1
|
Vijayrajratnam S, Milek S, Maggi S, Ashen K, Ferrell M, Hasanovic A, Holgerson A, Kannaiah S, Singh M, Ghosal D, Jensen GJ, Vogel JP. Membrane association and polar localization of the Legionella pneumophila T4SS DotO ATPase mediated by two nonredundant receptors. Proc Natl Acad Sci U S A 2024; 121:e2401897121. [PMID: 39352935 PMCID: PMC11474061 DOI: 10.1073/pnas.2401897121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
The Legionella pneumophila Dot/Icm type IVB secretion system (T4BSS) is a large, multisubunit complex that exports a vast array of substrates into eukaryotic host cells. DotO, a distant homolog of the T4ASS ATPase VirB4, associates with the bacterial inner membrane despite lacking hydrophobic transmembrane domains. Employing a genetic approach, we found DotO's membrane association is mediated by three inner-membrane Dot/Icm components, IcmT, and a combined DotJ-DotI complex (referred to as DotJI). Although deletion of icmT or dotJI individually does not affect DotO's membrane association, the simultaneous inactivation of all three genes results in increased amounts of soluble DotO. Nevertheless, deleting each receptor separately profoundly affects positioning of DotO, disrupting its link with the Dot/Icm complex at the bacterial poles, rendering the receptors nonredundant. Furthermore, a collection of dotO point mutants that we isolated established that DotO's N-terminal domain interacts with the membrane receptors and is involved in dimerization, whereas DotO's C-terminal ATPase domain primarily contributes to the protein's formation of oligomers. Modeling data revealed the complex interaction between DotO and its receptors is responsible for formation of DotO's unique "hexamer of dimers" configuration, which is a defining characteristic of VirB4 family members.
Collapse
Affiliation(s)
| | - Sonja Milek
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich8008, Switzerland
| | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT84602
| | - Kaleigh Ashen
- Department of Molecular Microbiology, Washington University, St. Louis, MO63110
| | - Micah Ferrell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI48824
| | - Ahmet Hasanovic
- Department of Molecular Microbiology, Washington University, St. Louis, MO63110
| | - Agnieszka Holgerson
- Department of Molecular Microbiology, Washington University, St. Louis, MO63110
| | | | - Manpreet Singh
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC3010, Australia
- Australian Research Council (ARC) Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC3010, Australia
- Australian Research Council (ARC) Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT84602
| | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University, St. Louis, MO63110
| |
Collapse
|
2
|
Costafrolaz J, Panis G, Casu B, Ardissone S, Degeorges L, Pilhofer M, Viollier PH. Adaptive β-lactam resistance from an inducible efflux pump that is post-translationally regulated by the DjlA co-chaperone. PLoS Biol 2023; 21:e3002040. [PMID: 38051727 PMCID: PMC10754441 DOI: 10.1371/journal.pbio.3002040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 12/28/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
The acquisition of multidrug resistance (MDR) determinants jeopardizes treatment of bacterial infections with antibiotics. The tripartite efflux pump AcrAB-NodT confers adaptive MDR in the polarized α-proteobacterium Caulobacter crescentus via transcriptional induction by first-generation quinolone antibiotics. We discovered that overexpression of AcrAB-NodT by mutation or exogenous inducers confers resistance to cephalosporin and penicillin (β-lactam) antibiotics. Combining 2-step mutagenesis-sequencing (Mut-Seq) and cephalosporin-resistant point mutants, we dissected how TipR uses a common operator of the divergent tipR and acrAB-nodT promoter for adaptive and/or potentiated AcrAB-NodT-directed efflux. Chemical screening identified diverse compounds that interfere with DNA binding by TipR or induce its dependent proteolytic turnover. We found that long-term induction of AcrAB-NodT deforms the envelope and that homeostatic control by TipR includes co-induction of the DnaJ-like co-chaperone DjlA, boosting pump assembly and/or capacity in anticipation of envelope stress. Thus, the adaptive MDR regulatory circuitry reconciles drug efflux with co-chaperone function for trans-envelope assemblies and maintenance.
Collapse
Affiliation(s)
- Jordan Costafrolaz
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Bastien Casu
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Silvia Ardissone
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Laurence Degeorges
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Patrick H. Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Gomez-Valero L, Chiner-Oms A, Comas I, Buchrieser C. Evolutionary Dissection of the Dot/Icm System Based on Comparative Genomics of 58 Legionella Species. Genome Biol Evol 2020; 11:2619-2632. [PMID: 31504472 PMCID: PMC6761968 DOI: 10.1093/gbe/evz186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
The Dot/Icm type IVB secretion system of Legionella pneumophila is essential for its pathogenesis by delivering >300 effector proteins into the host cell. However, their precise secretion mechanism and which components interact with the host cell is only partly understood. Here, we undertook evolutionary analyses of the Dot/Icm system of 58 Legionella species to identify those components that interact with the host and/or the substrates. We show that high recombination rates are acting on DotA, DotG, and IcmX, supporting exposure of these proteins to the host. Specific amino acids under positive selection on the periplasmic region of DotF, and the cytoplasmic domain of DotM, support a role of these regions in substrate binding. Diversifying selection acting on the signal peptide of DotC suggests its interaction with the host after cleavage. Positive selection acts on IcmR, IcmQ, and DotL revealing that these components are probably participating in effector recognition and/or translocation. Furthermore, our results predict the participation in host/effector interaction of DotV and IcmF. In contrast, DotB, DotO, most of the core subcomplex elements, and the chaperones IcmS-W show a high degree of conservation and not signs of recombination or positive selection suggesting that these proteins are under strong structural constraints and have an important role in maintaining the architecture/function of the system. Thus, our analyses of recombination and positive selection acting on the Dot/Icm secretion system predicted specific Dot/Icm components and regions implicated in host interaction and/or substrate recognition and translocation, which will guide further functional analyses.
