1
|
Liu Y, Okano K, Iwaki H. Identification and characterization of a pab gene cluster responsible for the 4-aminobenzoate degradation pathway, including its involvement in the formation of a γ-glutamylated intermediate in Paraburkholderia terrae strain KU-15. J Biosci Bioeng 2024; 137:38-46. [PMID: 37977976 DOI: 10.1016/j.jbiosc.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Paraburkholderia terrae strain KU-15 grows on 2- and 4-nitrobenzoate and 2- and 4-aminobenzoate (ABA) as the sole nitrogen and carbon sources. The genes responsible for the potential degradation of 2- and 4-nitrobenzoate and 2-ABA have been predicted from its genome sequence. In this study, we identified the pab operon in P. terrae strain KU-15. This operon is responsible for the 4-ABA degradation pathway, which involves the formation of a γ-glutamylated intermediate. Reverse transcription-polymerase chain reaction revealed that the pab operon was induced by 4-ABA. Herein, studying the deletion of pabA and pabB1 in strain KU-15 and the examining of Escherichia coli expressing the pab operon revealed the involvement of the operon in 4-ABA degradation. The first step of the degradation pathway is the formation of a γ-glutamylated intermediate, whereby 4-ABA is converted to γ-glutamyl-4-carboxyanilide (γ-GCA). Subsequently, γ-GCA is oxidized to protocatechuate. Overexpression of various genes in E. coli and purification of recombinant proteins permitted the functional characterization of relevant pathway proteins: PabA is a γ-GCA synthetase, PabB1-B3 functions in a multicomponent dioxygenase system responsible for γ-GCA dioxygenation, and PabC is a γ-GCA hydrolase that reverses the formation of γ-GCA by PabA.
Collapse
Affiliation(s)
- Yaxuan Liu
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Kenji Okano
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Hiroaki Iwaki
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
2
|
Alam SA, Saha P. Chemotactic response of p-nitrophenol degrading Pseudomonas asiatica strain PNPG3 through phenotypic and genome sequence-based in silico studies. 3 Biotech 2023; 13:408. [PMID: 37987023 PMCID: PMC10657342 DOI: 10.1007/s13205-023-03809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023] Open
Abstract
The Pseudomonas asiatica strain PNPG3 was documented to possess chemotactic potential toward p-nitrophenol (PNP), and other nitroaromatic compounds. Initial screening with drop plate and swarm plate assays demonstrated significant movement of the strain toward the test compounds. A quantitative capillary assay revealed the highest chemotactic potential of the strain toward 4-Aminophenol (4AP), (CI: 12.33); followed by p-benzoquinone (PBQ), (CI: 6.8); and PNP, (CI: 5.33). Gene annotation revealed the presence of chemotactic genes (Che), (Methyl-accepting Proteins) MCPs, rotary motor proteins, and flagellar proteins within the genome of strain PNPG3. The chemotactic machinery of the strain PNPG3 comprised of thirteen Che genes, twenty-two MCPs, eight rotary motors, and thirty-four flagellar proteins that are involved in sensing chemoattractant. Two chemotactic gene clusters were recorded in the genome, of which the major cluster consisted of two copies of CheW, one copy of CheA, CheY, CheZ, one MotD gene, and several Fli genes. Various conserved regions and motifs were documented in them using a standard bioinformatics tool. Genes involved in the chemotaxis of strain PNPG3 were compared with three closely related strains and one distantly related strain belonging to Burkholderia sp. Considering these phenotypic and genotypic data, it can be speculated that it is metabolism-dependent chemotaxis; and that test compound activated the Che. This study indicated that strain PNPG3 could be used as a model organism for the study of the molecular mechanism of chemotaxis and bioremediation of PNP. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03809-3.
Collapse
Affiliation(s)
- Sk Aftabul Alam
- Department of Microbiology, The University of Burdwan, Golapbag, Burdwan, WB 713104 India
| | - Pradipta Saha
- Department of Microbiology, The University of Burdwan, Golapbag, Burdwan, WB 713104 India
| |
Collapse
|
3
|
Molecular Basis and Evolutionary Origin of 1-Nitronaphthalene Catabolism in Sphingobium sp. Strain JS3065. Appl Environ Microbiol 2023; 89:e0172822. [PMID: 36622195 PMCID: PMC9888181 DOI: 10.1128/aem.01728-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) enter the environment from natural sources and anthropogenic activities. To date, microorganisms able to mineralize nitro-PAHs have not been reported. Here, Sphingobium sp. strain JS3065 was isolated by selective enrichment for its ability to grow on 1-nitronaphthalene as the sole carbon, nitrogen, and energy source. Analysis of the complete genome of strain JS3065 indicated that the gene cluster encoding 1-nitronaphthalene catabolism (nin) is located on a plasmid. Based on the genetic and biochemical evidence, the nin genes share an origin with the nag-like genes encoding naphthalene degradation in Ralstonia sp. strain U2. The initial step in degradation of 1-nitronaphthalene is catalyzed by a three-component dioxygenase, NinAaAbAcAd, resulting in formation of 1,2-dihydroxynaphthalene which is also an early intermediate in the naphthalene degradation pathway. Introduction of the ninAaAbAcAd genes into strain U2 enabled its growth on 1-nitronaphthalene. Phylogenic analysis of NinAc suggested that an ancestral 1-nitronaphthalene dioxygenase was an early step in the evolution of nitroarene dioxygenases. Based on bioinformatic analysis and enzyme assays, the subsequent assimilation of 1,2-dihydroxynaphthalene seems to follow the well-established pathway for naphthalene degradation by Ralstonia sp. strain U2. This is the first report of catabolic pathway for 1-nitronaphthalene and is another example of how expanding the substrate range of Rieske type dioxygenase enables bacteria to grow on recalcitrant nitroaromatic compounds. IMPORTANCE Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) have been widely detected in the environment and they are more toxic than their corresponding parent PAHs. Although biodegradation of many PAHs has been extensively described at genetic and biochemical levels, little is known about the microbial degradation of nitro-PAHs. This work reports the isolation of a Sphingobium strain growing on 1-nitronaphthalene and the genetic basis for the catabolic pathway. The pathway evolved from an ancestral naphthalene catabolic pathway by a remarkably small modification in the specificity of the initial dioxygenase. Data presented here not only shed light on the biochemical processes involved in the microbial degradation of globally important nitrated polycyclic aromatic hydrocarbons, but also provide an evolutionary paradigm for how bacteria evolve a novel catabolic pathway with minimal alteration of preexisting pathways for natural organic compounds.
Collapse
|
4
|
Complete Genome Sequence of Paraburkholderia terrae Strain KU-15, a 2-Nitrobenzoate-Degrading Bacterium. Microbiol Resour Announc 2022; 11:e0037322. [PMID: 35730948 PMCID: PMC9302171 DOI: 10.1128/mra.00373-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paraburkholderia terrae strain KU-15 has been investigated for its ability to degrade 2-nitrobenzoate. Here, we report the complete 10,422,345-bp genome of this microorganism, which consists of six circular replicons containing 9,483 protein-coding sequences. The genome carries genes that are potentially responsible for 2-nitrobenzoate and 4-nitirobenzoate degradation.
