1
|
Wang Z, Hou X, Shang G, Deng G, Luo K, Peng M. Exploring Fatty Acid β-Oxidation Pathways in Bacteria: From General Mechanisms to DSF Signaling and Pathogenicity in Xanthomonas. Curr Microbiol 2024; 81:336. [PMID: 39223428 DOI: 10.1007/s00284-024-03866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Fatty acids (FAs) participate in extensive physiological activities such as energy metabolism, transcriptional control, and cell signaling. In bacteria, FAs are degraded and utilized through various metabolic pathways, including β-oxidation. Over the past ten years, significant progress has been made in studying FA oxidation in bacteria, particularly in E. coli, where the processes and roles of FA β-oxidation have been comprehensively elucidated. Here, we provide an update on the new research achievements in FAs β-oxidation in bacteria. Using Xanthomonas as an example, we introduce the oxidation process and regulation mechanism of the DSF-family quorum sensing signal. Based on current findings, we propose the specific enzymes required for β-oxidation of several specific FAs. Finally, we discuss the future outlook on scientific issues that remain to be addressed. This paper supplies theoretical guidance for further study of the FA β-oxidation pathway with particular emphasis on its connection to the pathogenicity mechanisms of bacteria.
Collapse
Affiliation(s)
- Zhiyong Wang
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Xue Hou
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Guohui Shang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangai Deng
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Kai Luo
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Mu Peng
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
2
|
Ji L, Jiang T, Zhao X, Cai D, Hua K, Du P, Chen Y, Xie J. Mycobacterium tuberculosis Rv0494 Protein Contributes to Mycobacterial Persistence. Infect Drug Resist 2023; 16:4755-4762. [PMID: 37501888 PMCID: PMC10370413 DOI: 10.2147/idr.s419914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Purpose Fatty acid metabolism plays an important role in the survival and pathogenesis of Mycobacterium tuberculosis. During dormancy, lipids are considered to be the main source of energy. A previous study found that Rv0494 is a starvation-inducible, lipid-responsive transcriptional regulator. However, the role of Rv0494 in bacterial persister survival has not been studied. Methods We constructed a Rv0494 deletion mutant strain of Mycobacterium tuberculosis H37Rv and evaluated the susceptibility of the mutant strain to antibiotics using a persistence test. Results We found that mutations in Rv0494 lead to survival defects of persisters, which reflected in increased sensitivity to isoniazid. Conclusion We conclude that Rv0494 is important for persister survival and may serve as a good target for developing new antibiotics that kill persister bacteria for improved treatment of persistent bacterial infections.
Collapse
Affiliation(s)
- Lei Ji
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Tingting Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xin Zhao
- Department of International Registration, Ustar Biotechnologies (Hangzhou) Ltd, Hangzhou, Zhejiang, People’s Republic of China
| | - Damin Cai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Kouzhen Hua
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Peng Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuanyuan Chen
- Tuberculosis Diagnosis and Treatment Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Chongqing, People’s Republic of China
| |
Collapse
|
3
|
Lu K, Li Y, Chen R, Yang H, Wang Y, Xiong W, Xu F, Yuan Q, Liang H, Xiao X, Huang R, Chen Z, Tian C, Wang S. Pathogenic mechanism of Vibrio vulnificus infection. Future Microbiol 2023; 18:373-383. [PMID: 37158065 DOI: 10.2217/fmb-2022-0243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Vibrio vulnificus is a fatal, opportunistic human pathogen transmitted through the consumption of raw/undercooked seafood or direct contact. V. vulnificus infection progresses rapidly and has severe consequences; some cases may require amputation or result in death. Growing evidence suggests that V. vulnificus virulence factors and regulators play a large role in disease progression, involving host resistance, cellular damage, iron acquisition, virulence regulation and host immune responses. Its disease mechanism remains largely undefined. Further evaluation of pathogenic mechanisms is important for selecting appropriate measures to prevent and treat V. vulnificus infection. In this review, the possible pathogenesis of V. vulnificus infection is described to provide a reference for treatment and prevention.