Collapse
Affiliation(s)
- Laura Gomez-Valero
- Institut Pasteur, Departement of Microbiology, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR3525, Paris, France
| | - Alvaro Chiner-Oms
- Unidad Mixta "Infección y Salud Pública" FISABIO-CSISP/Universidad de Valencia, Instituto de Biología Integrativa de Sistemas, Spain
| | - Iñaki Comas
- CIBER en Epidemiología y Salud Pública, Valencia, Spain.,Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Carmen Buchrieser
- Institut Pasteur, Departement of Microbiology, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR3525, Paris, France
| |
Collapse
|
4
|
Hews CL, Cho T, Rowley G, Raivio TL. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front Cell Infect Microbiol 2019; 9:313. [PMID: 31552196 PMCID: PMC6737893 DOI: 10.3389/fcimb.2019.00313] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
The Gram-negative bacterial envelope is an essential interface between the intracellular and harsh extracellular environment. Envelope stress responses (ESRs) are crucial to the maintenance of this barrier and function to detect and respond to perturbations in the envelope, caused by environmental stresses. Pathogenic bacteria are exposed to an array of challenging and stressful conditions during their lifecycle and, in particular, during infection of a host. As such, maintenance of envelope homeostasis is essential to their ability to successfully cause infection. This review will discuss our current understanding of the σE- and Cpx-regulated ESRs, with a specific focus on their role in the virulence of a number of model pathogens.
Collapse
Affiliation(s)
- Claire L Hews
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Timothy Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Hiller M, Lang C, Michel W, Flieger A. Secreted phospholipases of the lung pathogen Legionella pneumophila. Int J Med Microbiol 2017; 308:168-175. [PMID: 29108710 DOI: 10.1016/j.ijmm.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/28/2022] Open
Abstract
Legionella pneumophila is an intracellular pathogen and the main causative agent of Legionnaires' disease, a potentially fatal pneumonia. The bacteria infect both mammalian cells and environmental hosts, such as amoeba. Inside host cells, the bacteria withstand the multifaceted defenses of the phagocyte and replicate within a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). For establishment and maintenance of the infection, L. pneumophila secretes many proteins including effector proteins by means of different secretion systems and outer membrane vesicles. Among these are a large variety of lipolytic enzymes which possess phospholipase/lysophospholipase and/or glycerophospholipid:cholesterol acyltransferase activities. Secreted lipolytic activities may contribute to bacterial virulence, for example via modification of eukaryotic membranes, such as the LCV. In this review, we describe the secretion systems of L. pneumophila, introduce the classification of phospholipases, and summarize the state of the art on secreted L. pneumophila phospholipases. We especially highlight those enzymes secreted via the type II secretion system Lsp, via the type IVB secretion system Dot/Icm, via outer membrane vesicles, and such where the mode of secretion has not yet been defined. We also give an overview on the complexity of their activities, activation mechanisms, localization, growth-phase dependent abundance, and their role in infection.
Collapse
Affiliation(s)
- Miriam Hiller
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Wiebke Michel
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany.
| |
Collapse
|
6
|
Borges V, Nunes A, Sampaio DA, Vieira L, Machado J, Simões MJ, Gonçalves P, Gomes JP. Legionella pneumophila strain associated with the first evidence of person-to-person transmission of Legionnaires' disease: a unique mosaic genetic backbone. Sci Rep 2016; 6:26261. [PMID: 27196677 PMCID: PMC4872527 DOI: 10.1038/srep26261] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/29/2016] [Indexed: 01/23/2023] Open
Abstract
A first strong evidence of person-to-person transmission of Legionnaires’ Disease (LD) was recently reported. Here, we characterize the genetic backbone of this case-related Legionella pneumophila strain (“PtVFX/2014”), which also caused a large outbreak of LD. PtVFX/2014 is phylogenetically divergent from the most worldwide studied outbreak-associated L. pneumophila subspecies pneumophila serogroup 1 strains. In fact, this strain is also from serogroup 1, but belongs to the L. pneumophila subspecies fraseri. Its genomic mosaic backbone reveals eight horizontally transferred regions encompassing genes, for instance, involved in lipopolysaccharide biosynthesis or encoding virulence-associated Dot/Icm type IVB secretion system (T4BSS) substrates. PtVFX/2014 also inherited a rare ~65 kb pathogenicity island carrying virulence factors and detoxifying enzymes believed to contribute to the emergence of best-fitted strains in water reservoirs and in human macrophages, as well as a inter-species transferred (from L. oakridgensis) ~37.5 kb genomic island (harboring a lvh/lvr T4ASS cluster) that had never been found intact within L. pneumophila species. PtVFX/2014 encodes another lvh/lvr cluster near to CRISPR-associated genes, which may boost L. pneumophila transition from an environmental bacterium to a human pathogen. Overall, this unique genomic make-up may impact PtVFX/2014 ability to adapt to diverse environments, and, ultimately, to be transmitted and cause human disease.