Collapse
|
5
|
Sarwade V, Funde S. Biotransformation of nitro aromatic amines in artificial alkaline habitat by pseudomonas DL17. Environ Anal Health Toxicol 2022; 37:e2022001-0. [PMID: 35108777 PMCID: PMC9058103 DOI: 10.5620/eaht.2022001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/03/2022] [Indexed: 11/24/2022] Open
Abstract
Nitro-aromatics are listed in carcinogenic, teratogenic, and mutagenic compounds list. p-nitro-aniline is one of them used as a precursor of various chemical compounds in many industries like dyes, drugs, paints and several others. These are mostly given out as an effluent in rivers, lakes or open passage of land which exert several hazards to living creatures and environment. Some of the organic compounds are stable in alkaline condition and persist longer in environment. Very few reports are elaborating bio-remediation in alkaline condition using different hydrocarbons. This study was planned to elaborate mechanism of detoxification and searching the potential of decontamination of p-nitro-aniline in alkaline condition by experimental microbial strain. The bacterial strain pseudomonas DL17 was isolated from alkaline Lake Lonar, Buldana, (MS.) India; and employed in this experiment considering its indigenous property to tolerate the alkaline pH. It also showed resistance to p-nitro-aniline with its raising concentrations on testing after adaptation. The experimental microbial stain showed 100% biodegradation of (500 mg/L) p-nitro-aniline within 48h. On shaking incubator with 110 rpm and at 32 °C optimum temperature. The centrifugate obtained after spinning at 10,000 g by cold centrifuge was used for solvent extraction. Generally, ethyl acetate or DCM was used for solvent extraction. The estimation of residual remains of p-nitro aniline by 6h. intervals was carried after removal of flasks from shaking incubator and centrifugation. At the optimum temperature and pH experiments were carried after knowing the resistance to experimental contaminant range (100–400 mg/L) of p-nitro aniline one month and further extended to 500 mg/L for 15days more. The residual metabolites were purified by column chromatography and various spectrometric studies such as UV-Vis spectroscopy, HNMR, FTIR and GCMS revealed that p-Phenylenediamine, acetanilide, aniline, acetaminophen, catechol, p-bezoquinone, cis-cis muconate as a metabolites. On the basis of the metabolites isolated and characterized by different spectroscopic studies the bio-catalytic mechanism was deduced. The induced enzymes such as nitroreductase, catalase, peroxidase, acetanilide hydroxylase, super oxide dismutase, catechol 1, 2 dioxygenase, catechol 2, 3 dioxygenase has commercial importance in biochemical industries. Induction of such biotransformation enzymes and consumption of p-nitro aniline concentration in experiments makes sure that this microbial strain pseudomonas DL17 can be employed for decontamination of nitro aniline polluted sites as well as isolation of such metabolites characterized and enzymes studied.
Collapse
Affiliation(s)
- Vasudeo Sarwade
- Jamkhed college Jamkhed, Maharashtra, India.,Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Sharad Funde
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
6
|
Yamamoto T, Hasegawa Y, Iwaki H. Identification and characterization of a novel class of self-sufficient cytochrome P450 hydroxylase involved in cyclohexanecarboxylate degradation in Paraburkholderia terrae strain KU-64. Biosci Biotechnol Biochem 2022; 86:199-208. [PMID: 34965585 DOI: 10.1093/bbb/zbab199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022]
Abstract
Cytochrome P450 monooxygenases play important roles in metabolism. Here, we report the identification and biochemical characterization of P450CHC, a novel self-sufficient cytochrome P450, from cyclohexanecarboxylate-degrading Paraburkholderia terrae KU-64. P450CHC was found to comprise a [2Fe-2S] ferredoxin domain, NAD(P)H-dependent FAD-containing reductase domain, FCD domain, and cytochrome P450 domain (in that order from the N terminus). Reverse transcription-polymerase chain reaction results indicated that the P450CHC-encoding chcA gene was inducible by cyclohexanecarboxylate. chcA overexpression in Escherichia coli and recombinant protein purification enabled functional characterization of P450CHC as a catalytically self-sufficient cytochrome P450 that hydroxylates cyclohexanecarboxylate. Kinetic analysis indicated that P450CHC largely preferred NADH (Km = 0.011 m m) over NADPH (Km = 0.21 m m). The Kd, Km, and kcat values for cyclohexanecarboxylate were 0.083 m m, 0.084 m m, and 15.9 s-1, respectively. The genetic and biochemical analyses indicated that the physiological role of P450CHC is initial hydroxylation in the cyclohexanecarboxylate degradation pathway.
Collapse
Affiliation(s)
- Taisei Yamamoto
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Yoshie Hasegawa
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Hiroaki Iwaki
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Ahmad F, Zhu D, Sun J. Bacterial chemotaxis: a way forward to aromatic compounds biodegradation. ENVIRONMENTAL SCIENCES EUROPE 2020; 32:52. [DOI: 10.1186/s12302-020-00329-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 07/23/2024]
Abstract
AbstractWorldwide industrial development has released hazardous polycyclic aromatic compounds into the environment. These pollutants need to be removed to improve the quality of the environment. Chemotaxis mechanism has increased the bioavailability of these hydrophobic compounds to microorganisms. The mechanism, however, is poorly understood at the ligand and chemoreceptor interface. Literature is unable to furnish a compiled review of already published data on up-to-date research on molecular aspects of chemotaxis mechanism, ligand and receptor-binding mechanism, and downstream signaling machinery. Moreover, chemotaxis-linked biodegradation of aromatic compounds is required to understand the chemotaxis role in biodegradation better. To fill this knowledge gap, the current review is an attempt to cover PAHs occurrence, chemical composition, and potential posed risks to humankind. The review will cover the aspects of microbial signaling mechanism, the structural diversity of methyl-accepting chemotaxis proteins at the molecular level, discuss chemotaxis mechanism role in biodegradation of aromatic compounds in model bacterial genera, and finally conclude with the potential of bacterial chemotaxis for aromatics biodegradation.
Collapse
|
8
|
Yamamoto T, Liu Y, Sumiyoshi T, Hasegawa Y, Iwaki H. A novel piperidine degradation mechanism in a newly isolated piperidine degrader Pseudomonas sp. strain KU43P. J GEN APPL MICROBIOL 2020; 66:265-272. [PMID: 32641635 DOI: 10.2323/jgam.2019.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The degradation pathways in microorganisms for piperidine, a secondary amine with various applications, are not yet fully understood, especially in non-Mycobacterium species. In this study, we have identified a piperidine-degrading isolate (KU43P) from a soil sample collected in a cultivation field in Osaka, Japan, and characterized its mechanisms of piperidine degradation, thereby furthering current understanding of the process. The genome of isolate KU43P consists of a 5,869,691-bp circular chromosome with 62.67% GC content and with 5,294 predicted protein-coding genes, 77 tRNA genes, and 22 rRNA genes. 16S rRNA gene sequence analysis and average nucleotide identity analysis suggest that the isolate is a novel species of the Pseudomonas putida group in the genus Pseudomonas. The genomic region encoding the piperidine degradation pathway, designated as the pip gene cluster, was identified using transposon mutagenesis and reverse transcription polymerase chain reaction. Deletion analyses of pipA, which encodes a glutamine synthetase (GS)-like protein, and pipBa, which encodes a cytochrome P450 monooxygenase, indicate that pipA and pipBa are involved in piperidine metabolism and suggest that pipA is involved in the first step of the piperidine metabolic pathway. Escherichia coli whole cells overexpressing PipA converted piperidine and glutamate to γ-glutamylpiperidide, and crude cell extract enzyme assays of PipA showed that this reaction requires ATP and Mg2+. These results clearly show that pipA encodes γ-glutamylpiperidide synthetase and that piperidine is first glutamylated and then hydroxylated in the piperidine degradation pathway of Pseudomonas sp. strain KU43P. This study has filled a void in the general knowledge of the microbial degradation of amine compounds.
Collapse
Affiliation(s)
- Taisei Yamamoto
- Department of Life Science & Biotechnology, Kansai University
| | - Yaxuan Liu
- Department of Life Science & Biotechnology, Kansai University
| | | | - Yoshie Hasegawa
- Department of Life Science & Biotechnology, Kansai University
| | - Hiroaki Iwaki
- Department of Life Science & Biotechnology, Kansai University
| |
Collapse
|
9
|
Gasperotti AF, Herrera Seitz MK, Balmaceda RS, Prosa LM, Jung K, Studdert CA. Direct binding of benzoate derivatives to two chemoreceptors with Cache sensor domains in Halomonas titanicae KHS3. Mol Microbiol 2020; 115:672-683. [PMID: 33098326 DOI: 10.1111/mmi.14630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Halomonas titanicae KHS3, isolated from a hydrocarbon-contaminated sea harbor in Argentina, is able to grow on aromatic hydrocarbons and displays chemotaxis toward those compounds. This behavior might contribute to the efficiency of its degradation capacity. Using high throughput screening, we identified two chemoreceptors (Htc1 and Htc2) that bind benzoate derivatives and other organic acids. Whereas Htc1 has a high affinity for benzoate (Kd 112 µM) and 2-hydroxybenzoate (Kd 83 µM), Htc2 binds 2-hydroxybenzoate with low affinity (Kd 3.25 mM), and also C3/C4 dicarboxylates. Both chemoreceptors are able to trigger a chemotactic response of E. coli cells to the specific ligands. A H. titanicae htc1 mutant has reduced chemotaxis toward benzoate, and is complemented upon expression of the corresponding receptor. Both chemoreceptors have a Cache-type sensor domain, double (Htc1) or single (Htc2), and their ability to bind aromatic compounds is reported here for the first time.