Collapse
Affiliation(s)
- Kun Lu
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Yang Li
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Rui Chen
- Department of Orthopedics, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Hua Yang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Yong Wang
- Hemodialysis Center, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Wei Xiong
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Fang Xu
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Qijun Yuan
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Haihui Liang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Xian Xiao
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Renqiang Huang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Zhipeng Chen
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Chunou Tian
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Songqing Wang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| |
Collapse
|
4
|
Fatty Acid Homeostasis Tunes Flagellar Motility by Activating Phase 2 Flagellin Expression, Contributing to Salmonella Gut Colonization. Infect Immun 2022; 90:e0018422. [PMID: 35652649 DOI: 10.1128/iai.00184-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-chain-fatty-acid (LCFA) metabolism is a fundamental cellular process in bacteria that is involved in lipid homeostasis, energy production, and infection. However, the role of LCFA metabolism in Salmonella enterica serovar Typhimurium (S. Tm) gut infection remains unclear. Here, using a murine gastroenteritis infection model, we demonstrate involvement of LCFA metabolism in S. Tm gut colonization. The LCFA metabolism-associated transcriptional regulator FadR contributes to S. Tm gut colonization. fadR deletion alters the gene expression profile and leads to aberrant flagellar motility of S. Tm. Colonization defects in the fadR mutant are attributable to altered swimming behavior characterized by less frequently smooth swimming, resulting from reduced expression of the phase 2 flagellin FljB. Notably, changes in lipid LCFA composition by fadR deletion lead to reduced expression of fljB, which is restored by exogenous LCFA. Therefore, LCFA homeostasis may maintain proper flagellar motility by activating fljB expression, contributing to S. Tm gut colonization. Our findings improve the understanding of the effect of luminal LCFA on the virulence of enteric pathogens.
Collapse
|
5
|
The Canonical Long-Chain Fatty Acid Sensing Machinery Processes Arachidonic Acid To Inhibit Virulence in Enterohemorrhagic Escherichia coli. mBio 2021; 12:mBio.03247-20. [PMID: 33468701 PMCID: PMC7845647 DOI: 10.1128/mbio.03247-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) play important roles in host immunity. Manipulation of lipid content in host tissues through diet or pharmacological interventions is associated with altered severity of various inflammatory diseases. The mammalian gastrointestinal tract is a complex biochemical organ that generates a diverse milieu of host- and microbe-derived metabolites. In this environment, bacterial pathogens sense and respond to specific stimuli, which are integrated into the regulation of their virulence programs. Previously, we identified the transcription factor FadR, a long-chain fatty acid (LCFA) acyl coenzyme A (acyl-CoA) sensor, as a novel virulence regulator in the human foodborne pathogen enterohemorrhagic Escherichia coli (EHEC). Here, we demonstrate that exogenous LCFAs directly inhibit the locus of enterocyte effacement (LEE) pathogenicity island in EHEC through sensing by FadR. Moreover, in addition to LCFAs that are 18 carbons in length or shorter, we introduce host-derived arachidonic acid (C20:4) as an additional LCFA that is recognized by the FadR system in EHEC. We show that arachidonic acid is processed by the acyl-CoA synthetase FadD, which permits binding to FadR and decreases FadR affinity for its target DNA sequences. This interaction enables the transcriptional regulation of FadR-responsive operons by arachidonic acid in EHEC, including the LEE. Finally, we show that arachidonic acid inhibits hallmarks of EHEC disease in a FadR-dependent manner, including EHEC attachment to epithelial cells and the formation of attaching and effacing lesions. Together, our findings delineate a molecular mechanism demonstrating how LCFAs can directly inhibit the virulence of an enteric bacterial pathogen. More broadly, our findings expand the repertoire of ligands sensed by the canonical LFCA sensing machinery in EHEC to include arachidonic acid, an important bioactive lipid that is ubiquitous within host environments.
