summarize the current knowledge of STKs and STPs, and discuss how these enzymes mediate gene expression in prokaryotes. Many studies indicate that regulatory systems based on Hanks-type STKs and STPs play an essential role in the regulation of various cellular processes, by reversibly phosphorylating many protein targets, among them several regulatory proteins of other signaling cascades. These data show high complexity of bacterial regulatory network, in which the crosstalk between STK/STP signaling enzymes, components of TCSs, and the translational machinery occurs. In this regulation, the STK/STP systems have been proved to play important roles.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Magdalena Karaś
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
11
|
Hu J, Zhan J, Chen H, He C, Cang H, Wang Q. The Small Regulatory Antisense RNA PilR Affects Pilus Formation and Cell Motility by Negatively Regulating pilA11 in Synechocystis sp. PCC 6803. Front Microbiol 2018; 9:786. [PMID: 29740417 PMCID: PMC5924778 DOI: 10.3389/fmicb.2018.00786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/06/2018] [Indexed: 01/19/2023] Open
Abstract
Pili are found on the surface of many bacteria and play important roles in cell motility, pathogenesis, biofilm formation, and sensing and reacting to environmental changes. Cell motility in the model cyanobacterium Synechocystis sp. PCC 6803 relies on expression of the putative pilA9-pilA10-pilA11-slr2018 operon. In this study, we identified the antisense RNA PilR encoded in the noncoding strand of the prepilin-encoding gene pilA11. Analysis of overexpressor [PilR(+)] and suppressor [PilR(-)] mutant strains revealed that PilR is a direct negative regulator of PilA11 protein. Although overexpression of PilR did not affect cell growth, it greatly reduced levels of pilA11 mRNA and protein and decreased both the thickness and number of pili, resulting in limited cell motility and small, distinct colonies. Suppression of PilR had the opposite effect. A hypothetical model on the regulation of pilA9-pilA10-pilA11-slr2018 operon expression by PilR was proposed. These results add a layer of complexity to the mechanisms controlling pilA11 gene expression and cell motility, and provide novel insights into how sRNA and the intergenic region secondary structures can work together to discoordinatly regulate target gene in an operon in cyanobacterium.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huaixing Cang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Angeleri M, Zorina A, Aro EM, Battchikova N. Interplay of SpkG kinase and the Slr0151 protein in the phosphorylation of ferredoxin 5 in Synechocystis
sp. strain PCC 6803. FEBS Lett 2018; 592:411-421. [DOI: 10.1002/1873-3468.12970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Martina Angeleri
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Finland
| | - Anna Zorina
- Institute of Plant Physiology; Laboratory of Intracellular Regulation; Russian Academy of Sciences; Moscow Russia
| | - Eva-Mari Aro
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Finland
| | - Natalia Battchikova
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Finland
| |
Collapse
|
13
|
Kizawa A, Kawahara A, Takimura Y, Nishiyama Y, Hihara Y. RNA-seq Profiling Reveals Novel Target Genes of LexA in the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2016; 7:193. [PMID: 26925056 PMCID: PMC4759255 DOI: 10.3389/fmicb.2016.00193] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/04/2016] [Indexed: 11/13/2022] Open
Abstract
LexA is a well-established transcriptional repressor of SOS genes induced by DNA damage in Escherichia coli and other bacterial species. However, LexA in the cyanobacterium Synechocystis sp. PCC 6803 has been suggested not to be involved in SOS response. In this study, we performed RNA-seq analysis of the wild-type strain and the lexA-disrupted mutant to obtain the comprehensive view of LexA-regulated genes in Synechocystis. Disruption of lexA positively or negatively affected expression of genes related to various cellular functions such as phototactic motility, accumulation of the major compatible solute glucosylglycerol and subunits of bidirectional hydrogenase, photosystem I, and phycobilisome complexes. We also observed increase in the expression level of genes related to iron and manganese uptake in the mutant at the later stage of cultivation. However, none of the genes related to DNA metabolism were affected by disruption of lexA. DNA gel mobility shift assay using the recombinant LexA protein suggested that LexA binds to the upstream region of pilA7, pilA9, ggpS, and slr1670 to directly regulate their expression, but changes in the expression level of photosystem I genes by disruption of lexA is likely a secondary effect.