Collapse
Affiliation(s)
- Ana F Gasperotti
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.,Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - M Karina Herrera Seitz
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Rocío S Balmaceda
- Instituto de Agrobiotecnología del Litoral, CONICET - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luciano M Prosa
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Kirsten Jung
- Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Claudia A Studdert
- Instituto de Agrobiotecnología del Litoral, CONICET - Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
10
|
Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni. Int J Mol Sci 2019; 20:ijms20112701. [PMID: 31159416 PMCID: PMC6600141 DOI: 10.3390/ijms20112701] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Chemotaxis is an important physiological adaptation that allows many motile bacteria to orientate themselves for better niche adaptation. Chemotaxis is best understood in Escherichia coli. Other representative bacteria, such as Rhodobacter sphaeroides, Pseudomonas species, Helicobacter pylori, and Bacillus subtilis, also have been deeply studied and systemically summarized. These bacteria belong to α-, γ-, ε-Proteobacteria, or Firmicutes. However, β-Proteobacteria, of which many members have been identified as holding chemotactic pathways, lack a summary of chemotaxis. Comamonas testosteroni, belonging to β-Proteobacteria, grows with and chemotactically responds to a range of aromatic compounds. This paper summarizes the latest research on chemotaxis towards aromatic compounds, mainly from investigations of C. testosteroni and other Comamonas species.
Collapse
|
11
|
Abstract
Chemoreceptors in bacteria detect a variety of signals and feed this information into chemosensory pathways that represent a major mode of signal transduction. The five chemoreceptors from Escherichia coli have served as traditional models in the study of this protein family. Genome analyses revealed that many bacteria contain much larger numbers of chemoreceptors with broader sensory capabilities. Chemoreceptors differ in topology, sensing mode, cellular location, and, above all, the type of ligand binding domain (LBD). Here, we highlight LBD diversity using well-established and emerging model organisms as well as genomic surveys. Nearly a hundred different types of protein domains that are found in chemoreceptor sequences are known or predicted LBDs, but only a few of them are ubiquitous. LBDs of the same class recognize different ligands, and conversely, the same ligand can be recognized by structurally different LBDs; however, recent studies began to reveal common characteristics in signal-LBD relationships. Although signals can stimulate chemoreceptors in a variety of different ways, diverse LBDs appear to employ a universal transmembrane signaling mechanism. Current and future studies aim to establish relationships between LBD types, the nature of signals that they recognize, and the mechanisms of signal recognition and transduction.
Collapse
|
12
|
Hughes JG, Zhang X, Parales JV, Ditty JL, Parales RE. Pseudomonas putida F1 uses energy taxis to sense hydroxycinnamic acids. MICROBIOLOGY-SGM 2017; 163:1490-1501. [PMID: 28954643 DOI: 10.1099/mic.0.000533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Soil bacteria such as pseudomonads are widely studied due to their diverse metabolic capabilities, particularly the ability to degrade both naturally occurring and xenobiotic aromatic compounds. Chemotaxis, the directed movement of cells in response to chemical gradients, is common in motile soil bacteria and the wide range of chemicals detected often mirrors the metabolic diversity observed. Pseudomonas putida F1 is a soil isolate capable of chemotaxis toward, and degradation of, numerous aromatic compounds. We showed that P. putida F1 is capable of degrading members of a class of naturally occurring aromatic compounds known as hydroxycinnamic acids, which are components of lignin and are ubiquitous in the soil environment. We also demonstrated the ability of P. putida F1 to sense three hydroxycinnamic acids: p-coumaric, caffeic and ferulic acids. The chemotaxis response to hydroxycinnamic acids was induced during growth in the presence of hydroxycinnamic acids and was negatively regulated by HcaR, the repressor of the hydroxycinnamic acid catabolic genes. Chemotaxis to the three hydroxycinnamic acids was dependent on catabolism, as a mutant lacking the gene encoding feruloyl-CoA synthetase (Fcs), which catalyzes the first step in hydroxycinnamic acid degradation, was unable to respond chemotactically toward p-coumaric, caffeic, or ferulic acids. We tested whether an energy taxis mutant could detect hydroxycinnamic acids and determined that hydroxycinnamic acid sensing is mediated by the energy taxis receptor Aer2.
Collapse
Affiliation(s)
- Jonathan G Hughes
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA
| | - Xiangsheng Zhang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA.,Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, PR China
| | - Juanito V Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA
| | - Jayna L Ditty
- Department of Biology, College of Arts and Sciences, University of St Thomas, St Paul, MN, USA
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
13
|
Heterologous Overexpression and Biochemical Characterization of a Nitroreductase from Gluconobacter oxydans 621H. Mol Biotechnol 2017; 58:428-40. [PMID: 27138989 DOI: 10.1007/s12033-016-9942-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A NADPH-dependent and FMN-containing nitroreductase (Gox0834) from Gluconobacter oxydans was cloned and heterogeneously expressed in Escherichia coli. The purified enzyme existed as a dimer with an apparent molecular mass of about 31.4 kDa. The enzyme displayed broad substrate specificity and reduced a variety of mononitrated, polynitrated, and polycyclic nitroaromatic compounds to the corresponding amino products. The highest activity was observed for the reduction of CB1954 (5-(1-aziridinyl)-2,4-dinitrobenzamide). The enzyme kinetics analysis showed that Gox0834 had relatively low K m (54 ± 11 μM) but high k cat/K m value (0.020 s(-1)/μM) for CB1954 when compared with known nitroreductases. Nitrobenzene and 2,4,6-trinitrotoluene (TNT) were preferred substrates for this enzyme with specific activity of 11.0 and 8.9 μmol/min/mg, respectively. Gox0834 exhibited a broad temperature optimum of 40-60 °C for the reduction of CB1954 with a pH optimum between 7.5 and 8.5. The purified enzyme was very stable below 37 °C over a broad pH range of 6.0-10.0. These characteristics suggest that the nitroreductase Gox0834 may be a possible candidate for catalyzing prodrug activation, bioremediation, or biocatalytic processes.
Collapse
|
14
|
Salah Ud-Din AIM, Roujeinikova A. The periplasmic sensing domain of Pseudomonas fluorescens chemotactic transducer of amino acids type B (CtaB): Cloning, refolding, purification, crystallization, and X-ray crystallographic analysis. Biosci Trends 2017; 11:229-234. [PMID: 28250336 DOI: 10.5582/bst.2016.01218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pseudomonas fluorescens is a plant growth promoting rhizobacterium that provides nutrients for growth and induces systemic resistance against plant diseases. It has been linked with a number of human diseases including nosocomial infections and bacterial cystitis. Chemotactic motility of P. fluorescens towards root exudates plays a crucial role in establishing a symbiotic relationship with host plants. The P. fluorescens chemotactic transducer of amino acids type B (CtaB) mediates chemotaxis towards amino acids. As a step towards elucidation of the structural basis of ligand recognition by CtaB, we have produced crystals of its recombinant sensory domain and performed their X-ray diffraction analysis. The periplasmic sensory domain of CtaB has been expressed, purified, and crystallized by the hanging-drop vapor diffusion method using ammonium sulfate as a precipitating agent. A complete data set was collected to 2.2 Å resolution using cryocooling conditions and synchrotron radiation. The crystals belong to space group P212121, with unit-cell parameters a = 34.5, b = 108.9, c = 134.6 Å. Calculation of the Matthews coefficient and the self-rotation function using this data set suggested that the asymmetric unit contains a protein dimer. Detailed structural analysis of CtaB would be an important step towards understanding the molecular mechanism underpinning the recognition of environmental signals and transmission of the signals to the inside of the cell.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University.,Department of Biochemistry and Molecular Biology, Monash University
| |
Collapse
|
15
|
Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Front Microbiol 2016; 7:1836. [PMID: 27917161 PMCID: PMC5116465 DOI: 10.3389/fmicb.2016.01836] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022] Open
Abstract
Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant-microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites.