Collapse
Affiliation(s)
- Vítor Borges
- Bioinformatics Unit and Research Unit, National Institute of Health, Lisbon, Portugal
| | - Alexandra Nunes
- Bioinformatics Unit and Research Unit, National Institute of Health, Lisbon, Portugal
| | - Daniel A Sampaio
- Innovation and Technology Unit, National Institute of Health, Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, National Institute of Health, Lisbon, Portugal
| | - Jorge Machado
- Coordination of the Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Maria J Simões
- National Reference Laboratory for Legionella, National Institute of Health, Lisbon, Portugal
| | - Paulo Gonçalves
- National Reference Laboratory for Legionella, National Institute of Health, Lisbon, Portugal
| | - João P Gomes
- Bioinformatics Unit and Research Unit, National Institute of Health, Lisbon, Portugal
| |
Collapse
|
7
|
Tanner JR, Li L, Faucher SP, Brassinga AKC. The CpxRA two-component system contributes to Legionella pneumophila virulence. Mol Microbiol 2016; 100:1017-38. [PMID: 26934669 DOI: 10.1111/mmi.13365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2016] [Indexed: 12/11/2022]
Abstract
The bacterium Legionella pneumophila is capable of intracellular replication within freshwater protozoa as well as human macrophages, the latter of which results in the serious pneumonia Legionnaires' disease. A primary factor involved in these host cell interactions is the Dot/Icm Type IV secretion system responsible for translocating effector proteins needed to establish and maintain the bacterial replicative niche. Several regulatory factors have been identified to control the expression of the Dot/Icm system and effectors, one of which is the CpxRA two-component system, suggesting essentiality for virulence. In this study, we generated cpxR, cpxA and cpxRA in-frame null mutant strains to further delineate the role of the CpxRA system in bacterial survival and virulence. We found that cpxR is essential for intracellular replication within Acanthamoeba castellanii, but not in U937-derived macrophages. Transcriptome analysis revealed that CpxRA regulates a large number of virulence-associated proteins including Dot/Icm effectors as well as Type II secreted substrates. Furthermore, the cpxR and cpxRA mutant strains were more sodium resistant than the parental strain Lp02, and cpxRA expression reaches maximal levels during postexponential phase. Taken together, our findings suggest the CpxRA system is a key contributor to L. pneumophila virulence in protozoa via virulence factor regulation.
Collapse
Affiliation(s)
- Jennifer R Tanner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Laam Li
- Faculty of Agricultural and Environmental Sciences, Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Sébastien P Faucher
- Faculty of Agricultural and Environmental Sciences, Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
8
|
Harrison CF, Kicka S, Kranjc A, Finsel I, Chiriano G, Ouertatani-Sakouhi H, Soldati T, Scapozza L, Hilbi H. Adrenergic antagonists restrict replication of Legionella. MICROBIOLOGY-SGM 2015; 161:1392-406. [PMID: 25873585 DOI: 10.1099/mic.0.000094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Legionella pneumophila is a facultative intracellular bacterium, which upon inhalation can cause a potentially fatal pneumonia termed Legionnaires' disease. The opportunistic pathogen grows in environmental amoebae and mammalian macrophages within a unique membrane-bound compartment, the 'Legionella-containing vacuole'. Bacteria are exposed to many environmental cues including small signalling molecules from eukaryotic cells. A number of pathogenic bacteria sense and respond to catecholamine hormones, such as adrenalin and noradrenalin, a process mediated via the QseBC two-component system in some bacteria. In this study, we examined the effect of adrenergic compounds on L. pneumophila, and discovered that the adrenergic receptor antagonists benoxathian, naftopidil, propranolol and labetalol, as well as the QseC sensor kinase inhibitor LED209, reduced the growth of L. pneumophila in broth or amoebae, while replication in macrophages was enhanced. Growth restriction was common to members of the genus Legionella and Mycobacterium, and was observed for L. pneumophila in the replicative but not stationary phase of the biphasic life cycle. Deletion of the L. pneumophila qseBC genes indicated that growth inhibition by adrenergics or LED209 is mediated only to a minor extent by this two-component system, implying the presence of other adrenergic sensing systems. This study identifies adrenergic molecules as novel inhibitors of extra- and intracellular growth of Legionella and reveals LED209 as a potential lead compound to combat infections with Legionella or Mycobacterium spp.