Collapse
|
6
|
Cronan JE. The Escherichia coli FadR transcription factor: Too much of a good thing? Mol Microbiol 2020; 115:1080-1085. [PMID: 33283913 DOI: 10.1111/mmi.14663] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
Escherichia coli FadR is a transcription factor regulated by acyl-CoA thioester binding that optimizes fatty acid (FA) metabolism in response to environmental FAs. FadR represses the fad genes of FA degradation (β-oxidation) and activates the fab genes of FA synthesis thereby allowing E. coli to have its cake (acyl chains for phospholipid synthesis) and eat it (degrade acyl chains to acetyl-CoA). Acyl-CoA binding of FadR derepresses the transcription of the fad genes and cancels fab gene transcriptional activation. Activation of fab genes was thought restricted to the fabA and fabB genes of unsaturated FA synthesis, but FadR overproduction markedly increases yields of all FA acyl chains. Subsequently, almost all of the remaining fab genes were shown to be transcriptionally activated by FadR binding, but binding was very weak. Why are the low-affinity sites retained? What effects on cell physiology would result from their conversion to high-affinity sites (thereby mimicking FadR overproduction)? Investigations of E. coli cell size determinants showed that FA synthesis primarily determines E. coli cell size. Upon modest induction of FadR, cell size increases, but at the cost of growth rate and accumulation of intracellular membranes. Greater induction resulted in further growth rate decreases and abnormal cells. Hence, too much FadR is bad. FadR is extraordinarily conserved in γ-proteobacteria but has migrated. Mycobacterium tuberculosis encodes FadR orthologs one of which is functional in E. coli. Strikingly, the FadR theme of acyl-CoA-dependent transcriptional regulation is found in a different transcription factor family where two Bacillus species plus bacterial and archaeal thermophiles contain related proteins of similar function.
Collapse
Affiliation(s)
- John E Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
7
|
Allemann MN, Allen EE. Genetic regulation of the bacterial omega-3 polyunsaturated fatty acid biosynthesis pathway. J Bacteriol 2020; 202:JB.00050-20. [PMID: 32513681 PMCID: PMC8404712 DOI: 10.1128/jb.00050-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
A characteristic among many marine Gammaproteobacteria is the biosynthesis and incorporation of omega-3 polyunsaturated fatty acids into membrane phospholipids. The biosynthesis of eicosapentaenoic (EPA) and/or docosahexaenoic (DHA) acids is mediated by a polyketide/fatty acid synthase mechanism encoded by a set of five genes, pfaABCDE. This unique fatty acid synthesis pathway co-exists with the principal type II dissociated fatty acid synthesis pathway, which is responsible for the biosynthesis of core saturated, monounsaturated, and hydroxylated fatty acids used in phospholipid and lipid A biosynthesis. In this work, a genetic approach was undertaken to elucidate genetic regulation of the pfa genes in the model marine bacterium Photobacterium profundum SS9. Using a reporter gene fusion, we showed that expression of the pfa operon is down regulated in response to exogenous fatty acids, particularly long chain monounsaturated fatty acids. This regulation occurs independently of the canonical fatty acid regulators, FabR and FadR, present in P. profundum SS9. Transposon mutagenesis and screening of a library of mutants identified a novel transcriptional regulator, which we have designated pfaF, to be responsible for the observed regulation of the pfa operon in P. profundum SS9. Gel mobility shift and DNase I footprinting assays confirmed that PfaF binds the pfaA promoter and identified the PfaF binding site.Importance The production of long-chain omega-3 polyunsaturated fatty acids (PUFA) by marine Gammaproteobacteria, particularly those from deep-sea environments, has been known for decades. These unique fatty acids are produced by a polyketide-type mechanism and subsequently incorporated into the phospholipid membrane. While much research has focused on the biosynthesis genes, their products and the phylogenetic distribution of these gene clusters, no prior studies have detailed the genetic regulation of this pathway. This study describes how this pathway is regulated under various culture conditions and has identified and characterized a fatty acid responsive transcriptional regulator specific to PUFA biosynthesis.
