1
|
Hao Y, Liu M, Fordjour E, Yu P, Yang Y, Liu X, Li Y, Liu CL, Bai Z. Engineering Escherichia coli for Perillyl Alcohol Production with Reduced Endogenous Dehydrogenation. ACS Synth Biol 2025; 14:1594-1605. [PMID: 40375748 DOI: 10.1021/acssynbio.4c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Perillyl alcohol is a widely utilized antitumor agent in cancer therapy. Due to the limitations associated with chemical synthesis and plant extraction methods, bioengineering microorganisms for the production of perillyl alcohol and its precursor limonene offers a more scalable and industrially compatible approach. In this study, we present the design of an Escherichia coli cell factory capable of de novo synthesis of limonene and perillyl alcohol from glucose. A comprehensive systems engineering approach was employed to increase precursor availability, enhance electron transfer efficiency, and reduce byproduct formation, resulting in efficient perillyl alcohol production. Specifically, ribosome-binding site optimization and increased enzyme expression improved limonene production to 417.04 mg/L. Additionally, the overexpression of cytochrome P450 electron transport proteins, knockdown of endogenous ethanol dehydrogenase to prevent product loss, and implementation of two-phase fermentation led to the production of 309.1 mg/L perillyl alcohol in shake flask cultures, which marks the highest titer reported for shake flask systems. This illustrates the critical role of reducing perillyl aldehyde byproduct formation in enhancing the feasibility of Escherichia coli-based perillyl alcohol production, providing a foundation for its economical large-scale production via microbial bioprocessing.
Collapse
Affiliation(s)
- Yunpeng Hao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Meiling Liu
- College of Food Technology and Chemical Engineering, Zhengzhou University of Technology, Henan, Zhengzhou 450044, China
| | - Eric Fordjour
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Peibin Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Chun-Li Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- College of Food Technology and Chemical Engineering, Zhengzhou University of Technology, Henan, Zhengzhou 450044, China
| |
Collapse
|
2
|
Guharajan S, Parisutham V, Brewster RC. A systematic survey of TF function in E. coli suggests RNAP stabilization is a prevalent strategy for both repressors and activators. Nucleic Acids Res 2025; 53:gkaf058. [PMID: 39921566 PMCID: PMC11806353 DOI: 10.1093/nar/gkaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
Transcription factors (TFs) are often classified as activators or repressors, yet these context-dependent labels are inadequate to predict quantitative profiles that emerge across different promoters. A mechanistic understanding of how different regulatory sequences shape TF function is challenging due to the lack of systematic genetic control in endogenous genes. To address this, we use a library of Escherichia coli strains with precise control of TF copy number, measuring the quantitative regulatory input-output function of 90 TFs on synthetic promoters that isolate the contributions of TF binding sequence, location, and basal promoter strength to gene expression. We interpret the measured regulation of these TFs using a thermodynamic model of gene expression and uncover stabilization of RNA polymerase as a pervasive regulatory mechanism, common to both activating and repressing TFs. This property suggests ways to tune the dynamic range of gene expression through the interplay of stabilizing TF function and RNA polymerase basal occupancy, a phenomenon we confirm by measuring fold change for stabilizing TFs across synthetic promoter sequences spanning over 100-fold basal expression. Our work deconstructs TF function at a mechanistic level, providing foundational principles on how gene expression is realized across different promoter contexts, with implications for decoding the relationship between sequence and gene expression.
Collapse
Affiliation(s)
- Sunil Guharajan
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, United States
| | - Vinuselvi Parisutham
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
| | - Robert C Brewster
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
| |
Collapse
|
3
|
Jensen SJ, Cuthbert BJ, Garza-Sánchez F, Helou CC, de Miranda R, Goulding CW, Hayes CS. Advanced glycation end-product crosslinking activates a type VI secretion system phospholipase effector protein. Nat Commun 2024; 15:8804. [PMID: 39394186 PMCID: PMC11470151 DOI: 10.1038/s41467-024-53075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Advanced glycation end-products (AGE) are a pervasive form of protein damage implicated in the pathogenesis of neurodegenerative disease, atherosclerosis and diabetes mellitus. Glycation is typically mediated by reactive dicarbonyl compounds that accumulate in all cells as toxic byproducts of glucose metabolism. Here, we show that AGE crosslinking is harnessed to activate an antibacterial phospholipase effector protein deployed by the type VI secretion system of Enterobacter cloacae. Endogenous methylglyoxal reacts with a specific arginine-lysine pair to tether the N- and C-terminal α-helices of the phospholipase domain. Substitutions at these positions abrogate both crosslinking and toxic phospholipase activity, but in vitro enzyme function can be restored with an engineered disulfide that covalently links the N- and C-termini. Thus, AGE crosslinking serves as a bona fide post-translation modification to stabilize phospholipase structure. Given the ubiquity of methylglyoxal in prokaryotic and eukaryotic cells, these findings suggest that glycation may be exploited more generally to stabilize other proteins. This alternative strategy to fortify tertiary structure could be particularly advantageous in the cytoplasm, where redox potentials preclude disulfide bond formation.