Collapse
Affiliation(s)
- Christopher F Harrison
- 1Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Sébastien Kicka
- 2Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Agata Kranjc
- 3School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Ivo Finsel
- 1Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Gianpaolo Chiriano
- 3School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | | | - Thierry Soldati
- 2Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Leonardo Scapozza
- 3School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Hubert Hilbi
- 1Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany 5Institute of Medical Microbiology, Department of Medicine, University of Zurich, Gloriastrasse 30/32, 8006 Zurich, Switzerland
| |
Collapse
|
9
|
Jeong KC, Sexton JA, Vogel JP. Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. PLoS Pathog 2015; 11:e1004695. [PMID: 25774515 PMCID: PMC4361747 DOI: 10.1371/journal.ppat.1004695] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Modulation of host cell function is vital for intracellular pathogens to survive and replicate within host cells. Most commonly, these pathogens utilize specialized secretion systems to inject substrates (also called effector proteins) that function as toxins within host cells. Since it would be detrimental for an intracellular pathogen to immediately kill its host cell, it is essential that secreted toxins be inactivated or degraded after they have served their purpose. The pathogen Legionella pneumophila represents an ideal system to study interactions between toxins as it survives within host cells for approximately a day and its Dot/Icm type IVB secretion system (T4SS) injects a vast number of toxins. Previously we reported that the Dot/Icm substrates SidE, SdeA, SdeB, and SdeC (known as the SidE family of effectors) are secreted into host cells, where they localize to the cytoplasmic face of the Legionella containing vacuole (LCV) in the early stages of infection. SidJ, another effector that is unrelated to the SidE family, is also encoded in the sdeC-sdeA locus. Interestingly, while over-expression of SidE family proteins in a wild type Legionella strain has no effect, we found that their over-expression in a ∆sidJ mutant completely inhibits intracellular growth of the strain. In addition, we found expression of SidE proteins is toxic in both yeast and mammalian HEK293 cells, but this toxicity can be suppressed by co-expression of SidJ, suggesting that SidJ may modulate the function of SidE family proteins. Finally, we were able to demonstrate both in vivo and in vitro that SidJ acts on SidE proteins to mediate their disappearance from the LCV, thereby preventing lethal intoxication of host cells. Based on these findings, we propose that SidJ acts as a metaeffector to control the activity of other Legionella effectors. A key attribute of many pathogens is their ability to survive and replicate within eukaryotic host cells. One such pathogen, Legionella pneumophila, is able to grow within macrophages in the lungs, thereby causing a form of pneumonia called Legionnaires’ Disease. L. pneumophila causes disease by translocating several hundred proteins into the host cell. These proteins are typically referred to as ‘‘effectors’’, as they function as toxins to alter normal host cell function. However, since L. pneumophila remains within the host cells for approximately one day, continual poisoning of the eukaryotic cells by the bacterial effectors will result in the premature death of the host cell, thus restricting the growth of the pathogen. Previously the L. pneumophila secreted protein LubX was described as a “metaeffector”, which has been defined as an effector that acts directly on another effector to modulate its function inside the host cell. LubX accomplishes this task by directing the degradation of another effector, SidH. Here we report a second L. pneumophila metaeffector, SidJ, acts in a similar manner to neutralize SidE family effectors by removing them from the intracellular compartment that contains the bacterium. This further establishes the concept of metaeffectors, which are likely to be critical to how Legionella and many other pathogens cause disease.
Collapse
Affiliation(s)
- Kwang Cheol Jeong
- Department of Animal Sciences & Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jessica A. Sexton
- Chemical Engineering Department, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
10
|
Castanié-Cornet MP, Bruel N, Genevaux P. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1442-56. [PMID: 24269840 DOI: 10.1016/j.bbamcr.2013.11.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
Abstract
Nascent polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytosolic, integral membrane or exported proteins. Extensive genetic and biochemical analyses have significantly expanded our knowledge of chaperone tasking throughout this process. In bacteria, it is known that the folding of newly-synthesized cytosolic proteins is mainly orchestrated by three highly conserved molecular chaperones, namely Trigger Factor (TF), DnaK (HSP70) and GroEL (HSP60). Yet, it has been reported that these major chaperones are strongly involved in protein translocation pathways as well. This review describes such essential molecular chaperone functions, with emphasis on both the biogenesis of inner membrane proteins and the post-translational targeting of presecretory proteins to the Sec and the twin-arginine translocation (Tat) pathways. Critical interplay between TF, DnaK, GroEL and other molecular chaperones and targeting factors, including SecB, SecA, the signal recognition particle (SRP) and the redox enzyme maturation proteins (REMPs) is also discussed. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Nicolas Bruel
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
11
|
Reassessing the role of DotF in the Legionella pneumophila type IV secretion system. PLoS One 2013; 8:e65529. [PMID: 23762385 PMCID: PMC3676331 DOI: 10.1371/journal.pone.0065529] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
Legionella pneumophila, the causative agent of a severe pneumonia termed Legionnaires’ Disease, survives and replicates within both protozoan hosts and human alveolar macrophages. Intracellular survival is dependent upon secretion of a plethora of protein effectors that function to form a replicative vacuole, evade the endocytic pathway and subvert host immune defenses. Export of these factors requires a type IV secretion system (T4SS) called Dot/Icm that is composed of twenty-seven proteins. This report focuses on the DotF protein, which was previously postulated to have several different functions, one of which centered on binding Dot/Icm substrates. In this report, we examined if DotF functions as the T4SS inner membrane receptor for Dot/Icm substrates. Although we were able to recapitulate the previously published bacterial two-hybrid interaction between DotF and several substrates, the interaction was not dependent on the Dot/Icm substrates’ signal sequences as predicted for a substrate:receptor interaction. In addition, binding did not require the cytoplasmic domain of DotF, which was anticipated to be involved in recognizing substrates in the cytoplasm. Finally, inactivation of dotF did not abolish intracellular growth of L. pneumophila or translocation of substrates, two phenotypes dependent on the T4SS receptor. These data strongly suggest that DotF does not act as the major receptor for Dot/Icm substrates and therefore likely performs an accessory function within the core-transmembrane subcomplex of the L. pneumophila Dot/Icm type IV secretion system.