Collapse
Affiliation(s)
- Ayumi Kizawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Akihito Kawahara
- Biological Science Laboratories, KAO Corporation Wakayama, Japan
| | - Yasushi Takimura
- Biological Science Laboratories, KAO Corporation Wakayama, Japan
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Yukako Hihara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama UniversitySaitama, Japan; Core Research of Evolutional Science and Technology, Japan Science and Technology AgencySaitama, Japan
| |
Collapse
|
14
|
Ding Q, Chen G, Wang Y, Wei D. Identification of Specific Variations in a Non-Motile Strain of Cyanobacterium Synechocystis sp. PCC 6803 Originated from ATCC 27184 by Whole Genome Resequencing. Int J Mol Sci 2015; 16:24081-93. [PMID: 26473841 PMCID: PMC4632739 DOI: 10.3390/ijms161024081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
Cyanobacterium Synechocystis sp. PCC 6803 is a widely used model organism in basic research and biofuel biotechnology application. Here, we report the genomic sequence of chromosome and seven plasmids of a glucose-tolerant, non-motile strain originated from ATCC 27184, GT-G, in use at Guangzhou. Through high-throughput genome re-sequencing and verification by Sanger sequencing, eight novel variants were identified in its chromosome and plasmids. The eight novel variants, especially the five non-silent mutations might have interesting effects on the phenotype of GT-G strains, for example the truncated Sll1895 and Slr0322 protein. These resequencing data provide background information for further research and application based on the GT-G strain and also provide evidence to study the evolution and divergence of Synechocystis 6803 globally.
Collapse
Affiliation(s)
- Qinglong Ding
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| | - Gu Chen
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| | - Yuling Wang
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| | - Dong Wei
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| |
Collapse
|
15
|
Allahverdiyeva Y, Isojärvi J, Zhang P, Aro EM. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins. Life (Basel) 2015; 5:716-43. [PMID: 25761262 PMCID: PMC4390876 DOI: 10.3390/life5010716] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/04/2015] [Accepted: 02/25/2015] [Indexed: 12/13/2022] Open
Abstract
Flavodiiron proteins (FDPs, also called flavoproteins, Flvs) are modular enzymes widely present in Bacteria and Archaea. The evolution of cyanobacteria and oxygenic photosynthesis occurred in concert with the modulation of typical bacterial FDPs. Present cyanobacterial FDPs are composed of three domains, the β-lactamase-like, flavodoxin-like and flavin-reductase like domains. Cyanobacterial FDPs function as hetero- and homodimers and are involved in the regulation of photosynthetic electron transport. Whilst Flv2 and Flv4 proteins are limited to specific cyanobacterial species (β-cyanobacteria) and function in photoprotection of Photosystem II, Flv1 and Flv3 proteins, functioning in the "Mehler-like" reaction and safeguarding Photosystem I under fluctuating light conditions, occur in nearly all cyanobacteria and additionally in green algae, mosses and lycophytes. Filamentous cyanobacteria have additional FDPs in heterocyst cells, ensuring a microaerobic environment for the function of the nitrogenase enzyme under the light. Here, the evolution, occurrence and functional mechanisms of various FDPs in oxygenic photosynthetic organisms are discussed.