Collapse
Affiliation(s)
- Marco N Allemann
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
8
|
Bouhlel Z, Arnold AA, Warschawski DE, Lemarchand K, Tremblay R, Marcotte I. Labelling strategy and membrane characterization of marine bacteria Vibrio splendidus by in vivo 2H NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:871-878. [DOI: 10.1016/j.bbamem.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/03/2019] [Accepted: 01/31/2019] [Indexed: 01/15/2023]
|
9
|
Yousuf S, Angara RK, Roy A, Gupta SK, Misra R, Ranjan A. Mce2R/Rv0586 of Mycobacterium tuberculosis is the functional homologue of FadR E. coli. MICROBIOLOGY-SGM 2018; 164:1133-1145. [PMID: 29993358 DOI: 10.1099/mic.0.000686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid metabolism is critical to Mycobacterium tuberculosis survival and infection. Unlike Escherichia coli, which has a single FadR, the M. tuberculosis genome encodes five proteins of the FadR sub-family. While the role of E. coli FadR as a regulator of fatty acid metabolism is well known, the definitive functions of M. tuberculosis FadR proteins are still under investigation. An interesting question about the M. tuberculosis FadRs remains open: which one of these proteins is the functional homologue of E. coli FadR? To address this, we have applied two different approaches. The first one was the bioinformatics approach and the second one was the classical molecular genetic approach involving complementation studies. Surprisingly, the results of these two approaches did not agree. Among the five M. tuberculosis FadRs, Rv0494 shared the highest sequence similarity with FadRE. coli and Rv0586 was the second best match. However, only Rv0586, but not Rv0494, could complement E. coli ∆fadR, indicating that Rv0586 is the M. tuberculosis functional homologue of FadRE. coli. Further studies showed that both regulators, Rv0494 and Rv0586, show similar responsiveness to LCFA, and have conserved critical residues for DNA binding. However, analysis of the operator site indicated that the inter-palindromic distance required for DNA binding differs for the two regulators. The differences in the binding site selection helped in the success of Rv0586 binding to fadB upstream over Rv0494 and may have played a critical role in complementing E. coli ∆fadR. Further, for the first time, we report the lipid-responsive nature of Rv0586.
Collapse
Affiliation(s)
- Suhail Yousuf
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rajendra Kumar Angara
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ajit Roy
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shailesh Kumar Gupta
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rohan Misra
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akash Ranjan
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
| |
Collapse
|
10
|
Gao R, Li D, Lin Y, Lin J, Xia X, Wang H, Bi L, Zhu J, Hassan B, Wang S, Feng Y. Structural and Functional Characterization of the FadR Regulatory Protein from Vibrio alginolyticus. Front Cell Infect Microbiol 2017; 7:513. [PMID: 29312893 PMCID: PMC5733061 DOI: 10.3389/fcimb.2017.00513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/29/2017] [Indexed: 02/03/2023] Open
Abstract
The structure of Vibrio cholerae FadR (VcFadR) complexed with the ligand oleoyl-CoA suggests an additional ligand-binding site. However, the fatty acid metabolism and its regulation is poorly addressed in Vibrio alginolyticus, a species closely-related to V. cholerae. Here, we show crystal structures of V. alginolyticus FadR (ValFadR) alone and its complex with the palmitoyl-CoA, a long-chain fatty acyl ligand different from the oleoyl-CoA occupied by VcFadR. Structural comparison indicates that both VcFadR and ValFadR consistently have an additional ligand-binding site (called site 2), which leads to more dramatic conformational-change of DNA-binding domain than that of the E. coli FadR (EcFadR). Isothermal titration calorimetry (ITC) analyses defines that the ligand-binding pattern of ValFadR (2:1) is distinct from that of EcFadR (1:1). Together with surface plasmon resonance (SPR), electrophoresis mobility shift assay (EMSA) demonstrates that ValFadR binds fabA, an important gene of unsaturated fatty acid (UFA) synthesis. The removal of fadR from V. cholerae attenuates fabA transcription and results in the unbalance of UFA/SFA incorporated into membrane phospholipids. Genetic complementation of the mutant version of fadR (Δ42, 136-177) lacking site 2 cannot restore the defective phenotypes of ΔfadR while the wild-type fadR gene and addition of exogenous oleate can restore them. Mice experiments reveals that VcFadR and its site 2 have roles in bacterial colonizing. Together, the results might represent an additional example that illustrates the Vibrio FadR-mediated lipid regulation and its role in pathogenesis.
