1
|
Echeverría-Bugueño M, Hernández M, Avendaño-Herrera R. Proteomic Analysis of the Fish Pathogen Vibrio ordalii Strain Vo-LM-18 and Its Outer Membrane Vesicles. Animals (Basel) 2024; 14:3598. [PMID: 39765502 PMCID: PMC11672436 DOI: 10.3390/ani14243598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Vibrio ordalii is the causative agent of atypical vibriosis in salmonids cultured in Chile. While extensive research provides insights into V. ordalii through phenotypic, antigenic, and genetic typing, as well as various virulence mechanisms, proteomic characterization remains largely unexplored. This study aimed to advance the proteomic knowledge of Chilean V. ordalii Vo-LM-18 and its OMVs, which have known virulence. Using Nano-UHPLC-LC-MS/MS, we identified 2242 proteins and 1755 proteins in its OMVs. Of these, 644 unique proteins were detected in V. ordalii Vo-LM-18, namely 156 unique proteins in its OMVs and 1596 shared proteins. The major categories for the OMVs were like those in the bacteria (i.e., cytoplasmic and cytoplasmic membrane proteins). Functional annotation identified 37 biological pathways in V. ordalii Vo-LM-18 and 28 in its OMVs. Proteins associated with transport, transcription, and virulence were predominant in both. Evident differences in protein expression were found. OMVs expressed a higher number of virulence-associated proteins, including those related to iron- and heme-uptake mechanisms. Notable pathways in the bacteria included flagellum assembly, heme group-associated proteins, and protein biosynthesis. This proteomic analysis is the first to detect the RTX toxin in a V. ordalii strain (Vo-LM-18) and its vesicles. Our results highlight the crucial role of OMVs in the pathogenesis and adaptation of V. ordalii, suggesting use as potential diagnostic biomarkers and therapeutic targets for bacterial infections.
Collapse
Affiliation(s)
- Macarena Echeverría-Bugueño
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar 2531015, Chile;
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar 2531015, Chile
| | - Mauricio Hernández
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz, Concepción 4133515, Chile;
| | - Ruben Avendaño-Herrera
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar 2531015, Chile;
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar 2531015, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay 2480055, Chile
| |
Collapse
|
2
|
Ge R, Zhao H, Tang Q, Chandarajoti K, Bai H, Wang X, Zhang K, Ye W, Han X, Wang C, Zhou W. A novel α-mangostin derivative synergistic to antibiotics against MRSA with unique mechanisms. Microbiol Spectr 2024; 12:e0163124. [PMID: 39508612 PMCID: PMC11619392 DOI: 10.1128/spectrum.01631-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains a leading cause of hospital-acquired infections, often linked to complicated treatments, increased mortality risk, and significant cost burdens. Several antibacterial agents have been developed to address MRSA resistance. In this study, potential agents to combat MRSA resistance were explored, with the antibacterial activity of synthesized α-mangostin (α-MG) derivatives being evaluated alongside investigations into their cellular mechanisms against MRSA2. α-MG-4, featuring an allyl group at C3 of the lead compound α-MG, restored the sensitivity of MRSA2 to penicillin, enrofloxacin, and gentamicin, while also demonstrating improved safety profiles. Although α-MG-4 alone was ineffective against MRSA2, it exhibited an optimal synergistic ratio in vitro when combined with these antibiotics. This significant synergistic antibacterial effect was further confirmed in vivo using a mouse skin abscess model. Additionally, the synergistic mechanisms revealed that α-MG-4 was associated with changes in membrane permeability and inhibition of the MepA and NorA genes, which encode the efflux pumps of MRSA2. α-MG-4 also inhibited PBP2a expression, potentially by occupying a crucial binding site in a dose-dependent manner.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA)'s resistance to multiple antibiotics poses significant health and safety concerns. A novel α-mangostin (α-MG) derivative, α-MG-4, was first identified as a xanthone-based PBP2a inhibitor that reverses MRSA2 resistance to penicillin. The synergistic antibacterial effects of α-MG-4 were linked to increased cell membrane permeability and the inhibition of genes involved in efflux pump function.
Collapse
Affiliation(s)
- Rile Ge
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Han Bai
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
3
|
Feng Y, Wang J, Fan W, Huang B, Qin Z, Tian Z, Geng Y, Huang X, Ouyang P, Chen D, Lai W. Exploitation of multiple host-derived nutrients by the yellow catfish epidermal environment facilitates Vibrio mimicus to sustain infection potency and susceptibility. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109707. [PMID: 38885802 DOI: 10.1016/j.fsi.2024.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Infection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.