Collapse
Affiliation(s)
- Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Janne Isojärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Pengpeng Zhang
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
16
|
Mähler N, Cheregi O, Funk C, Netotea S, Hvidsten TR. Synergy: a web resource for exploring gene regulation in Synechocystis sp. PCC6803. PLoS One 2014; 9:e113496. [PMID: 25420108 PMCID: PMC4242644 DOI: 10.1371/journal.pone.0113496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022] Open
Abstract
Despite being a highly studied model organism, most genes of the cyanobacterium Synechocystis sp. PCC 6803 encode proteins with completely unknown function. To facilitate studies of gene regulation in Synechocystis, we have developed Synergy (http://synergy.plantgenie.org), a web application integrating co-expression networks and regulatory motif analysis. Co-expression networks were inferred from publicly available microarray experiments, while regulatory motifs were identified using a phylogenetic footprinting approach. Automatically discovered motifs were shown to be enriched in the network neighborhoods of regulatory proteins much more often than in the neighborhoods of non-regulatory genes, showing that the data provide a sound starting point for studying gene regulation in Synechocystis. Concordantly, we provide several case studies demonstrating that Synergy can be used to find biologically relevant regulatory mechanisms in Synechocystis. Synergy can be used to interactively perform analyses such as gene/motif search, network visualization and motif/function enrichment. Considering the importance of Synechocystis for photosynthesis and biofuel research, we believe that Synergy will become a valuable resource to the research community.
Collapse
Affiliation(s)
- Niklas Mähler
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Christiane Funk
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sergiu Netotea
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Computational Life Science Cluster, Umeå University, Umeå, Sweden
| | - Torgeir R. Hvidsten
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Zorina AA, Bedbenov VS, Novikova GV, Panichkin VB, Los’ DA. Involvement of serine/threonine protein kinases in the cold stress response in the cyanobacterium Synechocystis sp. PCC 6803: Functional characterization of SpkE protein kinase. Mol Biol 2014. [DOI: 10.1134/s0026893314030212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Kopf M, Klähn S, Pade N, Weingärtner C, Hagemann M, Voß B, Hess WR. Comparative genome analysis of the closely related Synechocystis strains PCC 6714 and PCC 6803. DNA Res 2014; 21:255-66. [PMID: 24408876 PMCID: PMC4060947 DOI: 10.1093/dnares/dst055] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/28/2013] [Indexed: 11/14/2022] Open
Abstract
Synechocystis sp. PCC 6803 is the most popular cyanobacterial model for prokaryotic photosynthesis and for metabolic engineering to produce biofuels. Genomic and transcriptomic comparisons between closely related bacteria are powerful approaches to infer insights into their metabolic potentials and regulatory networks. To enable a comparative approach, we generated the draft genome sequence of Synechocystis sp. PCC 6714, a closely related strain of 6803 (16S rDNA identity 99.4%) that also is amenable to genetic manipulation. Both strains share 2838 protein-coding genes, leaving 845 unique genes in Synechocystis sp. PCC 6803 and 895 genes in Synechocystis sp. PCC 6714. The genetic differences include a prophage in the genome of strain 6714, a different composition of the pool of transposable elements, and a ∼ 40 kb genomic island encoding several glycosyltransferases and transport proteins. We verified several physiological differences that were predicted on the basis of the respective genome sequence. Strain 6714 exhibited a lower tolerance to Zn(2+) ions, associated with the lack of a corresponding export system and a lowered potential of salt acclimation due to the absence of a transport system for the re-uptake of the compatible solute glucosylglycerol. These new data will support the detailed comparative analyses of this important cyanobacterial group than has been possible thus far. Genome information for Synechocystis sp. PCC 6714 has been deposited in Genbank (accession no AMZV01000000).