Collapse
|
12
|
Gómez FA, Tobar JA, Henríquez V, Sola M, Altamirano C, Marshall SH. Evidence of the presence of a functional Dot/Icm type IV-B secretion system in the fish bacterial pathogen Piscirickettsia salmonis. PLoS One 2013; 8:e54934. [PMID: 23383004 PMCID: PMC3557282 DOI: 10.1371/journal.pone.0054934] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/18/2012] [Indexed: 12/02/2022] Open
Abstract
Piscirickettsia salmonis is a fish bacterial pathogen that has severely challenged the sustainability of the Chilean salmon industry since its appearance in 1989. As this Gram-negative bacterium has been poorly characterized, relevant aspects of its life cycle, virulence and pathogenesis must be identified in order to properly design prophylactic procedures. This report provides evidence of the functional presence in P. salmonis of four genes homologous to those described for Dot/Icm Type IV Secretion Systems. The Dot/Icm System, the major virulence mechanism of phylogenetically related pathogens Legionella pneumophila and Coxiella burnetii, is responsible for their intracellular survival and multiplication, conditions that may also apply to P. salmonis. Our results demonstrate that the four P. salmonis dot/icm homologues (dotB, dotA, icmK and icmE) are expressed both during in vitro tissue culture cells infection and growing in cell-free media, suggestive of their putative constitutive expression. Additionally, as it happens in other referential bacterial systems, temporal acidification of cell-free media results in over expression of all four P. salmonis genes, a well-known strategy by which SSTIV-containing bacteria inhibit phagosome-lysosome fusion to survive. These findings are very important to understand the virulence mechanisms of P. salmonis in order to design new prophylactic alternatives to control the disease.
Collapse
Affiliation(s)
- Fernando A Gómez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | |
Collapse
|
13
|
Qiu J, Luo ZQ. Effector translocation by the Legionella Dot/Icm type IV secretion system. Curr Top Microbiol Immunol 2013; 376:103-15. [PMID: 23918176 DOI: 10.1007/82_2013_345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Legionella pneumophila is an opportunistic pathogen responsible for Legionnaires' disease. This bacterium survives and replicates within phagocytes by bypassing their bactericidal activity. Intracellular replication of L. pneumophila requires the Dot/Icm type IV secretion system made of approximately 27 proteins that presumably traverses the bacterial and phagosomal membranes. The perturbation of the host killing ability largely is mediated by the collective functions of the protein substrates injected into host cells via the Dot/Icm transporter. Proper protein translocation by Dot/Icm is determined by a number of factors, including signals recognizable by the translocator, chaperones that may facilitate the proper folding of substrates and transcriptional regulation and protein stability that determine the abundance and temporal transfer of the substrates. Although a large number of Dot/Icm substrates have been identified, investigation to understand the translocation is ongoing. Here we summarized the recent advancements in our understanding of the factors that determine the protein translocation activity of the Dot/Icm transporter.
Collapse
Affiliation(s)
- Jiazhang Qiu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | |
Collapse
|
14
|
Sutherland MC, Nguyen TL, Tseng V, Vogel JP. The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates. PLoS Pathog 2012; 8:e1002910. [PMID: 23028312 PMCID: PMC3441705 DOI: 10.1371/journal.ppat.1002910] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/01/2012] [Indexed: 01/30/2023] Open
Abstract
Legionella pneumophila is a Gram-negative bacterium that replicates within human alveolar macrophages by evasion of the host endocytic pathway through the formation of a replicative vacuole. Generation of this vacuole is dependent upon the secretion of over 275 effector proteins into the host cell via the Dot/Icm type IVB secretion system (T4SS). The type IV coupling protein (T4CP) subcomplex, consisting of DotL, DotM, DotN, IcmS and IcmW, was recently defined. DotL is proposed to be the T4CP of the L. pneumophila T4SS based on its homology to known T4CPs, which function as inner-membrane receptors for substrates. As a result, DotL is hypothesized to play an integral role(s) in the L. pneumophila T4SS for the engagement and translocation of substrates. To elucidate this role, a genetic approach was taken to screen for dotL mutants that were unable to survive inside host cells. One mutant, dotLY725Stop, did not interact with the type IV adaptor proteins IcmS/IcmW (IcmSW) leading to the identification of an IcmSW-binding domain on DotL. Interestingly, the dotLY725Stop mutant was competent for export of one class of secreted effectors, the IcmSW-independent substrates, but exhibited a specific defect in secretion of IcmSW-dependent substrates. This differential secretion illustrates that DotL requires a direct interaction with the type IV adaptor proteins for the secretion of a major class of substrates. Thus, by identifying a new target for IcmSW, we have discovered that the type IV adaptors perform an additional role in the export of substrates by the L. pneumophila Dot/Icm T4SS.