Collapse
Affiliation(s)
- Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Jiao Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Wei Fan
- NeiJiang Academy of Agricultural Sciences, Neijiang, Sichuan, 641000, China
| | - Bowen Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Zhenyang Qin
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| |
Collapse
|
4
|
Vaval Taylor DM, Xayarath B, Freitag NE. Two Permeases Associated with the Multifunctional CtaP Cysteine Transport System in Listeria monocytogenes Play Distinct Roles in Pathogenesis. Microbiol Spectr 2023; 11:e0331722. [PMID: 37199604 PMCID: PMC10269559 DOI: 10.1128/spectrum.03317-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 04/05/2023] [Indexed: 05/19/2023] Open
Abstract
The soil-dwelling bacterium Listeria monocytogenes survives a multitude of conditions when residing in the outside environment and as a pathogen within host cells. Key to survival within the infected mammalian host is the expression of bacterial gene products necessary for nutrient acquisition. Similar to many bacteria, L. monocytogenes uses peptide import to acquire amino acids. Peptide transport systems play an important role in nutrient uptake as well as in additional functions that include bacterial quorum sensing and signal transduction, recycling of peptidoglycan fragments, adherence to eukaryotic cells, and alterations in antibiotic susceptibility. It has been previously described that CtaP, encoded by lmo0135, is a multifunctional protein associated with activities that include cysteine transport, resistance to acid, membrane integrity, and bacterial adherence to host cells. ctaP is located next to two genes predicted to encode membrane-bound permeases lmo0136 and lmo0137, termed CtpP1 and CtpP2, respectively. Here, we show that CtpP1 and CtpP2 are required for bacterial growth in the presence of low concentrations of cysteine and for virulence in mouse infection models. Taken together, the data identify distinct nonoverlapping roles for two related permeases that are important for the growth and survival of L. monocytogenes within host cells. IMPORTANCE Bacterial peptide transport systems are important for nutrient uptake and may additionally function in a variety of other roles, including bacterial communication, signal transduction, and bacterial adherence to eukaryotic cells. Peptide transport systems often consist of a substrate-binding protein associated with a membrane-spanning permease. The environmental bacterial pathogen Listeria monocytogenes uses the substrate-binding protein CtaP not only for cysteine transport but also for resistance to acid, maintenance of membrane integrity, and bacterial adherence to host cells. In this study, we demonstrate complementary yet distinct functional roles for two membrane permeases, CtpP1 and CtpP2, that are encoded by genes linked to ctaP and that contribute to bacterial growth, invasion, and pathogenicity.
Collapse
Affiliation(s)
- Diandra M. Vaval Taylor
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Bobbi Xayarath
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nancy E. Freitag
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Enhanced Hemolytic Activity of Mesophilic Aeromonas salmonicida SRW-OG1 Is Brought about by Elevated Temperatures. Microorganisms 2022; 10:microorganisms10102033. [PMID: 36296309 PMCID: PMC9609485 DOI: 10.3390/microorganisms10102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas salmonicida is a well-known cold-water pathogenic bacterium. Previously, we reported the first isolation of pathogenic A. salmonicida from diseased Epinephelus coioides, a kind of warm-water fish, and it was proved to be a putative mesophilic strain with potent pathogenicity to humans. In order to investigate the mechanisms underlying mesophilic growth ability and virulence, the transcriptome of A. salmonicida SRW-OG1 at 18, 28, and 37 °C was analyzed. The transcriptome of A. salmonicida SRW-OG1 at different temperatures showed a clear separation boundary, which might provide valuable information for the temperature adaptation and virulence regulation of A. salmonicida SRW-OG1. Interestingly, aerA and hlyA, the hemolytic genes encoding aerolysin and hemolysin, were found to be significantly up-regulated at 28 and 37 °C. Since aerolysin and hemolysin are the most well-known and -characterized virulence factors of pathogenic Aeromonas strains, the induction of aerA and hlyA was associated with the mesophilic virulence. Further study proved that the extracellular products (ECPs) purchased from A. salmonicida SRW-OG1 cultured at 28 and 37 °C showed elevated hemolytic activity and virulence than those at 18 °C. Moreover, the silence of aerA and hlyA led to significantly decreased hemolysis and virulence. Taken together, our results revealed that the mesophilic virulence of A. salmonicida SRW-OG1 might be due to the enhanced expression of aerA and hlyA induced by elevated temperatures.