Collapse
Affiliation(s)
- Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Matteo Daghio
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
- Department of Biological Sciences, Thompson Rivers University, KamloopsBC, Canada
| | - Andrea Franzetti
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
| | | | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| |
Collapse
|
16
|
Degradation Pathways of 2- and 4-Nitrobenzoates in Cupriavidus sp. Strain ST-14 and Construction of a Recombinant Strain, ST-14::3NBA, Capable of Degrading 3-Nitrobenzoate. Appl Environ Microbiol 2016; 82:4253-4263. [PMID: 27208126 DOI: 10.1128/aem.00739-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/30/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Strain ST-14, characterized as a member of the genus Cupriavidus, was capable of utilizing 2- and 4-nitrobenzoates individually as sole sources of carbon and energy. Biochemical studies revealed the assimilation of 2- and 4-nitrobenzoates via 3-hydroxyanthranilate and protocatechuate, respectively. Screening of a genomic fosmid library of strain ST-14 constructed in Escherichia coli identified two gene clusters, onb and pob-pca, to be responsible for the complete degradation of 2-nitrobenzoate and protocatechuate, respectively. Additionally, a gene segment (pnb) harboring the genes for the conversion of 4-nitrobenzoate to protocatechuate was unveiled by transposome mutagenesis. Reverse transcription-PCR analysis showed the polycistronic nature of the gene clusters, and their importance in the degradation of 2- and 4-nitrobenzoates was ascertained by gene knockout analysis. Cloning and expression of the relevant pathway genes revealed the transformation of 2-nitrobenzoate to 3-hydroxyanthranilate and of 4-nitrobenzoate to protocatechuate. Finally, incorporation of functional 3-nitrobenzoate dioxygenase into strain ST-14 allowed the recombinant strain to utilize 3-nitrobenzoate via the existing protocatechuate metabolic pathway, thereby allowing the degradation of all three isomers of mononitrobenzoate by a single bacterial strain. IMPORTANCE Mononitrobenzoates are toxic chemicals largely used for the production of various value-added products and enter the ecosystem through industrial wastes. Bacteria capable of degrading mononitrobenzoates are relatively limited. Unlike other contaminants, these man-made chemicals have entered the environment since the last century, and it is believed that bacteria in nature evolved not quite efficiently to assimilate these compounds; as a consequence, to date, there are only a few reports on the bacterial degradation of one or more isomers of mononitrobenzoate. In the present study, fortunately, we have been able to isolate a Cupriavidus sp. strain capable of assimilating both 2- and 4-nitrobenzoates as the sole carbon source. Results of the biochemical and molecular characterization of catabolic genes responsible for the degradation of mononitrobenzoates led us to manipulate a single enzymatic step, allowing the recombinant host organism to expand its catabolic potential to assimilate 3-nitrobenzoate.
Collapse
|
17
|
Ud-Din AIMS, Roujeinikova A. Cloning, purification, crystallization and X-ray crystallographic analysis of the periplasmic sensing domain of Pseudomonas fluorescens chemotactic transducer of amino acids type A (CtaA). Biosci Trends 2016; 10:320-4. [PMID: 27251445 DOI: 10.5582/bst.2016.01059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotaxis towards nutrients plays a crucial role in root colonization by Pseudomonas fluorescens. The P. fluorescens chemotactic transducer of amino acids type A (CtaA) mediates movement towards amino acids present in root exudates. In this study, the periplasmic sensory domain of CtaA has been crystallized by the hanging-drop vapor diffusion method using ammonium sulfate as a precipitating agent. A complete data set was collected to 1.9 Å resolution using cryocooling conditions and synchrotron radiation. The crystals belong to space group I222 or I212121, with unit-cell parameters a = 67.2, b = 76.0, c = 113.3 Å. This is an important step towards elucidation of the structural basis of how CtaA recognizes its signal molecules and transduces the signal across the membrane.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Australia; Department of Microbiology, Monash University
| | | |
Collapse
|
18
|
Huang Z, Ni B, Jiang CY, Wu YF, He YZ, Parales RE, Liu SJ. Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds inComamonas testosteroni. Mol Microbiol 2016; 101:224-37. [DOI: 10.1111/mmi.13385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Zhou Huang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Bin Ni
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- IMCAS-RCEECAS Joint Laboratory for Environmental Microbial Technology; Beijing China
| | - Yu-Fan Wu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yun-Zhe He
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Rebecca E. Parales
- Department of Microbiology and Molecular Genetics; University of California; Davis CA 95616 USA
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- IMCAS-RCEECAS Joint Laboratory for Environmental Microbial Technology; Beijing China
| |
Collapse
|
19
|
Abstract
The survival capacity of microorganisms in a contaminated environment is limited by the concentration and/or toxicity of the pollutant. Through evolutionary processes, some bacteria have developed or acquired mechanisms to cope with the deleterious effects of toxic compounds, a phenomenon known as tolerance. Common mechanisms of tolerance include the extrusion of contaminants to the outer media and, when concentrations of pollutants are low, the degradation of the toxic compound. For both of these approaches, plasmids that encode genes for the degradation of contaminants such as toluene, naphthalene, phenol, nitrobenzene, and triazine or are involved in tolerance toward organic solvents and heavy metals, play an important role in the evolution and dissemination of these catabolic pathways and efflux pumps. Environmental plasmids are often conjugative and can transfer their genes between different strains; furthermore, many catabolic or efflux pump genes are often associated with transposable elements, making them one of the major players in bacterial evolution. In this review, we will briefly describe catabolic and tolerance plasmids and advances in the knowledge and biotechnological applications of these plasmids.
Collapse
|
20
|
Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids. Appl Environ Microbiol 2015; 81:5449-57. [PMID: 26048936 DOI: 10.1128/aem.01529-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/27/2015] [Indexed: 12/13/2022] Open
Abstract
Chemoreceptors are at the beginnings of chemosensory signaling cascades that mediate chemotaxis. Most bacterial chemoreceptors are functionally unannotated and are characterized by a diversity in the structure of their ligand binding domains (LBDs). The data available indicate that there are two major chemoreceptor families at the functional level, namely, those that respond to amino acids or to Krebs cycle intermediates. Since pseudomonads show chemotaxis to many different compounds and possess different types of chemoreceptors, they are model organisms to establish relationships between chemoreceptor structure and function. Here, we identify PP2861 (termed McpP) of Pseudomonas putida KT2440 as a chemoreceptor with a novel ligand profile. We show that the recombinant McpP LBD recognizes acetate, pyruvate, propionate, and l-lactate, with KD (equilibrium dissociation constant) values ranging from 34 to 107 μM. Deletion of the mcpP gene resulted in a dramatic reduction in chemotaxis toward these ligands, and complementation restored a native-like phenotype, indicating that McpP is the major chemoreceptor for these compounds. McpP has a CACHE-type LBD, and we present data indicating that CACHE-containing chemoreceptors of other species also mediate taxis to C2 and C3 carboxylic acids. In addition, the LBD of NbaY of Pseudomonas fluorescens, an McpP homologue mediating chemotaxis to 2-nitrobenzoate, bound neither nitrobenzoates nor the McpP ligands. This work provides further insight into receptor structure-function relationships and will be helpful to annotate chemoreceptors of other bacteria.