Collapse
Affiliation(s)
- Molly C. Sutherland
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thuy Linh Nguyen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Victor Tseng
- New York Medical College, Valhalla, New York, United States of America
| | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
15
|
Giordano A, Cito L. Advances in gastric cancer prevention. World J Clin Oncol 2012; 3:128-36. [PMID: 23061031 PMCID: PMC3468701 DOI: 10.5306/wjco.v3.i9.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/19/2012] [Accepted: 09/06/2012] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a multifactorial neoplastic pathology numbering among its causes both environmental and genetic predisposing factors. It is mainly diffused in South America and South-East Asia, where it shows the highest morbility percentages and it is relatively scarcely diffused in Western countries and North America. Although molecular mechanisms leading to gastric cancer development are only partially known, three main causes are well characterized: Helicobacter pylori (H. pylori) infection, diet rich in salted and/or smoked food and red meat, and epithelial cadherin (E-cadherin) mutations. Unhealthy diet and H. pylori infection are able to induce in stomach cancer cells genotypic and phenotypic transformation, but their effects may be crossed by a diet rich in vegetables and fresh fruits. Various authors have recently focused their attention on the importance of a well balanced diet, suggesting a necessary dietary education starting from childhood. A constant surveillance will be necessary in people carrying E-cadherin mutations, since they are highly prone in developing gastric cancer, also within the inner stomach layers. Above all in the United States, several carriers decided to undergo a gastrectomy, preferring changing their lifestyle than living with the awareness of the development of a possible gastric cancer. This kind of choice is strictly personal, hence a decision cannot be suggested within the clinical management. Here we summarize the key points of gastric cancer prevention analyzing possible strategies referred to the different predisposing factors. We will discuss about the effects of diet, H. pylori infection and E-cadherin mutations and how each of them can be handled.
Collapse
Affiliation(s)
- Antonio Giordano
- Antonio Giordano, Letizia Cito, INT-CROM, "Pascale Foundation" National Cancer Institute-Cancer Research Center, 83013 Mercogliano, Italy
| | | |
Collapse
|
16
|
Vincent CD, Friedman JR, Jeong KC, Sutherland MC, Vogel JP. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol 2012; 85:378-91. [PMID: 22694730 DOI: 10.1111/j.1365-2958.2012.08118.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella type IV secretion system substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex.
Collapse
Affiliation(s)
- Carr D Vincent
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | |
Collapse
|
17
|
Implication of proteins containing tetratricopeptide repeats in conditional virulence phenotypes of Legionella pneumophila. J Bacteriol 2012; 194:3579-88. [PMID: 22563053 DOI: 10.1128/jb.00399-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a ubiquitous freshwater bacterium whose virulence phenotypes require a type IV secretion system (T4SS). L. pneumophila strain JR32 contains two virulence-associated T4SSs, the Dot/Icm and Lvh T4SSs. Defective entry and phagosome acidification phenotypes of dot/icm mutants are conditional and reversed by incubating broth-grown stationary-phase cultures in water (WS treatment) prior to infection, as a mimic of the aquatic environment of Legionella. Reversal of dot/icm virulence defects requires the Lvh T4SS and is associated with a >10-fold induction of LpnE, a tetratricopeptide repeat (TPR)-containing protein. In the current study, we demonstrated that defective entry and phagosome acidification phenotypes of mutants with changes in LpnE and EnhC, another TPR-containing protein, were similarly reversed by WS treatment. In contrast to dot/icm mutants for which the Lvh T4SS was required, reversal for the ΔlpnE or the ΔenhC mutant required that the other TPR-containing protein be present. The single and double ΔlpnE and ΔenhC mutants showed a hypersensitivity to sodium ion, a phenotype associated with dysfunction of the Dot/Icm T4SS. The ΔlpnE single and the ΔlpnE ΔenhC double mutant showed 3- to 9-fold increases in translocation of Dot/Icm T4SS substrates, LegS2/SplY and LepB. Taken together, these data identify TPR-containing proteins in a second mechanism by which the WS mimic of a Legionella environmental niche can reverse virulence defects of broth-grown cultures and implicate LpnE and EnhC directly or indirectly in translocation of Dot/Icm T4SS protein substrates.
Collapse
|
18
|
Vogt SL, Raivio TL. Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiol Lett 2011; 326:2-11. [DOI: 10.1111/j.1574-6968.2011.02406.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/17/2011] [Accepted: 08/22/2011] [Indexed: 11/28/2022] Open
Affiliation(s)
- Stefanie L. Vogt
- Department of Biological Sciences; University of Alberta; Edmonton; AB; Canada
| | - Tracy L. Raivio
- Department of Biological Sciences; University of Alberta; Edmonton; AB; Canada
| |
Collapse
|
19
|
Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proc Natl Acad Sci U S A 2011; 108:14733-40. [PMID: 21873199 DOI: 10.1073/pnas.1111678108] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila is a bacterial pathogen of amoebae and humans. Intracellular growth requires a type IVB secretion system that translocates at least 200 different proteins into host cells. To distinguish between proteins necessary for growth in culture and those specifically required for intracellular replication, a screen was performed to identify genes necessary for optimal growth in nutrient-rich medium. Mapping of these genes revealed that the L. pneumophila chromosome has a modular architecture consisting of several large genomic islands that are dispensable for growth in bacteriological culture. Strains lacking six of these regions, and thus 18.5% of the genome, were viable but required secondary point mutations for optimal growth. The simultaneous deletion of five of these genomic loci had no adverse effect on growth of the bacterium in nutrient-rich media. Remarkably, this minimal genome strain, which lacked 31% of the known substrates of the type IVB system, caused only marginal defects in intracellular growth within mouse macrophages. In contrast, deletion of single regions reduced growth within amoebae. The importance of individual islands, however, differed among amoebal species. The host-specific requirements of these genomic islands support a model in which the acquisition of foreign DNA has broadened the L. pneumophila host range.