Collapse
Affiliation(s)
- Rongsui Gao
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Defeng Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuan Lin
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingxia Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Xia
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Hui Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Lijun Bi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bachar Hassan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shihua Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youjun Feng
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
The Fatty Acid Regulator FadR Influences the Expression of the Virulence Cascade in the El Tor Biotype of Vibrio cholerae by Modulating the Levels of ToxT via Two Different Mechanisms. J Bacteriol 2017; 199:JB.00762-16. [PMID: 28115548 DOI: 10.1128/jb.00762-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/17/2017] [Indexed: 01/16/2023] Open
Abstract
FadR is a master regulator of fatty acid (FA) metabolism that coordinates the pathways of FA degradation and biosynthesis in enteric bacteria. We show here that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expression of the virulence cascade by influencing both the transcription and the posttranslational regulation of the master virulence regulator ToxT. FadR is a transcriptional regulator that represses the expression of genes involved in FA degradation, activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and also activates the expression of two operons involved in saturated FA (SFA) biosynthesis. Since FadR does not bind directly to the toxT promoter, we determined whether the regulation of any of its target genes indirectly influenced ToxT. This was accomplished by individually inserting a double point mutation into the FadR-binding site in the promoter of each target gene, thereby preventing their activation or repression. Although preventing FadR-mediated activation of fabA, which encodes the enzyme that carries out the first step in UFA biosynthesis, did not significantly influence either the transcription or the translation of ToxT, it reduced its levels and prevented virulence gene expression. In the mutant strain unable to carry out FadR-mediated activation of fabA, expressing fabA ectopically restored the levels of ToxT and virulence gene expression. Taken together, the results presented here indicate that V. cholerae FadR influences the virulence cascade in the El Tor biotype by modulating the levels of ToxT via two different mechanisms.IMPORTANCE Fatty acids (FAs) play important roles in membrane lipid homeostasis and energy metabolism in all organisms. In Vibrio cholerae, the causative agent of the acute intestinal disease cholera, they also influence virulence by binding into an N-terminal pocket of the master virulence regulator, ToxT, and modulating its activity. FadR is a transcription factor that coordinately controls the pathways of FA degradation and biosynthesis in enteric bacteria. This study identifies a new link between FA metabolism and virulence in the El Tor biotype by showing that FadR influences both the transcription and posttranslational regulation of the master virulence regulator ToxT by two distinct mechanisms.
Collapse
|
12
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
13
|
Rahman Z, Rashid N, Nawab J, Ilyas M, Sung BH, Kim SC. Escherichia coli as a fatty acid and biodiesel factory: current challenges and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12007-12018. [PMID: 26961532 DOI: 10.1007/s11356-016-6367-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Biodiesel has received widespread attention as a sustainable, environment-friendly, and alternative source of energy. It can be derived from plant, animal, and microbial organisms in the form of vegetable oil, fats, and lipids, respectively. However, biodiesel production from such sources is not economically feasible due to extensive downstream processes, such as trans-esterification and purification. To obtain cost-effective biodiesel, these bottlenecks need to be overcome. Escherichia coli, a model microorganism, has the potential to produce biodiesel directly from ligno-cellulosic sugars, bypassing trans-esterification. In this process, E. coli is engineered to produce biodiesel using metabolic engineering technology. The entire process of biodiesel production is carried out in a single microbial cell, bypassing the expensive downstream processing steps. This review focuses mainly on production of fatty acid and biodiesel in E. coli using metabolic engineering approaches. In the first part, we describe fatty acid biosynthesis in E. coli. In the second half, we discuss bottlenecks and strategies to enhance the production yield. A complete understanding of current developments in E. coli-based biodiesel production and pathway optimization strategies would reduce production costs for biofuels and plant-derived chemicals.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19130, Pakistan.
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
- Department of Microbiology, AWKUM, Mardan, Pakistan.