Collapse
|
21
|
Parales RE, Luu RA, Hughes JG, Ditty JL. Bacterial chemotaxis to xenobiotic chemicals and naturally-occurring analogs. Curr Opin Biotechnol 2015; 33:318-26. [DOI: 10.1016/j.copbio.2015.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/21/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
|
22
|
Structural and Mechanistic Insights into the Pseudomonas fluorescens 2-Nitrobenzoate 2-Nitroreductase NbaA. Appl Environ Microbiol 2015; 81:5266-77. [PMID: 26025888 DOI: 10.1128/aem.01289-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 05/20/2015] [Indexed: 01/23/2023] Open
Abstract
The bacterial 2-nitroreductase NbaA is the primary enzyme initiating the degradation of 2-nitrobenzoate (2-NBA), and its activity is controlled by posttranslational modifications. To date, the structure of NbaA remains to be elucidated. In this study, the crystal structure of a Cys194Ala NbaA mutant was determined to a 1.7-Å resolution. The substrate analog 2-NBA methyl ester was used to decipher the substrate binding site by inhibition of the wild-type NbaA protein. Tandem mass spectrometry showed that 2-NBA methyl ester produced a 2-NBA ester bond at the Tyr193 residue in the wild-type NbaA but not residues in the Tyr193Phe mutant. Moreover, covalent binding of the 2-NBA methyl ester to Tyr193 reduced the reactivity of the Cys194 residue on the peptide link. The Tyr193 hydroxyl group was shown to be essential for enzyme catalysis, as a Tyr193Phe mutant resulted in fast dissociation of flavin mononucleotide (FMN) from the protein with the reduced reactivity of Cys194. FMN binding to NbaA varied with solution NaCl concentration, which was related to the catalytic activity but not to cysteine reactivity. These observations suggest that the Cys194 reactivity is negatively affected by a posttranslational modification of the adjacent Tyr193 residue, which interacts with FMN and the substrate in the NbaA catalytic site.
Collapse
|
23
|
Luu RA, Kootstra JD, Nesteryuk V, Brunton CN, Parales JV, Ditty JL, Parales RE. Integration of chemotaxis, transport and catabolism inPseudomonas putidaand identification of the aromatic acid chemoreceptor PcaY. Mol Microbiol 2015; 96:134-47. [DOI: 10.1111/mmi.12929] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Rita A. Luu
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Joshua D. Kootstra
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Vasyl Nesteryuk
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Ceanne N. Brunton
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Juanito V. Parales
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Jayna L. Ditty
- Department of Biology; University of St. Thomas; St. Paul MN USA
| | - Rebecca E. Parales
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| |
Collapse
|
24
|
Yamamoto-Tamura K, Kawagishi I, Ogawa N, Fujii T. A putative porin gene of Burkholderia sp. NK8 involved in chemotaxis toward β-ketoadipate. Biosci Biotechnol Biochem 2015; 79:926-36. [PMID: 25649919 DOI: 10.1080/09168451.2015.1006571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Burkholderia sp. NK8 can utilize 3-chlorobenzoate (3CB) as a sole source of carbon because it has a megaplasmid (pNK8) that carries the gene cluster (tfdT-CDEF) encoding chlorocatechol-degrading enzymes. The expression of tfdT-CDEF is induced by 3CB. In this study, we found that NK8 cells were attracted to 3CB and its degradation products, 3- and 4-chlorocatechol, and β-ketoadipate. Capillary assays revealed that a pNK8-eliminated strain (NK82) was defective in chemotaxis toward β-ketoadipate. The introduction of a plasmid carrying a putative outer membrane porin gene, which we name ompNK8, into strain NK82 restored chemotaxis toward β-ketoadipate. RT-PCR analyses demonstrated that the transcription of the ompNK8 gene was enhanced in the presence of 3CB.
Collapse
Affiliation(s)
- Kimiko Yamamoto-Tamura
- a Environmental Biofunction Division , National Institute for Agro-Environmental Sciences , Tsukuba , Japan
| | | | | | | |
Collapse
|
25
|
Abstract
Pseudomonads sense changes in the concentration of chemicals in their environment and exhibit a behavioral response mediated by flagella or pili coupled with a chemosensory system. The two known chemotaxis pathways, a flagella-mediated pathway and a putative pili-mediated system, are described in this review. Pseudomonas shows chemotaxis response toward a wide range of chemicals, and this review includes a summary of them organized by chemical structure. The assays used to measure positive and negative chemotaxis swimming and twitching Pseudomonas as well as improvements to those assays and new assays are also described. This review demonstrates that there is ample research and intellectual space for future investigators to elucidate the role of chemotaxis in important processes such as pathogenesis, bioremediation, and the bioprotection of plants and animals.
Collapse
Affiliation(s)
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Tino Krell
- Department of Environmental Protection, CSIC, Estacion Experimental del Zaidin, Granada, Spain
| | - Jane E Hill
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
26
|
Parales RE, Nesteryuk V, Hughes JG, Luu RA, Ditty JL. Cytosine chemoreceptor McpC in Pseudomonas putida F1 also detects nicotinic acid. MICROBIOLOGY-SGM 2014; 160:2661-2669. [PMID: 25294107 DOI: 10.1099/mic.0.081968-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Soil bacteria are generally capable of growth on a wide range of organic chemicals, and pseudomonads are particularly adept at utilizing aromatic compounds. Pseudomonads are motile bacteria that are capable of sensing a wide range of chemicals, using both energy taxis and chemotaxis. Whilst the identification of specific chemicals detected by the ≥26 chemoreceptors encoded in Pseudomonas genomes is ongoing, the functions of only a limited number of Pseudomonas chemoreceptors have been revealed to date. We report here that McpC, a methyl-accepting chemotaxis protein in Pseudomonas putida F1 that was previously shown to function as a receptor for cytosine, was also responsible for the chemotactic response to the carboxylated pyridine nicotinic acid.
Collapse
Affiliation(s)
- Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Vasyl Nesteryuk
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jonathan G Hughes
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Rita A Luu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jayna L Ditty
- Department of Biology, University of St Thomas, St Paul, MN, USA
| |
Collapse
|
27
|
Ni B, Huang Z, Fan Z, Jiang CY, Liu SJ. Comamonas testosteroniuses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds. Mol Microbiol 2013; 90:813-23. [DOI: 10.1111/mmi.12400] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Bin Ni
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zheng Fan
- Core facility at Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- Environmental Microbiology Research Center; Chinese Academy of Sciences; Beijing 100101 China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- Environmental Microbiology Research Center; Chinese Academy of Sciences; Beijing 100101 China
| |
Collapse
|
28
|
Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2013; 79:7241-8. [PMID: 24038698 DOI: 10.1128/aem.02428-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemotaxis influences the ability of bacteria to survive and thrive in most environments, including polluted ones. Despite numerous reports of the phenotypic characterization of chemotactic bacteria, only a few molecular details of chemoreceptors for aromatic pollutants have been described. In this study, the molecular basis of chemotaxis toward an environmentally toxic chlorinated aromatic pollutant, 4-chloroaniline (4CA), was evaluated. Among the three Pseudomonas spp. tested, Pseudomonas aeruginosa PAO1 exhibited positive chemotaxis both to the nonmetabolizable 4CA, where 4-chloroacetanilide was formed as a dead-end transformation product, and to the metabolizable catechol. Molecular analysis of all 26 mutants with a disrupted methyl-accepting chemotaxis gene revealed that CtpL, a chromosomally encoded chemoreceptor, was responsible for the positive chemotactic response toward 4CA. Since CtpL has previously been described to be a major chemoreceptor for inorganic phosphate at low concentrations in PAO1, this report describes a fortuitous ability of CtpL to function toward aromatic pollutants. In addition, its regulation not only was dependent on the presence of the chemoattractant inducer but also was regulated by conditions of phosphate starvation. These results expand the range of known chemotactic transducers and their function in the environmental bacterium PAO1.