Collapse
|
20
|
Nagai H, Kubori T. Type IVB Secretion Systems of Legionella and Other Gram-Negative Bacteria. Front Microbiol 2011; 2:136. [PMID: 21743810 PMCID: PMC3127085 DOI: 10.3389/fmicb.2011.00136] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 06/11/2011] [Indexed: 12/03/2022] Open
Abstract
Type IV secretion systems (T4SSs) play a central role in the pathogenicity of many important pathogens, including Agrobacterium tumefaciens, Helicobacter pylori, and Legionella pneumophila. The T4SSs are related to bacterial conjugation systems, and are classified into two subgroups, type IVA (T4ASS) and type IVB (T4BSS). The T4BSS, which is closely related to conjugation systems of IncI plasmids, was originally found in human pathogen L. pneumophila; pathogenesis by L. pneumophila infection requires functional Dot/Icm T4BSS. A zoonotic pathogen, Coxiella burnetii, and an arthropod pathogen, Rickettsiella grylli – both of which carry T4BSSs highly similar to the Legionella Dot/Icm system – are evolutionarily closely related and comprise a monophyletic group. A growing body of bacterial genomic information now suggests that T4BSSs are not limited to Legionella and related bacteria and IncI plasmids. Here, we review the current knowledge on T4BSS apparatus and component proteins, gained mainly from studies on L. pneumophila Dot/Icm T4BSS. Recent structural studies, along with previous findings, suggest that the Dot/Icm T4BSS contains components with primary or higher-order structures similar to those in other types of secretion systems – types II, III, IVA, and VI, thus highlighting the mosaic nature of T4BSS architecture.
Collapse
Affiliation(s)
- Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University Osaka, Japan
| | | |
Collapse
|
21
|
Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet 2009; 5:e1000651. [PMID: 19763168 PMCID: PMC2731931 DOI: 10.1371/journal.pgen.1000651] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 08/17/2009] [Indexed: 11/19/2022] Open
Abstract
The Bae, Cpx, Psp, Rcs, and σE pathways constitute the Escherichia coli signaling systems that detect and respond to alterations of the bacterial envelope. Contributions of these systems to stress response have previously been examined individually; however, the possible interconnections between these pathways are unknown. Here we investigate the dynamics between the five stress response pathways by determining the specificities of each system with respect to signal-inducing conditions, and monitoring global transcriptional changes in response to transient overexpression of each of the effectors. Our studies show that different extracytoplasmic stress conditions elicit a combined response of these pathways. Involvement of the five pathways in the various tested stress conditions is explained by our unexpected finding that transcriptional responses induced by the individual systems show little overlap. The extracytoplasmic stress signaling pathways in E. coli thus regulate mainly complementary functions whose discrete contributions are integrated to mount the full adaptive response. Bacteria possess various signaling systems that sense and respond to environmental conditions. The bacterial envelope is at the front line for most external stress conditions; its components sense perturbations and transmit signals to induce transcriptional reprogramming, leading to an adaptive response. In Escherichia coli, at least five response pathways, called Bae, Cpx, Psp, Rcs, and σE, are induced in response to envelope stress. To date, these pathways have been studied mainly individually, and the interconnections and/or overlaps between them have not been extensively characterized. The present study establishes two important characteristics of stress response in E. coli: first, that a given stress solicits the combined responses of several pathways; second, that each individual pathway controls a discrete set of genes involved in the response, and shows little overlap with other pathways. Based on previous knowledge and the present data, we propose that an environmental stress probably impacts on the cell envelope by inducing numerous alterations, each of which may be perceived by different pathways of the stress response and contributes to adapting the cell to different aspects of the stress damage. The extracytoplasmic stress signaling pathways in E. coli thus regulate mainly complementary functions whose discrete contributions are integrated to mount the full adaptive response.
Collapse
|
22
|
Lakhal F, Bury-Moné S, Nomane Y, Le Goïc N, Paillard C, Jacq A. DjlA, a membrane-anchored DnaJ-like protein, is required for cytotoxicity of clam pathogen Vibrio tapetis to hemocytes. Appl Environ Microbiol 2008; 74:5750-5758. [PMID: 18641167 PMCID: PMC2547034 DOI: 10.1128/aem.01043-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 07/11/2008] [Indexed: 02/08/2023] Open
Abstract
DjlA is an inner membrane cochaperone belonging to the DnaJ family, which has been shown to be involved in Legionella sp. pathogenesis. In this study, we explored the role of this protein in the physiology and virulence of Vibrio tapetis, the etiological agent of brown ring disease (BRD) in Manila clam (Ruditapes philippinarum). Analysis of the djlA locus in V. tapetis revealed a putative organization in an operon with a downstream gene that we designated duf924(Vt), which encodes a conserved protein with an unknown function and has homologues in bacteria and eukaryotes. djlA mutants displayed a reduced growth rate and showed an important loss of cytotoxic activity against R. philippinarum hemocytes in vitro, which could be restored by extrachromosomal expression of wild-type djlA(Vt) but not duf924(Vt). These results are in keeping with the potential importance of DjlA for bacterial pathogenicity and open new perspectives for understanding the mechanism of action of this protein in the novel V. tapetis-R. philippinarum interaction model.