Collapse
Affiliation(s)
- Matthias Kopf
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Stephan Klähn
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Nadin Pade
- Plant Physiology, Institute for Life Sciences, University of Rostock, Einsteinstr. 3, D-18059 Rostock, Germany
| | - Christian Weingärtner
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Martin Hagemann
- Plant Physiology, Institute for Life Sciences, University of Rostock, Einsteinstr. 3, D-18059 Rostock, Germany
| | - Björn Voß
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
19
|
Liu Z, Li H, Wei Y, Chu W, Chong Y, Long X, Liu Z, Qin S, Shao H. Signal transduction pathways inSynechocystissp. PCC 6803 and biotechnological implications under abiotic stress. Crit Rev Biotechnol 2013; 35:269-80. [DOI: 10.3109/07388551.2013.838662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Trautmann D, Voß B, Wilde A, Al-Babili S, Hess WR. Microevolution in cyanobacteria: re-sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Res 2012; 19:435-48. [PMID: 23069868 PMCID: PMC3514855 DOI: 10.1093/dnares/dss024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/05/2012] [Indexed: 11/12/2022] Open
Abstract
Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying photosynthesis, phototaxis, the production of biofuels and many other aspects. Here we present a re-sequencing study of the genome and seven plasmids of one of the most widely used Synechocystis sp. PCC 6803 substrains, the glucose tolerant and motile Moscow or 'PCC-M' strain, revealing considerable evidence for recent microevolution. Seven single nucleotide polymorphisms (SNPs) specifically shared between 'PCC-M' and the 'PCC-N and PCC-P' substrains indicate that 'PCC-M' belongs to the 'PCC' group of motile strains. The identified indels and SNPs in 'PCC-M' are likely to affect glucose tolerance, motility, phage resistance, certain stress responses as well as functions in the primary metabolism, potentially relevant for the synthesis of alkanes. Three SNPs in intergenic regions could affect the promoter activities of two protein-coding genes and one cis-antisense RNA. Two deletions in 'PCC-M' affect parts of clustered regularly interspaced short palindrome repeats-associated spacer-repeat regions on plasmid pSYSA, in one case by an unusual recombination between spacer sequences.
Collapse
Affiliation(s)
| | | | | | | | - Wolfgang R. Hess
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
21
|
Zorina A, Stepanchenko N, Novikova GV, Sinetova M, Panichkin VB, Moshkov IE, Zinchenko VV, Shestakov SV, Suzuki I, Murata N, Los DA. Eukaryotic-like Ser/Thr protein kinases SpkC/F/K are involved in phosphorylation of GroES in the Cyanobacterium synechocystis. DNA Res 2011; 18:137-51. [PMID: 21551175 PMCID: PMC3111230 DOI: 10.1093/dnares/dsr006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Serine/threonine protein kinases (STPKs) are the major participants in intracellular signal transduction in eukaryotes, such as yeasts, fungi, plants, and animals. Genome sequences indicate that these kinases are also present in prokaryotes, such as cyanobacteria. However, their roles in signal transduction in prokaryotes remain poorly understood. We have attempted to identify the roles of STPKs in response to heat stress in the prokaryotic cyanobacterium Synechocystis sp. PCC 6803, which has 12 genes for STPKs. Each gene was individually inactivated to generate a gene-knockout library of STPKs. We applied in vitro Ser/Thr protein phosphorylation and phosphoproteomics and identified the methionyl-tRNA synthetase, large subunit of RuBisCO, 6-phosphogluconate dehydrogenase, translation elongation factor Tu, heat-shock protein GrpE, and small chaperonin GroES as the putative targets for Ser/Thr phosphorylation. The expressed and purified GroES was used as an external substrate to screen the protein extracts of the individual mutants for their Ser/Thr kinase activities. The mutants that lack one of the three protein kinases, SpkC, SpkF, and SpkK, were unable to phosphorylate GroES in vitro, suggesting possible interactions between them towards their substrate. Complementation of the mutated SpkC, SpkF, and SpkK leads to the restoration of the ability of cells to phosphorylate the GroES. This suggests that these three STPKs are organized in a sequential order or a cascade and they work one after another to finally phosphorylate the GroES.