Collapse
|
6
|
|
7
|
Ballal M, Shetty V, Bangera SR, Prabhu M, Umakanth S. Vibrio furnissii, an emerging pathogen causing acute gastroenteritis: a Case Report. JMM Case Rep 2017; 4:e005111. [PMID: 29114393 PMCID: PMC5643000 DOI: 10.1099/jmmcr.0.005111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/18/2017] [Indexed: 11/25/2022] Open
Abstract
Introduction.Vibrio furnissii is a motile, Gram-negative, oxidase-positive, halophilic bacteria first defined in 1977. It is ubiquitously present in marine environments and is one of the 11 non-cholera Vibrio species pathogenic in humans, which can lead to human gastroenteritis and extra-intestinal manifestations. Case presentation. A 73-year-old female patient was admitted to the hospital with acute gastroenteritis after consumption of seafood, which later by microbiological investigations was confirmed as Vibrio furnissii, a member of the family Vibrionaceae. The patient was treated with oral doxycycline and ciprofloxacin. Conclusion.V. furnissii, an emerging pathogen known for quite some time as an aetiological agent responsible, for acute gastroenteritis cases yet to get more clinical attention. Descriptions of putative virulence factors of this pathogen are limited, and in-depth studies on the pathogenesis of V. furnissii need to be established.
Collapse
Affiliation(s)
- Mamatha Ballal
- Enteric Diseases Division, Central Research Lab, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Vignesh Shetty
- Enteric Diseases Division, Central Research Lab, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Sohan Rodney Bangera
- Enteric Diseases Division, Central Research Lab, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Mukhyaprana Prabhu
- Department of Medicine, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Shashikiran Umakanth
- Department of Medicine, Dr. TMA Pai Hospital, MelakaManipal Medical College, Manipal University, Udupi, Manipal, Karnataka, India
| |
Collapse
|
8
|
Liu W, Huang L, Su Y, Qin Y, Zhao L, Yan Q. Contributions of the oligopeptide permeases in multistep of Vibrio alginolyticus pathogenesis. Microbiologyopen 2017; 6. [PMID: 28714216 PMCID: PMC5635161 DOI: 10.1002/mbo3.511] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/14/2023] Open
Abstract
Vibrio alginolyticus has been associated with several diseases of cultivated marine animals, and has led to considerable economic losses. The oligopeptide permease (Opp) has been proven to play a variety of important roles in nutrition and virulence in several bacteria. In our previous research, the opp gene cluster was identified in Vibrio alginolyticus with transcriptome sequence, which also indicated that the Opp system might play roles in the regulation of adhesion. In this study, the relationship between V. alginolyticus virulence and the opp gene cluster was determined using gene silencing followed by RT‐qPCR, in vitro adhesion assay, growth curves detection in the presence of glutathione (GSH) as a toxic substrate, hemolysis assay, biofilm assay, and artificial infection. Silencing these genes led to deficiencies in adhesion, peptide internalization, biofilm production, hemolytic activity, and virulence. The expression levels of hapr, hapa, tlh, and hlya, which are important genes closely related to the hemolytic activity of Vibrio, were significantly downregulated in all of the RNAi groups. Furthermore, the expression of oppA, oppB, oppC, oppD, and oppF was significantly influenced by temperature, starvation, and pH. These results indicate that (1) oppABCDF contributed in multistep of V. alginolyticus pathogenesis, including adhesion, biofilm production, and hemolytic activity; (2) oppABCDF was sensitive to different temperatures, changes in pH, and increased starvation time.
Collapse
Affiliation(s)
- Wenjia Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
9
|
Economopoulou A, Chochlakis D, Almpan MA, Sandalakis V, Maraki S, Tselentis Y, Psaroulaki A. Environmental investigation for the presence of Vibrio species following a case of severe gastroenteritis in a touristic island. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4835-4840. [PMID: 27987123 DOI: 10.1007/s11356-016-8231-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Global changes have caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring during episodes of unusually warm weather. Similar patterns were also observed in Vibrio-associated diseases affecting marine organisms such as fish, bivalves, and corals. Following a possible human case of infection due to V. cholerae in the island of Kos (eastern Aegean, Greece), environmental samples were collected and tested for the presence of Vibrio species. Using chromogenic agar and MALDI-TOF MS, V. parahaemolyticus, V. vulnificus V. furnisii, V. alginolyticus, and V. fluvialis were isolated and/or identified. The presence of V. cholerae was established by PCR-sequencing analysis only. Following the susceptibility testing of the Vibrio isolates, only one, V. furnisii, showed intermediate resistance to ciprofloxacin. The rest of the isolates were susceptible to all antibiotics tested. The presence of Vibrio species in aquatic samples reveals potential dangers due to exposure to contaminated seawaters.