Collapse
Affiliation(s)
- Steven J Jensen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA
| | - Bonnie J Cuthbert
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA
| | - Colette C Helou
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Rodger de Miranda
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
| | - Celia W Goulding
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, 92697, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA.
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, 93106, USA.
| |
Collapse
|
4
|
Dong P, Fan Y, Huo YX, Sun L, Guo S. Pathway-Adapted Biosensor for High-Throughput Screening of O-Methyltransferase and its Application in Vanillin Synthesis. ACS Synth Biol 2024; 13:2873-2886. [PMID: 39208264 DOI: 10.1021/acssynbio.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vanillin is a widely used flavoring compound in the food, pharmaceutical, and cosmetics area. However, the biosynthesis of vanillin from low-cost shikimic acid is significantly hindered by the low activity of the rate-limiting enzyme, caffeate O-methyltransferase (COMT). To screen COMT variants with improved conversion rates, we designed a biosensing system that is adaptable to the COMT-mediated vanillin synthetic pathway. Through the evolution of aldehyde transcriptional factor YqhC, we obtained a dual-responsive variant, MuYqhC, which positively responds to the product and negatively responds to the substrate, with no response to intermediates. Using the MuYqhC-based vanillin biosensor, we successfully identified a COMT variant, Mu176, that displayed a 7-fold increase in the conversion rate compared to the wild-type COMT. This variant produced 2.38 mM vanillin from 3 mM protocatechuic acid, achieving a conversion rate of 79.33%. The enhanced activity of Mu176 was attributed to an enlarged binding pocket and strengthened substrate interaction. Applying Mu176 to Bacillus subtilis increased the level of vanillin production from shikimic acid by 2.39-fold. Further optimization of the production chassis, increasing the S-adenosylmethionine supply and the precursor concentration, elevated the vanillin titer to 1 mM, marking the highest level of vanillin production from shikimic acid in Bacillus. Our work highlights the significance of the MuYqhC-based biosensing system and the Mu176 variant in vanillin production.
Collapse
Affiliation(s)
- Pengyu Dong
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Yunjuan Fan
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
- Tangshan Research Institute, Beijing Institute of Technology, 063611 Tangshan, Hebei, China
| | - Lichao Sun
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
- Tangshan Research Institute, Beijing Institute of Technology, 063611 Tangshan, Hebei, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| |
Collapse
|
5
|
Ma X, Sun C, Xian M, Guo J, Zhang R. Progress in research on the biosynthesis of 1,2,4-butanetriol by engineered microbes. World J Microbiol Biotechnol 2024; 40:68. [PMID: 38200399 DOI: 10.1007/s11274-024-03885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
1,2,4-butanetriol (BT) is a polyol with unique chemical properties, which has a stereocenter and can be divided into D-BT (the S-enantiomer) and L-BT (the R-enantiomer). BT can be used for the synthesis of 1,2,4-butanetriol trinitrate, 3-hydroxytetrahydrofuran, polyurethane, and other chemicals. It is widely used in the military industry, medicine, tobacco, polymer. At present, the BT is mainly synthesized by chemical methods, which are accompanied by harsh reaction conditions, poor selectivity, many by-products, and environmental pollution. Therefore, BT biosynthesis methods with the advantages of mild reaction conditions and green sustainability have become a current research hotspot. In this paper, the research status of microbial synthesis of BT was summarized from the following three aspects: (1) the biosynthetic pathway establishment for BT from xylose; (2) metabolic engineering strategies employed for improving BT production from xylose; (3) other substrates for BT production. Finally, the challenges and prospects of biosynthetic BT were discussed for future methods to improve competitiveness for industrial production.
Collapse
Affiliation(s)
- Xiangyu Ma
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Sun
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jing Guo
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
6
|
Garai S, Bhowal B, Gupta M, Sopory SK, Singla-Pareek SL, Pareek A, Kaur C. Role of methylglyoxal and redox homeostasis in microbe-mediated stress mitigation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111922. [PMID: 37952767 DOI: 10.1016/j.plantsci.2023.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
7
|
Merino N, Berdejo D, Pagán E, Girard C, Kerros S, Spinozzi E, Pagán R, García-Gonzalo D. Phenotypic and Genotypic Comparison of Antimicrobial-Resistant Variants of Escherichia coli and Salmonella Typhimurium Isolated from Evolution Assays with Antibiotics or Commercial Products Based on Essential Oils. Pharmaceuticals (Basel) 2023; 16:1443. [PMID: 37895914 PMCID: PMC10610042 DOI: 10.3390/ph16101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
On account of the widespread development and propagation of antimicrobial-resistant (AMR) bacteria, essential oils (EOs) have emerged as potential alternatives to antibiotics. However, as already observed for antibiotics, recent studies have raised concerns regarding the potential emergence of resistant variants (RVs) to EOs. In this study, we assessed the emergence of RVs in Escherichia coli and Salmonella enterica Typhimurium after evolution assays under extended exposure to subinhibitory doses of two commercial EOs (AEN and COLIFIT) as well as to two antibiotics (amoxicillin and colistin). Phenotypic characterization of RVs from evolution assays with commercial EOs yielded no relevant increases in the minimum inhibitory concentration (MIC) of E. coli and did not even modify MIC values in S. Typhimurium. Conversely, RVs of E. coli and S. Typhimurium isolated from evolution assays with antibiotics showed increased resistance. Genotypic analysis demonstrated that resistance to commercial EOs was associated with enhanced protection against oxidative stress and redirection of cell energy toward efflux activity, while resistance to antibiotics was primarily linked to modifications in the cell binding sites of antibiotics. These findings suggest that AEN and COLIFIT could serve as safe alternatives to antibiotics in combating the emergence and dissemination of antimicrobial resistance within the agrifood system.