| | - Naim Rashid
- Department of Chemical Engineering, COMSATS, Lahore, Pakistan
| | - Javed Nawab
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19130, Pakistan
| | | | - Bong Hyun Sung
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
14
|
Transcriptional Repression of the VC2105 Protein by Vibrio FadR Suggests that It Is a New Auxiliary Member of the fad Regulon. Appl Environ Microbiol 2016; 82:2819-2832. [PMID: 26944841 DOI: 10.1128/aem.00293-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/25/2016] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Recently, our group along with others reported that the Vibrio FadR regulatory protein is unusual in that, unlike the prototypical fadR product of Escherichia coli, which has only one ligand-binding site, Vibrio FadR has two ligand-binding sites and represents a new mechanism for fatty acid sensing. The promoter region of the vc2105 gene, encoding a putative thioesterase, was mapped, and a putative FadR-binding site (AA CTG GTA AGA GCA CTT) was proposed. Different versions of the FadR regulatory proteins were prepared and purified to homogeneity. Both electrophoretic mobility shift assay (EMSA) and surface plasmon resonance (SPR) determined the direct interaction of the vc2105 gene with FadR proteins of various origins. Further, EMSAs illustrated that the addition of long-chain acyl-coenzyme A (CoA) species efficiently dissociates the vc2105 promoter from the FadR regulator. The expression level of the Vibrio cholerae vc2105 gene was elevated 2- to 3-fold in a fadR null mutant strain, validating that FadR is a repressor for the vc2105 gene. The β-galactosidase activity of a vc2105-lacZ transcriptional fusion was increased over 2-fold upon supplementation of growth medium with oleic acid. Unlike the fadD gene, a member of the Vibrio fad regulon, the VC2105 protein played no role in bacterial growth and virulence-associated gene expression of ctxAB (cholera toxin A/B) and tcpA (toxin coregulated pilus A). Given that the transcriptional regulation of vc2105 fits the criteria for fatty acid degradation (fad) genes, we suggested that it is a new member of the Vibrio fad regulon. IMPORTANCE The Vibrio FadR regulator is unusual in that it has two ligand-binding sites. Different versions of the FadR regulatory proteins were prepared and characterized in vitro and in vivo. An auxiliary fad gene (vc2105) from Vibrio was proposed that encodes a putative thioesterase and has a predicted FadR-binding site (AAC TGG TA A GAG CAC TT). The function of this putative binding site was proved using both EMSA and SPR. Further in vitro and in vivo experiments revealed that the Vibrio FadR is a repressor for the vc2105 gene. Unlike fadD, a member of the Vibrio fad regulon, VC2105 played no role in bacterial growth and expression of the two virulence-associated genes (ctxAB and tcpA). Therefore, since transcriptional regulation of vc2105 fits the criteria for fad genes, it seems likely that vc2105 acts as a new auxiliary member of the Vibrio fad regulon.
Collapse
|
15
|
Yousuf S, Angara R, Vindal V, Ranjan A. Rv0494 is a starvation-inducible, auto-regulatory FadR-like regulator from Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2014; 161:463-76. [PMID: 25527627 DOI: 10.1099/mic.0.000017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fatty acid metabolism plays an important role in the survival and pathogenesis of Mycobacterium tuberculosis. Lipids are assumed to be the major source of energy during dormancy. Here, we report the characterization of a starvation-inducible, lipid-responsive transcriptional regulator, Rv0494, divergently transcribed from the Rv0493c probable operon. The striking difference in the transcriptional regulatory apparatus between mycobacteria and other well-studied organisms, such as Escherichia coli, is the organization of mycobacterial promoters. Mycobacterial promoters have diverse architectures and most of these promoters function inefficiently in E. coli. In this study, we characterized the promoter elements of Rv0494 along with the sigma factors required for transcription initiation. Rv0494 promoter activity increased under nutrient starvation conditions and was transcribed via two promoters: the promoter proximal to the translational start site was active under standard growth conditions, whilst both promoters contributed to the increased activity seen during starvation, with the major contribution from the distal promoter. Furthermore, Rv0494 translation initiated at a codon located 9 bp downstream of the annotated start codon. Rv0494 bound to its upstream sequence to auto-regulate its own expression; this binding was responsive to long-chain fatty acyl-CoA molecules. We further report Rv0494-mediated transcriptional regulation of the Rv2326c gene - a probable transmembrane ATP-binding transporter encoding gene.
Collapse
Affiliation(s)
- Suhail Yousuf
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500001, India
| | - Rajendra Angara
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500001, India
| | - Vaibhav Vindal
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500001, India Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500001, India
| |
Collapse
|
16
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
17
|
Physiological levels of glucose induce membrane vesicle secretion and affect the lipid and protein composition of Yersinia pestis cell surfaces. Appl Environ Microbiol 2013; 79:4509-14. [PMID: 23686263 DOI: 10.1128/aem.00675-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis grown with physiologic glucose increased cell autoaggregation and deposition of extracellular material, including membrane vesicles. Membranes were characterized, and glucose had significant effects on protein, lipid, and carbohydrate profiles. These effects were independent of temperature and the biofilm-related locus pgm and were not observed in Yersinia pseudotuberculosis.