Collapse
Affiliation(s)
| | - Dimosthenis Chochlakis
- Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine, University of Crete, 71100, Heraklion, Crete, Greece
- Regional Laboratory of Public Health of Crete, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Vassilios Sandalakis
- Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine, University of Crete, 71100, Heraklion, Crete, Greece
- Regional Laboratory of Public Health of Crete, School of Medicine, University of Crete, Heraklion, Greece
| | - Sofia Maraki
- Department of Clinical Microbiology, Parasitology, Zoonoses and Geographical Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Yannis Tselentis
- Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine, University of Crete, 71100, Heraklion, Crete, Greece
| | - Anna Psaroulaki
- Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine, University of Crete, 71100, Heraklion, Crete, Greece.
- Regional Laboratory of Public Health of Crete, School of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
10
|
Hegde S, Zimmermann M, Flöck M, Brunthaler R, Spergser J, Rosengarten R, Chopra-Dewasthaly R. Genetic loci of Mycoplasma agalactiae involved in systemic spreading during experimental intramammary infection of sheep. Vet Res 2016; 47:106. [PMID: 27765069 PMCID: PMC5073455 DOI: 10.1186/s13567-016-0387-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
Mycoplasmas are amongst the most successful pathogens of both humans and animals yet the molecular basis of mycoplasma pathogenesis is poorly understood. This is partly due to the lack of classical virulence factors and little similarity to common bacterial pathogenic determinants. Using Mycoplasma agalactiae as a model we initiated research in this direction by screening a transposon mutant library in the natural sheep host using a negative selection method. Having successfully identified putative factors involved in the colonization of local infection and lymphogenic sites, the current study assessed mutants unable to spread systemically in sheep after experimental intramammary infection. Analysis of distant body sites for complete absence of mutants via SSM PCR revealed that additional set of genes, such as pdhB, oppC, oppB, gtsB, MAG1890, MAG5520 and MAG3650 are required for systemic spreading apart from those that were necessary for initial colonization. Additional in vitro studies with the mutants absent at these systemic sites confirmed the potential role of some of the respective gene products concerning their interaction with host cells. Mutants of pdhB, oppC and MAG4460 exhibited significantly slower growth in the presence of HeLa cells in MEM medium. This first attempt to identify genes exclusively required for systemic spreading provides a basis for further in-depth research to understand the exact mechanism of chronicity and persistence of M. agalactiae.
Collapse
Affiliation(s)
- Shivanand Hegde
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Martina Zimmermann
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Martina Flöck
- Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Rene Brunthaler
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Renate Rosengarten
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Rohini Chopra-Dewasthaly
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
11
|
Pletzer D, Lafon C, Braun Y, Köhler T, Page MGP, Mourez M, Weingart H. High-throughput screening of dipeptide utilization mediated by the ABC transporter DppBCDF and its substrate-binding proteins DppA1-A5 in Pseudomonas aeruginosa. PLoS One 2014; 9:e111311. [PMID: 25338022 PMCID: PMC4206461 DOI: 10.1371/journal.pone.0111311] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/23/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, we show that the dppBCDF operon of Pseudomonas aeruginosa PA14 encodes an ABC transporter responsible for the utilization of di/tripeptides. The substrate specificity of ABC transporters is determined by its associated substrate-binding proteins (SBPs). Whereas in E. coli only one protein, DppA, determines the specificity of the transporter, five orthologous SBPs, DppA1-A5 are present in P. aeruginosa. Multiple SBPs might broaden the substrate specificity by increasing the transporter capacity. We utilized the Biolog phenotype MicroArray technology to investigate utilization of di/tripeptides in mutants lacking either the transport machinery or all of the five SBPs. This high-throughput method enabled us to screen hundreds of dipeptides with various side-chains, and subsequently, to determine the substrate profile of the dipeptide permease. The substrate spectrum of the SBPs was elucidated by complementation of a penta mutant, deficient of all five SBPs, with plasmids carrying individual SBPs. It became apparent that some dipeptides were utilized with different affinity for each SBP. We found that DppA2 shows the highest flexibility on substrate recognition and that DppA2 and DppA4 have a higher tendency to utilize tripeptides. DppA5 was not able to complement the penta mutant under our screening conditions. Phaseolotoxin, a toxic tripeptide inhibiting the enzyme ornithine carbamoyltransferase, is also transported into P. aeruginosa via the DppBCDF permease. The SBP DppA1, and with much greater extend DppA3, are responsible for delivering the toxin to the permease. Our results provide a first overview of the substrate pattern of the ABC dipeptide transport machinery in P. aeruginosa.