Collapse
|
29
|
Krell T, Lacal J, Reyes-Darias JA, Jimenez-Sanchez C, Sungthong R, Ortega-Calvo JJ. Bioavailability of pollutants and chemotaxis. Curr Opin Biotechnol 2013; 24:451-6. [DOI: 10.1016/j.copbio.2012.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
30
|
Parales RE, Luu RA, Chen GY, Liu X, Wu V, Lin P, Hughes JG, Nesteryuk V, Parales JV, Ditty JL. Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids. MICROBIOLOGY-SGM 2013; 159:1086-1096. [PMID: 23618999 DOI: 10.1099/mic.0.065698-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have demonstrated that Pseudomonas putida strains are not only capable of growth on a wide range of organic substrates, but also chemotactic towards many of these compounds. However, in most cases the specific chemoreceptors that are involved have not been identified. The complete genome sequences of P. putida strains F1 and KT2440 revealed that each strain is predicted to encode 27 methyl-accepting chemotaxis proteins (MCPs) or MCP-like proteins, 25 of which are shared by both strains. It was expected that orthologous MCPs in closely related strains of the same species would be functionally equivalent. However, deletion of the gene encoding the P. putida F1 orthologue (locus tag Pput_4520, designated mcfS) of McpS, a known receptor for organic acids in P. putida KT2440, did not result in an obvious chemotaxis phenotype. Therefore, we constructed individual markerless MCP gene deletion mutants in P. putida F1 and screened for defective sensory responses to succinate, malate, fumarate and citrate. This screen resulted in the identification of a receptor, McfQ (locus tag Pput_4894), which responds to citrate and fumarate. An additional receptor, McfR (locus tag Pput_0339), which detects succinate, malate and fumarate, was found by individually expressing each of the 18 genes encoding canonical MCPs from strain F1 in a KT2440 mcpS-deletion mutant. Expression of mcfS in the same mcpS deletion mutant demonstrated that, like McfR, McfS responds to succinate, malate, citrate and fumarate. Therefore, at least three receptors, McfR, McfS, and McfQ, work in concert to detect organic acids in P. putida F1.
Collapse
Affiliation(s)
- Rebecca E Parales
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Rita A Luu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Grischa Y Chen
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xianxian Liu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Victoria Wu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Pamela Lin
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jonathan G Hughes
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Vasyl Nesteryuk
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Juanito V Parales
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Jayna L Ditty
- Department of Biology, University of St. Thomas, St. Paul, MN, USA
| |
Collapse
|
31
|
Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2. Appl Environ Microbiol 2013; 79:2416-23. [PMID: 23377939 DOI: 10.1128/aem.03895-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The phenylacetic acid (PAA) degradation pathway is a widely distributed funneling pathway for the catabolism of aromatic compounds, including the environmental pollutants styrene and ethylbenzene. However, bacterial chemotaxis to PAA has not been studied. The chemotactic strain Pseudomonas putida F1 has the ability to utilize PAA as a sole carbon and energy source. We identified a putative PAA degradation gene cluster (paa) in P. putida F1 and demonstrated that PAA serves as a chemoattractant. The chemotactic response was induced during growth with PAA and was dependent on PAA metabolism. A functional cheA gene was required for the response, indicating that PAA is sensed through the conserved chemotaxis signal transduction system. A P. putida F1 mutant lacking the energy taxis receptor Aer2 was deficient in PAA taxis, indicating that Aer2 is responsible for mediating the response to PAA. The requirement for metabolism and the role of Aer2 in the response indicate that P. putida F1 uses energy taxis to detect PAA. We also revealed that PAA is an attractant for Escherichia coli; however, a mutant lacking a functional Aer energy receptor had a wild-type response to PAA in swim plate assays, suggesting that PAA is detected through a different mechanism in E. coli. The role of Aer2 as an energy taxis receptor provides the potential to sense a broad range of aromatic growth substrates as chemoattractants. Since chemotaxis has been shown to enhance the biodegradation of toxic pollutants, the ability to sense PAA gradients may have implications for the bioremediation of aromatic hydrocarbons that are degraded via the PAA pathway.
Collapse
|
32
|
Lacal J, Reyes-Darias JA, García-Fontana C, Ramos JL, Krell T. Tactic responses to pollutants and their potential to increase biodegradation efficiency. J Appl Microbiol 2012; 114:923-33. [PMID: 23163356 DOI: 10.1111/jam.12076] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/07/2012] [Accepted: 11/11/2012] [Indexed: 11/26/2022]
Abstract
A significant number of bacterial strains are able to use toxic aromatic hydrocarbons as carbon and energy sources. In a number of cases, the evolution of the corresponding degradation pathway was accompanied by the evolution of tactic behaviours either towards or away from these toxic carbon sources. Reports are reviewed which show that a chemoattraction to heterogeneously distributed aromatic pollutants increases the bioavailability of these compounds and their biodegradation efficiency. An extreme form of chemoattraction towards aromatic pollutants, termed 'hyperchemotaxis', was described for Pseudomonas putida DOT-T1E, which is based on the action of the plasmid-encoded McpT chemoreceptor. Cells with this phenotype were found of being able to approach and of establishing contact with undiluted crude oil samples. Although close McpT homologues are found on other degradation plasmids, the sequence of their ligand-binding domains does not share significant similarity with that of NahY, the other characterized chemoreceptor for aromatic hydrocarbons. This may suggest the existence of at least two families of chemoreceptors for aromatic pollutants. The use of receptor chimers comprising the ligand-binding region of McpT for biosensing purposes is discussed.
Collapse
Affiliation(s)
- J Lacal
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | |
Collapse
|
33
|
2-nitrobenzoate 2-nitroreductase (NbaA) switches its substrate specificity from 2-nitrobenzoic acid to 2,4-dinitrobenzoic acid under oxidizing conditions. J Bacteriol 2012; 195:180-92. [PMID: 23123905 DOI: 10.1128/jb.02016-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
2-Nitrobenzoate 2-nitroreductase (NbaA) of Pseudomonas fluorescens strain KU-7 is a unique enzyme, transforming 2-nitrobenzoic acid (2-NBA) and 2,4-dinitrobenzoic acid (2,4-DNBA) to the 2-hydroxylamine compounds. Sequence comparison reveals that NbaA contains a conserved cysteine residue at position 141 and two variable regions at amino acids 65 to 74 and 193 to 216. The truncated mutant Δ65-74 exhibited markedly reduced activity toward 2,4-DNBA, but its 2-NBA reduction activity was unaffected; however, both activities were abolished in the Δ193-216 mutant, suggesting that these regions are necessary for the catalysis and specificity of NbaA. NbaA showed different lag times for the reduction of 2-NBA and 2,4-DNBA with NADPH, and the reduction of 2,4-DNBA, but not 2-NBA, failed in the presence of 1 mM dithiothreitol or under anaerobic conditions, indicating oxidative modification of the enzyme for 2,4-DNBA. The enzyme was irreversibly inhibited by 5,5'-dithio-bis-(2-nitrobenzoic acid) and ZnCl(2), which bind to reactive thiol/thiolate groups, and was eventually inactivated during the formation of higher-order oligomers at high pH, high temperature, or in the presence of H(2)O(2). SDS-PAGE and mass spectrometry revealed the formation of intermolecular disulfide bonds by involvement of the two cysteines at positions 141 and 194. Site-directed mutagenesis indicated that the cysteines at positions 39, 103, 141, and 194 played a role in changing the enzyme activity and specificity toward 2-NBA and 2,4-DNBA. This study suggests that oxidative modifications of NbaA are responsible for the differential specificity for the two substrates and further enzyme inactivation through the formation of disulfide bonds under oxidizing conditions.