Collapse
|
18
|
Salzman V, Mondino S, Sala C, Cole ST, Gago G, Gramajo H. Transcriptional regulation of lipid homeostasis in mycobacteria. Mol Microbiol 2010; 78:64-77. [DOI: 10.1111/j.1365-2958.2010.07313.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Arabolaza A, D'Angelo M, Comba S, Gramajo H. FasR, a novel class of transcriptional regulator, governs the activation of fatty acid biosynthesis genes in Streptomyces coelicolor. Mol Microbiol 2010; 78:47-63. [PMID: 20624224 DOI: 10.1111/j.1365-2958.2010.07274.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is essential for bacterial survival and adaptation to different environments. The regulation of fatty acid biosynthesis is therefore crucial for maintaining the correct composition and biophysical properties of cell membranes. This regulation implicates a biochemical control of key enzymes and a transcriptional regulation of genes involved in lipid metabolism. In Streptomyces coelicolor we found that control of lipid homeostasis is accomplished, at least in part, through the transcriptional regulation of fatty acid biosynthetic genes. A novel transcription factor, FasR (SCO2386), controls expression of fabDHPF operon and lies immediately upstream of fabD, in a cluster of genes that is highly conserved within actinomycetes. Disruption of fasR resulted in a mutant strain, with severe growth defects and a delay in the timing of morphological and physiological differentiation. Expression of fab genes was downregulated in the fasR mutant, indicating a role for this transcription factor as an activator. Consequently, the mutant showed a significant drop in fatty acid synthase activity and triacylglyceride accumulation. FasR binds specifically to a DNA sequence containing fabDHPF promoter region, both in vivo and in vitro. These data provide the first example of positive regulation of genes encoding core proteins of saturated fatty acid synthase complex.
Collapse
Affiliation(s)
- Ana Arabolaza
- Microbiology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2002LRK) Rosario, Argentina
| | | | | | | |
Collapse
|
20
|
Roles of RseB, sigmaE, and DegP in virulence and phase variation of colony morphotype of Vibrio vulnificus. Infect Immun 2009; 77:3768-81. [PMID: 19564391 DOI: 10.1128/iai.00205-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is an estuarine bacterium capable of causing serious and often fatal wound infections and primary septicemia. We used alkaline phosphatase insertion mutagenesis to identify genes necessary for the virulence of this pathogen. One mutant had an in-frame fusion of 'phoA to the gene encoding RseB, a periplasmic negative regulator of the alternative sigma factor sigma(E). sigma(E) controls an extensive regulon involved in responding to cell envelope stresses. Colonies of the rseB mutant were less opaque than wild-type colonies and underwent phase variation between translucent and opaque morphologies. rseB mutants were attenuated for virulence in subcutaneously inoculated iron-dextran-treated mice. To obtain insight into the role of rseB and the extracytoplasmic stress response in V. vulnificus, mutants with defined mutations in rseB and two important members of the extracytoplasmic stress regulon, rpoE and degP, were constructed for analysis of virulence, colony morphology, and stress-associated phenotypes. Deletion of rseB caused reversible phase variation in the colony morphotype that was associated with extracellular polysaccharides. Translucent and transparent morphotype strains were attenuated for virulence. rpoE and degP deletion mutants were sensitive to membrane-perturbing agents and heat but were not significantly attenuated for V. vulnificus virulence in mice. These results reveal complex relationships between regulation of the extracytoplasmic stress response, exopolysaccharides, and the virulence of V. vulnificus.