Collapse
Affiliation(s)
- Daniel Pletzer
- Jacobs University Bremen, School of Engineering and Science, Bremen, Germany
| | - Corinne Lafon
- Sanofi-Aventis R&D, Infectious Diseases Therapeutic Unit, Toulouse, France
| | - Yvonne Braun
- Jacobs University Bremen, School of Engineering and Science, Bremen, Germany
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine and Service of Infectious Diseases, University Hospital Geneva, Geneva, Switzerland
| | | | - Michael Mourez
- Sanofi-Aventis R&D, Infectious Diseases Therapeutic Unit, Toulouse, France
| | - Helge Weingart
- Jacobs University Bremen, School of Engineering and Science, Bremen, Germany
| |
Collapse
|
12
|
Danelishvili L, Stang B, Bermudez LE. Identification of Mycobacterium avium genes expressed during in vivo infection and the role of the oligopeptide transporter OppA in virulence. Microb Pathog 2014; 76:67-76. [PMID: 25245008 DOI: 10.1016/j.micpath.2014.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022]
Abstract
Mycobacterium avium causes disseminated disease in patients with AIDS and other immunosuppressive conditions and pulmonary infections in individuals with chronic lung diseases. Much still need to be learn about the mechanisms of M. avium pathogenesis. Using a mouse model of disseminated M. avium disease, we applied an in vivo expression technology system and identified M. avium genes up-regulated in different organs of mice during early stage of infection. The M. avium oppA gene, involved in an active transport of oligopeptides across the cell membrane, was found highly expressed in lung, liver and spleen of mice. Mutation in the transport domain of the oppA gene resulted in bacterial attenuation in both macrophages and in mice. Using protein-protein interaction assay, it was determined that two hypothetical small proteins, MAV_2941 (73aa) and MAV_4320 (45aa), interact with OppA. MAV_2941 was shown to be secreted by the bacterium into the macrophage cytoplasm. Mutations in MAV_2941 was associated with significant impairment of growth in macrophages. Understanding the mechanisms involved in the functions of MAV_2941 and MAV_4320 is warranted.
Collapse
Affiliation(s)
- Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Bernadette Stang
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA; Molecular and Cell Biology Program, College of Science, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
13
|
Lux TM, Lee R, Love J. Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii. Front Microbiol 2014; 5:435. [PMID: 25191313 PMCID: PMC4139957 DOI: 10.3389/fmicb.2014.00435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/31/2014] [Indexed: 11/15/2022] Open
Abstract
We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change.
Collapse
Affiliation(s)
- Thomas M Lux
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| | - Rob Lee
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| | - John Love
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| |
Collapse
|
14
|
|
15
|
Lin YR, Chen YL, Wang KB, Wu YF, Wang YK, Huang SC, Liu TA, Nayak M, Yip BS, Wu TK. The thermostable direct hemolysin from Grimontia hollisae causes acute hepatotoxicity in vitro and in vivo. PLoS One 2013; 8:e56226. [PMID: 23437095 PMCID: PMC3578849 DOI: 10.1371/journal.pone.0056226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/07/2013] [Indexed: 12/02/2022] Open
Abstract
Background G. hollisae thermostable direct hemolysin (Gh-TDH) is produced by most strains of G. hollisae. This toxin has been reported to be absorbed in the intestines in humans. Secondary liver injury might be caused by venous return of the toxin through the portal system. We aimed to firstly analyze the in vitro and in vivo hepatotoxicity of Gh-TDH. Methods Liver cells (primary human non-cancer cell and FL83B mouse cells) were treated and mice (BALB/c) were fed with this toxin to investigate its hepatotoxicity. Morphological examination and cytotoxicity assays using liver cells were also performed. Fluorescein isothiocyanate-conjugated toxin was used to analyze the localization of this protein in liver cells. Mice were subjected to liver function measurements and liver biopsies following toxin treatment and wild-type bacterial infection. PET (positron emission tomography)/CT (computed tomography) images were taken to assess liver metabolism during acute injury and recovery. Results The effect of hepatotoxicity was dose and time dependent. Cellular localization showed that the toxin was initially located around the cellular margins and subsequently entered the nucleus. Liver function measurements and liver biopsies of the mice following treatment with toxin or infection with wild-type Grimontia hollisae showed elevated levels of transaminases and damage to the periportal area, respectively. The PET/CT images revealed that the reconstruction of the liver continued for at least one week after exposure to a single dose of the toxin or bacterial infection. Conclusions The hepatotoxicity of Gh-TDH was firstly demonstrated. The damage was located in the periportal area of the liver, and the liver became functionally insufficient.