Collapse
Affiliation(s)
- Fatma Lakhal
- Institut de Génétique et Microbiologie, Bâtiment 400, Université Paris-Sud, Orsay 91405 Cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
De Buck E, Anné J, Lammertyn E. The role of protein secretion systems in the virulence of the intracellular pathogen Legionella pneumophila. MICROBIOLOGY-SGM 2008; 153:3948-3953. [PMID: 18048909 DOI: 10.1099/mic.0.2007/012039-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila is a Gram-negative facultative intracellular pathogen, which multiplies in protozoa in its natural environment and can cause Legionnaires' disease in man, following infection of alveolar macrophages. In each of the different stages of infection of host cells, virulence proteins need to be delivered to their specific place of action and therefore must cross two barriers: the inner and the outer membrane. To date, several specialized secretion machineries for transport of proteins across the inner and outer membrane have been identified in L. pneumophila. Most of these secretion pathways have been shown to affect the virulence of this pathogen. An overview will be given of all the secretion pathways and the proteins transported by these secretion systems identified so far, with special attention paid to those that play a role in the pathogenicity of L. pneumophila.
Collapse
Affiliation(s)
- Emmy De Buck
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Jozef Anné
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Elke Lammertyn
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
24
|
The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol 2008; 190:1985-96. [PMID: 18192394 DOI: 10.1128/jb.01493-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Legionella pneumophila has been shown to utilize the icm/dot type IV secretion system for pathogenesis. This system was shown to be composed of icm/dot complex components and accessory proteins, as well as a large number of translocated substrates. Bioinformatic analysis of the regulatory regions of all the genes revealed that several icm/dot genes, as well as two genes encoding icm/dot translocated substrates, contain the conserved CpxR regulatory element, a regulator that has been shown previously to control the expression of the icmR gene. An experimental analysis, which included a comparison of gene expression in a L. pneumophila wild-type strain and gene expression in a cpxR deletion mutant, construction of mutants with mutations in the CpxR conserved regulatory elements, controlled expression studies, and mobility shift assays, demonstrated the direct relationship between the CpxR regulator and the expression of the genes. Furthermore, genomic analysis identified nine additional genes that contain a putative CpxR regulatory element; five of these genes (two legA genes and three ceg genes) were suggested previously to be putative icm/dot translocated substrates. The three ceg genes identified, which were shown previously to contain a putative PmrA regulatory element, were found here to be regulated by both CpxR and PmrA. The other six genes (two legA genes and four new genes products were found to be regulated by CpxR. Moreover, using the CyaA translocation assay, these nine gene products were found to be translocated into host cells in an Icm/Dot-dependent manner. Our results establish that the CpxR regulator is a fundamental regulator of the icm/dot type IV secretion system in L. pneumophila.
Collapse
|
25
|
CpxRA regulates mutualism and pathogenesis in Xenorhabdus nematophila. Appl Environ Microbiol 2007; 73:7826-36. [PMID: 17951441 DOI: 10.1128/aem.01586-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The CpxRA signal transduction system, which in Escherichia coli regulates surface structure assembly and envelope maintenance, is involved in the pathogenic and mutualistic interactions of the entomopathogenic bacterium Xenorhabdus nematophila. When DeltacpxR1 cells were injected into Manduca sexta insects, the time required to kill 50% of the insects was twofold longer than the time observed for wild-type cells and the DeltacpxR1 cells ultimately killed 16% fewer insects than wild-type cells killed. During mutualistic colonization of Steinernema carpocapsae nematodes, the DeltacpxR1 mutant achieved colonization levels that were only 38% of the wild-type levels. DeltacpxR1 cells exhibited an extended lag phase when they were grown in liquid LB or hemolymph, formed irregular colonies on solid medium, and had a filamentous cell morphology. A mutant with a cpxRp-lacZ fusion had peaks of expression in the log and stationary phases that were conversely influenced by CpxR; the DeltacpxR1 mutant produced 130 and 17% of the wild-type beta-galactosidase activity in the log and stationary phases, respectively. CpxR positively influences motility and secreted lipase activity, as well as transcription of genes necessary for mutualistic colonization of nematodes. CpxR negatively influences the production of secreted hemolysin, protease, and antibiotic activities, as well as the expression of mrxA, encoding the pilin subunit. Thus, X. nematophila CpxRA controls expression of envelope-localized and secreted products, and its activity is necessary for both mutualistic and pathogenic functions.
Collapse
|
26
|
Genevaux P, Georgopoulos C, Kelley WL. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol 2007; 66:840-57. [PMID: 17919282 DOI: 10.1111/j.1365-2958.2007.05961.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular chaperones are highly conserved in all free-living organisms. There are many types of chaperones, and most are conveniently grouped into families. Genome sequencing has revealed that many organisms contain multiple members of both the DnaK (Hsp70) family and their partner J-domain protein (JDP) cochaperone, belonging to the DnaJ (Hsp40) family. Escherichia coli K-12 encodes three Hsp70 genes and six JDP genes. The coexistence of these chaperones in the same cytosol suggests that certain chaperone-cochaperone interactions are permitted, and that chaperone tasks and their regulation have become specialized over the course of evolution. Extensive genetic and biochemical analyses have greatly expanded knowledge of chaperone tasking in this organism. In particular, recent advances in structure determination have led to significant insights of the underlying complexities and functional elegance of the Hsp70 chaperone machine.
Collapse
Affiliation(s)
- Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaire, IBCG, CNRS Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France.
| | | | | |
Collapse
|