Collapse
|
34
|
Kim YH, Yu MH. Overexpression of reactive cysteine-containing 2-nitrobenzoate nitroreductase (NbaA) and its mutants alters the sensitivity of Escherichia coli to reactive oxygen species by reprogramming a regulatory network of disulfide-bonded proteins. J Proteome Res 2012; 11:3219-30. [PMID: 22564194 DOI: 10.1021/pr300221b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of redox-sensitive proteins on Escherichia coli were investigated by overexpressing Pseudomonas 2-nitrobenzoate nitroreductase (NbaA) and its mutants. Overexpression of wild-type and mutant NbaA proteins significantly altered the sensitivity of E. coli to antibiotics and reactive oxygen species regardless of the enzyme activity for reduction of 2-nitrobenzoic acid. The overexpressed proteins rendered cells 100-10000-fold more sensitive to superoxide anion (O2(•-))-generating paraquat and 10-100-fold more resistant to H2O2. A significant increase in intracellular levels of O2(•-), but not H2O2, was observed during expression of wild-type and truncated (Δ65-74, Δ193-216, and Δ65-74Δ193-216) NbaA. From two-dimensional nonreducing/reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry analyses, 29 abundant proteins in the cytoplasm were identified to form interchain disulfide bonds, when cells were exposed to polymyxin B. Of them, down-regulation and modifications of SodB, KatE, and KatG were strongly associated with elevated cellular O2(•-) levels. Western blotting showed up-regulation of cell death signal sensor, CpxA, and down-regulation of cytoplasmic superoxide dismutase, SodB, with ∼2-fold up-regulation of heterodimeric integration host factor, Ihf. Activity gel assays revealed significant reduction of glyceraldehyde-3-phosphate dehydrogenase with constant levels of 6-phosphogluconate dehydrogenase. These changes would support a high level of NADPH to reduce H2O2-induced disulfide bonds by forced expression of thioredoxin A via thioredoxin reductase. Thus, overexpression of wild-type and truncated NbaA partially compensates for the lack of KatE and KatG to degrade H2O2, thereby enhancing disulfide bond formation in the cytoplasm, and modifies a regulatory network of disulfide-bonded proteins to increase intracellular O2(•-) levels.
Collapse
Affiliation(s)
- Yong-Hak Kim
- Department of Microbiology, Catholic University of Daegu School of Medicine , Daegu705-718, Republic of Korea
| | | |
Collapse
|
35
|
Three types of taxis used in the response of Acidovorax sp. strain JS42 to 2-nitrotoluene. Appl Environ Microbiol 2012; 78:2306-15. [PMID: 22286989 DOI: 10.1128/aem.07183-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acidovorax sp. strain JS42 is able to utilize 2-nitrotoluene (2NT) as its sole carbon, nitrogen, and energy source. We report here that strain JS42 is chemotactic to 2NT and that the response is increased when cells are grown on compounds such as 2NT that are known to induce the first step of 2NT degradation. Assays with JS42 mutants unable to oxidize 2NT showed that the first step of 2NT metabolism was required for the induced response, but not for a portion of the constitutive response, indicating that 2NT itself is an attractant. The 2NT metabolite nitrite was shown to be a strong attractant for strain JS42, and sufficient nitrite was produced during the taxis assay to account for a large part of the induced response. A mutant with an inactivated ntdY gene, which is located adjacent to the 2NT degradation genes and codes for a putative methyl-accepting chemotaxis protein, showed a defect in taxis toward 2NT that may involve a reduced response to nitrite. Responses of a mutant defective for the energy-taxis receptor, Aer, indicated that a functional aer gene is required for a substantial part of the wild-type induced response to 2NT. In summary, strain JS42 utilizes three types of taxis to sense and respond to 2NT: constitutive 2NT-specific chemotaxis to directly sense 2NT, metabolism-dependent nitrite-specific chemotaxis that may be mediated by NtdY, and energy taxis mediated by Aer.
Collapse
|
36
|
Zhang Y, Jiang Z, Cao B, Hu M, Wang Z, Dong X. Chemotaxis to atrazine and detection of a xenobiotic catabolic plasmid in Arthrobacter sp. DNS10. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2951-2958. [PMID: 22351258 DOI: 10.1007/s11356-012-0805-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
INTRODUCTION A plasmid named pDNS10 was detected from an atrazine-degrading strain Arthrobacter sp. DNS10 which has been isolated previously in our laboratory. MATERIALS AND METHODS In this paper, a special plasmid-detecting method and drop assays experiments were mainly used to achieve research goals. RESULTS AND DISCUSSION pDNS10 exhibited an excellent stability because it also could be detected even when the strain DNS10 has been subcultured under nonselective conditions for eight times. Over a 48-h incubation period, the OD(600) of samples inoculated with strain DNS10 and strain DNS10-ST (both of them contained pDNS10) were 0.31 ± 0.042 and 0.305 ± 0.034, respectively ,whereas the OD(600) of samples inoculated strain without pDNS10 (strain DNS10-PE) was only 0.138 ± 0.018. No atrazine was detected in the inoculated strain DNS10 and strain DNS10-ST samples at this period. Contrarily, the atrazine-degrading rate of strain DNS10-PE was only 5.23 ± 0.71%. Furthermore, both the two types of strains containing pDNS10 confirmed the presence of known degrading genes such as trzN, atzB, and atzC. It suggests that pDNS10 is an atrazine catabolic plasmid. In drop assays experiments, the wild-type strain DNS10 cells were chemotactically attracted to atrazine, whereas strain DNS10-PE showed no chemotaxis to atrazine and hydroxyatrazine. There was some relationship between atrazine degradation and the chemotactic response towards atrazine in strain DNS10. CONCLUSIONS The biochemical characteristics of pDNS10 and the chemotaxis characteristics of strain DNS10 could help us in better understanding of the mechanism of atrazine degradation by strain DNS10.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
37
|
Lacal J, Muñoz-Martínez F, Reyes-Darías JA, Duque E, Matilla M, Segura A, Calvo JJO, Jímenez-Sánchez C, Krell T, Ramos JL. Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 2011; 13:1733-44. [DOI: 10.1111/j.1462-2920.2011.02493.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Molina L, Duque E, Gómez MJ, Krell T, Lacal J, García-Puente A, García V, Matilla MA, Ramos JL, Segura A. The pGRT1 plasmid of Pseudomonas putida DOT-T1E encodes functions relevant for survival under harsh conditions in the environment. Environ Microbiol 2011; 13:2315-27. [PMID: 21605303 DOI: 10.1111/j.1462-2920.2011.02492.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pseudomonas putida DOT-T1E has the capacity to grow in the presence of high concentrations of toluene. This ability is mainly conferred by an efflux pump encoded in a self-transmissible 133 kb plasmid named pGRT1. Sequence analysis of the pGRT1 plasmid revealed several key features. Most of the genes related to the plasmid maintenance functions show similarity with those encoded on pBVIE04 from Burkholderia vietnamensis G4, and knock-out mutants in several of these genes confirmed their roles. Two additional plasmid DNA fragments were incorporated into the plasmid backbone by recombination and/or transposition; in these DNA regions, apart from multiple recombinases and transposases, several stress-related and environmentally relevant functions are encoded. We report that plasmid pGRT1 not only confers the cells with tolerance to toluene but also resistance to ultraviolet light. We show here the implication of a new protein in solvent tolerance which controls the level of expression of the TtgGHI efflux pump, as well as the implication of a protein with homology to the universal stress protein in solvent tolerance and ultraviolet light resistance. Furthermore, this plasmid encodes functions that allow the cells to chemotactically respond to toluene and participate in iron scavenging.
Collapse
Affiliation(s)
- Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1,18008-Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nitroreductase activity of ferredoxin reductase BphA4 from Dyella ginsengisoli LA−4 by catalytic and structural properties analysis. Appl Microbiol Biotechnol 2010; 89:655-63. [DOI: 10.1007/s00253-010-2874-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/21/2010] [Accepted: 08/23/2010] [Indexed: 01/17/2023]
|
40
|
Abstract
Nitroaromatic compounds are relatively rare in nature and have been introduced into the environment mainly by human activities. This important class of industrial chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Unfortunately, their extensive use has led to environmental contamination of soil and groundwater. The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the recalcitrance of these compounds to biodegradation. The electron-withdrawing nature of the nitro group, in concert with the stability of the benzene ring, makes nitroaromatic compounds resistant to oxidative degradation. Recalcitrance is further compounded by their acute toxicity, mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitroaromatic compounds are hazardous to human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that take advantage of them as sources of carbon, nitrogen, and energy. This review provides an overview of the synthesis of both man-made and biogenic nitroaromatic compounds, the bacteria that have been identified to grow on and completely mineralize nitroaromatic compounds, and the pathways that are present in these strains. The possible evolutionary origins of the newly evolved pathways are also discussed.