Collapse
Affiliation(s)
- Yan-Ren Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan, Republic of China
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Yao-Li Chen
- Transplant Medicine and Surgery Research Centre, Changhua Christian Hospital, Changhua, Taiwan, Republic of China
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Keh-Bin Wang
- Department of Nuclear Medicine, Kuang Tien General Hospital, Taichung, Taiwan, Republic of China
| | - Yi-Fang Wu
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China
| | - Yu-Kuo Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China
- * E-mail: (Y-KW); (B-SY); (T-KW)
| | - Sheng-Cih Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China
| | - Tzu-An Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, Republic of China
| | - Manoswini Nayak
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China
| | - Bak-Sau Yip
- Department of Neurology, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan, Republic of China
- * E-mail: (Y-KW); (B-SY); (T-KW)
| | - Tung-Kung Wu
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China
- * E-mail: (Y-KW); (B-SY); (T-KW)
| |
Collapse
|
16
|
The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity. Infect Immun 2012; 80:1794-802. [PMID: 22354023 DOI: 10.1128/iai.06277-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is the causative agent of the deadly diarrheal disease cholera. As part of its life cycle, V. cholerae persists in marine environments, where it forms surface-attached communities commonly described as biofilms. Evidence indicates that these biofilms constitute the infectious form of the pathogen during outbreaks. Previous work has shown that biofilm-derived V. cholerae cells, even when fully dispersed from the biofilm matrix, are vastly more infectious than planktonic (free-living) cells. Here, we sought to identify factors that contribute to biofilm-induced hyperinfectivity in V. cholerae, and we present evidence for one aspect of the molecular basis of this phenotype. We identified proteins upregulated during growth in biofilms and determined their contributions to the hyperinfectivity phenotype. We found that PstS2, the periplasmic component of the Pst2 phosphate uptake system, was enriched in biofilms. Another gene in the pst2 locus was transcriptionally upregulated in biofilms. Using the infant mouse model, we found that mutation of two pst2 components resulted in impaired colonization. Importantly, deletion of the Pst2 inner membrane complex caused a greater colonization defect after growth in a biofilm compared to shaking culture. Based on these data, we propose that V. cholerae cells in biofilms upregulate the Pst2 system and therefore gain an advantage upon entry into the host. Further characterization of factors contributing to biofilm-induced hyperinfectivity in V. cholerae will improve our understanding of the transmission of the bacteria from natural aquatic habitats to the human host.
Collapse
|
17
|
Yang Q, Han Y, Zhang XH. Detection of quorum sensing signal molecules in the family Vibrionaceae. J Appl Microbiol 2011; 110:1438-48. [PMID: 21395950 DOI: 10.1111/j.1365-2672.2011.04998.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this study was to detect the production of three kinds of quorum sensing (QS) signal molecules, i.e. the N-acyl-homoserine lactone (AHL), the autoinducer-2 (AI-2) and the cholerae autoinducer-1-like (CAI-1-like) molecules in 25 Vibrionaceae strains. METHODS AND RESULTS The QS signal molecules in 25 Vibrionaceae strains were detected with different biosensors. Except Salinivibrio costicola VIB288 and Vibrio natriegens VIB299, all the other 23 Vibrionaceae strains could produce one or more kinds of detectable QS signal molecules. Twenty-one of the 25 strains were found to produce AHL signal molecules by using Vibrio harveyi JMH612 and Agrobacterium tumefaciens KYC55 (pJZ372; pJZ384; pJZ410) as biosensors. The AHL fingerprints of eight strains were detected by thin-layer chromatography with Ag. tumefaciens KYC55, and two of them, i.e. V. mediterranei VIB296 and Aliivibrio logei VIB414 had a high diversity of AHLs. Twenty of the 25 strains were found to have the AI-2 activity, and the luxS gene sequences in 18 strains were proved to be conserved by PCR amplification and sequencing. Only six (five Vibrio strains and A. logei VIB414) of the 25 strains possessed the CAI-1-like activity. A. logei VIB414, V. campbellii VIB285, V. furnissii VIB293, V. pomeroyi LMG20537 and two V. harveyi strains VIB571 and VIB645 were found to produce all the three kinds of QS signal molecules. CONCLUSIONS The results indicated that the QS signal molecules, especially AHL and AI-2 molecules, were widespread in the family Vibrionaceae. SIGNIFICANCE AND IMPACT OF THE STUDY In response to a variety of environmental conditions and selection forces, the family Vibrionaceae produced QS signal molecules with great diversity and complexity. The knowledge we obtained from this study will be useful for further research on the roles of different QS signal molecules in this family.