Collapse
|
21
|
USER friendly cloning coupled with chitin-based natural transformation enables rapid mutagenesis of Vibrio vulnificus. Appl Environ Microbiol 2009; 75:4936-49. [PMID: 19502446 DOI: 10.1128/aem.02564-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a bacterial contaminant of shellfish and causes highly lethal sepsis and destructive wound infections. A definitive identification of virulence factors using the molecular version of Koch's postulates has been hindered because of difficulties in performing molecular genetic analysis of this opportunistic pathogen. For example, conjugation is required to introduce plasmid DNA, and allelic exchange suicide vectors that rely on sucrose sensitivity for counterselection are not efficient. We therefore incorporated USER friendly cloning techniques into pCVD442-based allelic exchange suicide vectors and other expression vectors to enable the rapid and efficient capture of PCR amplicons. Upstream and downstream DNA sequences flanking genes targeted for deletion were cloned together in a single step. Based on results from Vibrio cholerae, we determined that V. vulnificus becomes naturally transformable with linear DNA during growth on chitin in the form of crab shells. By combining USER friendly cloning and chitin-based transformation, we rapidly and efficiently produced targeted deletions in V. vulnificus, bypassing the need for two-step, suicide vector-mediated allelic exchange. These methods were used to examine the roles of two flagellin loci (flaCDE and flaFBA), the motAB genes, and the cheY-3 gene in motility and to create deletions of rtxC, rtxA1, and fadR. Additionally, chitin-based transformation was useful in moving antibiotic resistance-labeled mutations between V. vulnificus strains by simply coculturing the strains on crab shells. The methods and genetic tools that we developed should be of general use to those performing molecular genetic analysis and manipulation of other gram-negative bacteria.
Collapse
|
22
|
Liu M, Naka H, Crosa JH. HlyU acts as an H-NS antirepressor in the regulation of the RTX toxin gene essential for the virulence of the human pathogen Vibrio vulnificus CMCP6. Mol Microbiol 2009; 72:491-505. [PMID: 19320834 PMCID: PMC2704492 DOI: 10.1111/j.1365-2958.2009.06664.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Vibrio vulnificus, HlyU upregulates the expression of the large RTX toxin gene. In this work we identified the binding site of HlyU to -417 to -376 bp of the rtxA1 operon transcription start site. lacZ fusions for a series of progressive deletions from the rtxA1 operon promoter showed that transcriptional activity increased independently of HlyU when its binding site was absent. Thus HlyU must regulate the rtxA1 operon expression by antagonizing a negative regulator. Concomitantly we found that an hns mutant resulted in an increase in the expression of the rtxA1 operon genes. Multiple copies of HlyU can increase the promoter activity only in the presence of H-NS underscoring the hypothesis that HlyU must alleviate the repression by this protein. H-NS binds to a region that extends upstream and downstream of the rtxA1 operon promoter. In the upstream region it binds to five AT-rich sites of which two overlap the HlyU binding site. Competitive footprinting and gel shift data demonstrate HlyU's higher affinity as compared with H-NS resulting in the de-repression and a corresponding increased expression of the rtxA1 operon.
Collapse
Affiliation(s)
- Moqing Liu
- Department of Molecular Microbiology and Immunology Oregon Health and Science University
| | - Hiroaki Naka
- Department of Molecular Microbiology and Immunology Oregon Health and Science University
| | - Jorge H. Crosa
- Department of Molecular Microbiology and Immunology Oregon Health and Science University
| |
Collapse
|
23
|
Zhang YM, Rock CO. Transcriptional regulation in bacterial membrane lipid synthesis. J Lipid Res 2008; 50 Suppl:S115-9. [PMID: 18941141 DOI: 10.1194/jlr.r800046-jlr200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review covers the main transcriptional mechanisms that control membrane phospholipid synthesis in bacteria. The fatty acid components are the most energetically expensive modules to produce; thus, the regulation of fatty acid production is very tightly controlled to match the growth rate of cells. Gram-negative and Gram-positive bacteria have evolved different structural classes of regulators to control the genes required for fatty acid biosynthesis. Also, there are other transcriptional regulators that allow the cells to alter the structure of fatty acids in existing phospholipid molecules or to modify the structures of exogenous fatty acids prior to their incorporation into the bilayer. A major thrust for future research in this area is the identification of the ligands or effectors that control the DNA binding activity of the transcriptional regulators of fatty acid biosynthesis. With the exception of malonyl-CoA regulation of FapR from Bacillus subtilis and long-chain acyl-CoA regulation of FadR from Escherichia coli and DesT from Pseudomonas aeruginosa, the identity of these intracellular regulators remains unknown.
Collapse
Affiliation(s)
- Yong-Mei Zhang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|