Collapse
Affiliation(s)
- Kou-San Ju
- Department of Microbiology, University of California, Davis, California 95616
| | - Rebecca E. Parales
- Department of Microbiology, University of California, Davis, California 95616
| |
Collapse
|
41
|
Yin Y, Xiao Y, Liu HZ, Hao F, Rayner S, Tang H, Zhou NY. Characterization of catabolic meta-nitrophenol nitroreductase from Cupriavidus necator JMP134. Appl Microbiol Biotechnol 2010; 87:2077-85. [PMID: 20508930 DOI: 10.1007/s00253-010-2666-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/29/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Cupriavidus necator JMP134 utilizes meta-nitrophenol (MNP) as a sole source of carbon, nitrogen, and energy. The metabolic reconstruction of MNP degradation performed in silico suggested that the mnp cluster might have played important roles in MNP degradation. In order to experimentally confirm the prediction, we have now characterized mnpA-encoded meta-nitrophenol nitroreductase involved in the initial reaction of MNP degradation. Real-time PCR analysis indicated that mnpA played an essential role in MNP degradation. MnpA was purified to homogeneity as His-tagged proteins and was considered to be a dimer as determined by gel filtration. MnpA was an MNP nitroreductase with a tightly bound flavin mononucleotide (FMN), catalyzing the partial reduction of MNP to meta-hydroxylaminophenol via meta-nitrosophenol in the presence of NADPH and oxygen. The accumulation of meta-nitrosophenol was confirmed with the results of liquid chromatography-diode array detection and time-of-flight mass spectrometry for the first time. The low K (m) and high k (cat) of MnpA as well as MNP-inducible transcription of mnpA suggested that MNP was the physiological substrate for this nitroreductase. In addition, the phylogenetic analysis revealed that nitroreductases of known physiological function including MnpA constituted a new clade in the nitro-FMN-reductase superfamily.
Collapse
Affiliation(s)
- Ying Yin
- Wuhan Institute of Virology, Chinese Academy of Sciences, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Functional analysis of the RdxA and RdxB nitroreductases of Campylobacter jejuni reveals that mutations in rdxA confer metronidazole resistance. J Bacteriol 2010; 192:1890-901. [PMID: 20118248 DOI: 10.1128/jb.01638-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is a leading cause of gastroenteritis in humans and a commensal bacterium of the intestinal tracts of many wild and agriculturally significant animals. We identified and characterized a locus, which we annotated as rdxAB, encoding two nitroreductases. RdxA was found to be responsible for sensitivity to metronidazole (Mtz), a common therapeutic agent for another epsilonproteobacterium, Helicobacter pylori. Multiple, independently derived mutations in rdxA but not rdxB resulted in resistance to Mtz (Mtz(r)), suggesting that, unlike the case in H. pylori, Mtz(r) might not be a polygenic trait. Similarly, Mtz(r) C. jejuni was isolated after both in vitro and in vivo growth in the absence of selection that contained frameshift, point, insertion, or deletion mutations within rdxA, possibly revealing genetic variability of this trait in C. jejuni due to spontaneous DNA replication errors occurring during normal growth of the bacterium. Similar to previous findings with H. pylori RdxA, biochemical analysis of C. jejuni RdxA showed strong oxidase activity, with reduction of Mtz occurring only under anaerobic conditions. RdxB showed similar characteristics but at levels lower than those for RdxA. Genetic analysis confirmed that rdxA and rdxB are cotranscribed and induced during in vivo growth in the chick intestinal tract, but an absence of these genes did not strongly impair C. jejuni for commensal colonization. Further studies indicate that rdxA is a convenient locus for complementation of mutants in cis. Our work contributes to the growing knowledge of determinants contributing to susceptibility to Mtz (Mtz(s)) and supports previous observations of the fundamental differences in the activities of nitroreductases from epsilonproteobacteria.
Collapse
|
43
|
Miller LD, Russell MH, Alexandre G. Diversity in bacterial chemotactic responses and niche adaptation. ADVANCES IN APPLIED MICROBIOLOGY 2009; 66:53-75. [PMID: 19203648 DOI: 10.1016/s0065-2164(08)00803-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of microbes to rapidly sense and adapt to environmental changes plays a major role in structuring microbial communities, in affecting microbial activities, as well as in influencing various microbial interactions with the surroundings. The bacterial chemotaxis signal transduction system is the sensory perception system that allows motile cells to respond optimally to changes in environmental conditions by allowing cells to navigate in gradients of diverse physicochemical parameters that can affect their metabolism. The analysis of complete genome sequences from microorganisms that occupy diverse ecological niches reveal the presence of multiple chemotaxis pathways and a great diversity of chemoreceptors with novel sensory specificities. Owing to its role in mediating rapid responses of bacteria to changes in the surroundings, bacterial chemotaxis is a behavior of interest in applied microbiology as it offers a unique opportunity for understanding the environmental cues that contribute to the survival of bacteria. This chapter explores the diversity of bacterial chemotaxis and suggests how gaining further insights into such diversity may potentially impact future drug and pesticides development and could inform bioremediation strategies.
Collapse
Affiliation(s)
- Lance D Miller
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
44
|
Dash SS, Sailaja NS, Gummadi SN. Chemotaxis ofPseudomonassp. to caffeine and related methylxanthines. J Basic Microbiol 2008; 48:130-4. [DOI: 10.1002/jobm.200700273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 2008; 32:474-500. [PMID: 18355273 DOI: 10.1111/j.1574-6976.2008.00107.x] [Citation(s) in RCA: 303] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Most nitroaromatic compounds are toxic and mutagenic for living organisms, but some microorganisms have developed oxidative or reductive pathways to degrade or transform these compounds. Reductive pathways are based either on the reduction of the aromatic ring by hydride additions or on the reduction of the nitro groups to hydroxylamino and/or amino derivatives. Bacterial nitroreductases are flavoenzymes that catalyze the NAD(P)H-dependent reduction of the nitro groups on nitroaromatic and nitroheterocyclic compounds. Nitroreductases have raised a great interest due to their potential applications in bioremediation, biocatalysis, and biomedicine, especially in prodrug activation for chemotherapeutic cancer treatments. Different bacterial nitroreductases have been purified and their biochemical and kinetic parameters have been determined. The crystal structure of some nitroreductases have also been solved. However, the physiological role(s) of these enzymes remains unclear. Nitroreductase genes are widely spread within bacterial genomes, but are also found in archaea and some eukaryotic species. Although studies on regulation of nitroreductase gene expression are scarce, it seems that nitroreductase genes may be controlled by the MarRA and SoxRS regulatory systems that are involved in responses to several antibiotics and environmental chemical hazards and to specific oxidative stress conditions. This review covers the microbial distribution, types, biochemical properties, structure and regulation of the bacterial nitroreductases. The possible physiological functions and the biotechnological applications of these enzymes are also discussed.
Collapse
Affiliation(s)
- María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain.
| | | | | | | |
Collapse
|
46
|
Iwaki H, Abe K, Hasegawa Y. Isolation and characterization of a new 2,4-dinitrophenol-degrading bacterium Burkholderia sp. strain KU-46 and its degradation pathway. FEMS Microbiol Lett 2007; 274:112-7. [PMID: 17590225 DOI: 10.1111/j.1574-6968.2007.00816.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A gram-negative bacterium, strain KU-46, was isolated from agricultural soil contaminated with pesticides and was found to utilize 2,4-dinitrophenol as the sole source of carbon and nitrogen. Based on 16S rRNA gene sequence analysis and its morphological, biochemical, and physiological characteristics, strain KU-46 was identified as a Burkholderia sp. Metabolite analyses by HPLC and liquid chromatography-MS indicated that 4-nitrophenol, 1,4-benzoquinone, and nitrite are the intermediates of 2,4-dinitrophenol metabolism, and 2,4-dinitrophenol is metabolized via 4-nitrophenol to 1,4-benzoquinone by strain KU-46. The 2,4-dinitrophenol degradation pathway enzymes are induced by both 2,4-dinitrophenol and 4-nitrophenol.
Collapse
Affiliation(s)
- Hiroaki Iwaki
- Department of Biotechnology, Faculty of Engineering, Kansai University, Osaka, Japan
| | | | | |
Collapse
|