Collapse
Affiliation(s)
- Q Yang
- Key Laboratory of Marine Genetics and Breeding for Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | | |
Collapse
|
18
|
Wang YK, Huang SC, Wu YF, Chen YC, Lin YL, Nayak M, Lin YR, Chen WH, Chiu YR, Li TTH, Yeh BS, Wu TK. Site-directed mutations of thermostable direct hemolysin from Grimontia hollisae alter its arrhenius effect and biophysical properties. Int J Biol Sci 2011; 7:333-46. [PMID: 21494434 PMCID: PMC3076507 DOI: 10.7150/ijbs.7.333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 03/23/2011] [Indexed: 11/23/2022] Open
Abstract
Recombinant thermostable direct hemolysin from Grimontia hollisae (Gh-rTDH) exhibits paradoxical Arrhenius effect, where the hemolytic activity is inactivated by heating at 60 °C but is reactivated by additional heating above 80 °C. This study investigated individual or collective mutational effect of Tyr53, Thr59, and Ser63 positions of Gh-rTDH on hemolytic activity, Arrhenius effect, and biophysical properties. In contrast to the Gh-rTDH wild-type (Gh-rTDH(WT)) protein, a 2-fold decrease of hemolytic activity and alteration of Arrhenius effect could be detected from the Gh-rTDH(Y53H/T59I) and Gh-rTDH(T59I/S63T) double-mutants and the Gh-rTDH(Y53H/T59I/S63T) triple-mutant. Differential scanning calorimetry results showed that the Arrhenius effect-loss and -retaining mutants consistently exhibited higher and lower endothermic transition temperatures, respectively, than that of the Gh-rTDH(WT). Circular dichroism measurements of Gh-rTDH(WT) and Gh-rTDH(mut) showed a conspicuous change from a β-sheet to α-helix structure around the endothermic transition temperature. Consistent with the observation is the conformational change of the proteins from native globular form into fibrillar form, as determined by Congo red experiments and transmission electron microscopy.
Collapse
Affiliation(s)
- Yu-Kuo Wang
- 1. Department of Biological Science and Technology, National Chiao Tung University, 30068, Hsin-Chu, Taiwan, Republic of China
| | - Sheng-Cih Huang
- 1. Department of Biological Science and Technology, National Chiao Tung University, 30068, Hsin-Chu, Taiwan, Republic of China
| | - Yi-Fang Wu
- 1. Department of Biological Science and Technology, National Chiao Tung University, 30068, Hsin-Chu, Taiwan, Republic of China
| | - Yu-Ching Chen
- 1. Department of Biological Science and Technology, National Chiao Tung University, 30068, Hsin-Chu, Taiwan, Republic of China
| | - Yen-Ling Lin
- 1. Department of Biological Science and Technology, National Chiao Tung University, 30068, Hsin-Chu, Taiwan, Republic of China
| | - Manoswini Nayak
- 1. Department of Biological Science and Technology, National Chiao Tung University, 30068, Hsin-Chu, Taiwan, Republic of China
| | - Yan Ren Lin
- 1. Department of Biological Science and Technology, National Chiao Tung University, 30068, Hsin-Chu, Taiwan, Republic of China
| | - Wen-Hung Chen
- 1. Department of Biological Science and Technology, National Chiao Tung University, 30068, Hsin-Chu, Taiwan, Republic of China
| | - Yi-Rong Chiu
- 1. Department of Biological Science and Technology, National Chiao Tung University, 30068, Hsin-Chu, Taiwan, Republic of China
| | - Thomas Tien-Hsiung Li
- 2. Institute of Biochemistry, National Chung Hsing University, 40227, Taichung, Taiwan, Republic of China
| | - Bo-Sou Yeh
- 3. Hsin Chu General Hospital, Department of Health, Executive Yuan, Taiwan, Republic of China
| | - Tung-Kung Wu
- 1. Department of Biological Science and Technology, National Chiao Tung University, 30068, Hsin-Chu, Taiwan, Republic of China
| |
Collapse
|
19
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
20
|
Yue X, Liu B, Sun L. Isolation and characterization of a virulent Vibrio sp. bacterium from clams (Meretrix meretrix) with mass mortality. J Invertebr Pathol 2010; 106:242-9. [PMID: 21055407 DOI: 10.1016/j.jip.2010.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 10/21/2010] [Accepted: 10/24/2010] [Indexed: 10/18/2022]
Abstract
MM5 was a bacterial strain isolated from moribund clam (Meretrix meretrix) collected from a farm with mass mortality outbreak. Primary genotypic and phenotypic identification including 16S rDNA sequence analysis, multilocus sequence analysis (MLSA) of four housekeeping genes (gapA, ftsZ, mreB and topA) and biochemical tests suggested that strain MM5 was a Vibrio species closest to but different from Vibrio furnissii. Our previous study indicated that MM5 could induce a high mortality of M. meretrix (Yue et al., 2010). Quantitative challenge test was performed in this study to further evaluate the pathogenic potential of MM5, which showed that at 84 h post-inoculation, the cumulative mortalities of the MM5-injected group were significantly higher than those of control groups (P<0.05). Cytopathological and histopathological features of the clam infected by MM5 were carried out by transmission electron microscopy (TEM) and Hematoxylin and Eosin (H&E) staining, respectively. Cytopathologically, foci of MM5 were found in hepatocytes of the clam infected by MM5. In addition, cytopathological lesion was detected in foot of infected clam. Histopathologically, MM5 was detected in different tissues of infected clam, including hepatopancreas, mantle and gill. Challenge test combined with pathological features indicated that MM5 was virulent to M. meretrix.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | |
Collapse
|
21
|
Movahedi A, Hampson DJ. Evaluation of recombinant Brachyspira pilosicoli oligopeptide-binding proteins as vaccine candidates in a mouse model of intestinal spirochaetosis. J Med Microbiol 2009; 59:353-359. [PMID: 19959628 DOI: 10.1099/jmm.0.015842-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaerobic intestinal spirochaete Brachyspira pilosicoli colonizes the large intestine of humans, and various species of animals and birds, in which it may induce a mild colitis and diarrhoea. The aim of the current study was to evaluate the use of putative oligopeptide-binding proteins of B. pilosicoli as vaccine components. A partial genome sequence of B. pilosicoli porcine strain 95/1000 was subjected to bioinformatics analysis, and six genes predicted to encode oligopeptide-binding proteins were selected. Following a PCR-based distribution study of the genes across different strains of the spirochaete, they were amplified from B. pilosicoli human strain WesB and cloned in Escherichia coli. The recombinant histidine-tagged proteins were purified and subjected to in vitro and in vivo immunogenicity analysis. Recombinant products (P-1 and P-3) from two genes that were immunogenic and recognized by sera from pigs that had recovered from B. pilosicoli infections were tested in a mouse model of intestinal spirochaetosis. For each recombinant protein, groups of 12 C3H/HeJ mice were vaccinated subcutaneously with 100 microg protein emulsified in Freund's incomplete adjuvant, twice with a 2 week interval. Two weeks later the vaccinated and non-vaccinated control animals were challenged orally with B. pilosicoli strain WesB. Both proteins induced systemic and local colonic IgG antibody responses, and, following experimental infection, the cumulative number of colonization days was significantly (P<0.001) less in both groups of vaccinated mice compared to the control mice. There were significantly (P=0.012) fewer mice colonized in the group vaccinated with P-1 than in the non-vaccinated control group. The results suggest that oligopeptide-binding proteins may have potential for use as components of vaccines for B. pilosicoli.
Collapse
Affiliation(s)
- Abdolreza Movahedi
- Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David J Hampson
- Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
22
|
Xayarath B, Marquis H, Port GC, Freitag NE. Listeria monocytogenes CtaP is a multifunctional cysteine transport-associated protein required for bacterial pathogenesis. Mol Microbiol 2009; 74:956-73. [PMID: 19818015 DOI: 10.1111/j.1365-2958.2009.06910.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The bacterial pathogen Listeria monocytogenes survives under a myriad of conditions in the outside environment and within the human host where infections can result in severe disease. Bacterial life within the host requires the expression of genes with roles in nutrient acquisition as well as the biosynthesis of bacterial products required to support intracellular growth. A gene product identified as the substrate-binding component of a novel oligopeptide transport system (encoded by lmo0135) was recently shown to be required for L. monocytogenes virulence. Here we demonstrate that lmo0135 encodes a multifunctional protein that is associated with cysteine transport, acid resistance, bacterial membrane integrity and adherence to host cells. The lmo0135 gene product (designated CtaP, for cysteine transport associated protein) was required for bacterial growth in the presence of low concentrations of cysteine in vitro, but was not required for bacterial replication within the host cytosol. Loss of CtaP increased membrane permeability and acid sensitivity, and reduced bacterial adherence to host cells. ctaP deletion mutants were severely attenuated following intragastric and intravenous inoculation of mice. Taken together, the data presented indicate that CtaP contributes to multiple facets of L. monocytogenes physiology, growth and survival both inside and outside of animal cells.
Collapse
Affiliation(s)
- Bobbi Xayarath
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|