Collapse
Affiliation(s)
- Anna Zorina
- Institute of Plant Physiology, Botanicheskaya Street 35, 127276 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Los DA, Zorina A, Sinetova M, Kryazhov S, Mironov K, Zinchenko VV. Stress sensors and signal transducers in cyanobacteria. SENSORS (BASEL, SWITZERLAND) 2010; 10:2386-415. [PMID: 22294932 PMCID: PMC3264485 DOI: 10.3390/s100302386] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/15/2010] [Accepted: 03/03/2010] [Indexed: 11/17/2022]
Abstract
In living cells, the perception of environmental stress and the subsequent transduction of stress signals are primary events in the acclimation to changes in the environment. Some molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Based on genomic information, a systematic approach has been applied to the solution of this problem in cyanobacteria, involving mutagenesis of potential sensors and signal transducers in combination with DNA microarray analyses for the genome-wide expression of genes. Forty-five genes for the histidine kinases (Hiks), 12 genes for serine-threonine protein kinases (Spks), 42 genes for response regulators (Rres), seven genes for RNA polymerase sigma factors, and nearly 70 genes for transcription factors have been successfully inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Screening of mutant libraries by genome-wide DNA microarray analysis under various stress and non-stress conditions has allowed identification of proteins that perceive and transduce signals of environmental stress. Here we summarize recent progress in the identification of sensory and regulatory systems, including Hiks, Rres, Spks, sigma factors, transcription factors, and the role of genomic DNA supercoiling in the regulation of the responses of cyanobacterial cells to various types of stress.
Collapse
Affiliation(s)
- Dmitry A. Los
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Anna Zorina
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Maria Sinetova
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Sergey Kryazhov
- Department of Genetics, Faculty of Biology, Moscow State University, Moscow, Russia; E-Mails: (S.K.); (V.V.Z.)
| | - Kirill Mironov
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Vladislav V. Zinchenko
- Department of Genetics, Faculty of Biology, Moscow State University, Moscow, Russia; E-Mails: (S.K.); (V.V.Z.)
| |
Collapse
|
23
|
Dienst D, Dühring U, Mollenkopf HJ, Vogel J, Golecki J, Hess WR, Wilde A. The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803. MICROBIOLOGY-SGM 2008; 154:3134-3143. [PMID: 18832319 DOI: 10.1099/mic.0.2008/020222-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ssr3341 locus was previously suggested to encode an orthologue of the RNA chaperone Hfq in the cyanobacterium Synechocystis sp. strain PCC 6803. Insertional inactivation of this gene resulted in a mutant that was not naturally transformable and exhibited a non-phototactic phenotype compared with the wild-type. The loss of motility was complemented by reintroduction of the wild-type gene, correlated with the re-establishment of type IV pili on the cell surface. Microarray analyses revealed a small set of genes with drastically reduced transcript levels in the knockout mutant compared with the wild-type cells. Among the most strongly affected genes, slr1667, slr1668, slr2015, slr2016 and slr2018 stood out, as they belong to two operons that had previously been shown to be involved in motility, controlled by the cAMP receptor protein SYCRP1. This suggests a link between cAMP signalling, motility and possibly the involvement of RNA-based regulation. This is believed to be the first report demonstrating a functional role of an Hfq orthologue in cyanobacteria, establishing a new factor in the control of motility.
Collapse
Affiliation(s)
- Dennis Dienst
- Humboldt-University Berlin, Institute of Biology, Chausseestr. 117, 10115 Berlin, Germany
| | - Ulf Dühring
- Humboldt-University Berlin, Institute of Biology, Chausseestr. 117, 10115 Berlin, Germany
| | | | - Jörg Vogel
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jochen Golecki
- University of Freiburg, Faculty of Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Annegret Wilde
- Justus-Liebig University Giessen, Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.,Humboldt-University Berlin, Institute of Biology, Chausseestr. 117, 10115 Berlin, Germany
| |
Collapse
|
24
|
Kirik IA, Nefedova LN, Fantin YS, Babykin MM. Inversion of phototaxis in cells of Synechocystis sp. PCC 6803 determined by a mutation in the regulatory gene prqR. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|