Collapse
Affiliation(s)
- Natalia Merino
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Elisa Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | | | | | - Eleonora Spinozzi
- Chemistry Interdiscplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
8
|
van Aalst ACA, Jansen MLA, Mans R, Pronk JT. Quantification and mitigation of byproduct formation by low-glycerol-producing Saccharomyces cerevisiae strains containing Calvin-cycle enzymes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:81. [PMID: 37173767 PMCID: PMC10176687 DOI: 10.1186/s13068-023-02329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Anaerobic Saccharomyces cerevisiae cultures require glycerol formation to re-oxidize NADH formed in biosynthetic processes. Introduction of the Calvin-cycle enzymes phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) has been shown to couple re-oxidation of biosynthetic NADH to ethanol production and improve ethanol yield on sugar in fast-growing batch cultures. Since growth rates in industrial ethanol production processes are not constant, performance of engineered strains was studied in slow-growing cultures. RESULTS In slow-growing anaerobic chemostat cultures (D = 0.05 h-1), an engineered PRK/RuBisCO strain produced 80-fold more acetaldehyde and 30-fold more acetate than a reference strain. This observation suggested an imbalance between in vivo activities of PRK/RuBisCO and formation of NADH in biosynthesis. Lowering the copy number of the RuBisCO-encoding cbbm expression cassette from 15 to 2 reduced acetaldehyde and acetate production by 67% and 29%, respectively. Additional C-terminal fusion of a 19-amino-acid tag to PRK reduced its protein level by 13-fold while acetaldehyde and acetate production decreased by 94% and 61%, respectively, relative to the 15 × cbbm strain. These modifications did not affect glycerol production at 0.05 h-1 but caused a 4.6 fold higher glycerol production per amount of biomass in fast-growing (0.29 h-1) anaerobic batch cultures than observed for the 15 × cbbm strain. In another strategy, the promoter of ANB1, whose transcript level positively correlated with growth rate, was used to control PRK synthesis in a 2 × cbbm strain. At 0.05 h-1, this strategy reduced acetaldehyde and acetate production by 79% and 40%, respectively, relative to the 15 × cbbm strain, without affecting glycerol production. The maximum growth rate of the resulting strain equalled that of the reference strain, while its glycerol production was 72% lower. CONCLUSIONS Acetaldehyde and acetate formation by slow-growing cultures of engineered S. cerevisiae strains carrying a PRK/RuBisCO bypass of yeast glycolysis was attributed to an in vivo overcapacity of PRK and RuBisCO. Reducing the capacity of PRK and/or RuBisCO was shown to mitigate this undesirable byproduct formation. Use of a growth rate-dependent promoter for PRK expression highlighted the potential of modulating gene expression in engineered strains to respond to growth-rate dynamics in industrial batch processes.
Collapse
Affiliation(s)
- Aafke C A van Aalst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Mickel L A Jansen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
9
|
Delmo EP, Wang Y, Zhu S, Li T, Wang Y, Jang J, Zhao Q, Roxas AP, Nambafu GS, Luo Z, Weng LT, Shao M. The Role of Glyoxal as an Intermediate in the Electrochemical CO 2 Reduction Reaction on Copper. THE JOURNAL OF PHYSICAL CHEMISTRY C 2023; 127:4496-4510. [DOI: 10.1021/acs.jpcc.3c00589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Ernest Pahuyo Delmo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Yian Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Tiehuai Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Yinuo Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Juhee Jang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Qinglan Zhao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Alexander Perez Roxas
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Gabriel Sikukuu Nambafu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Lu-Tao Weng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
- Materials Characterization and Preparation Facility (GZ) and Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400 Guangdong, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
- Energy Institute, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| |
Collapse
|
10
|
Guo L, Sun L, Huo YX. Toward bioproduction of oxo chemicals from C1 feedstocks using isobutyraldehyde as an example. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:80. [PMID: 35945564 PMCID: PMC9361566 DOI: 10.1186/s13068-022-02178-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022]
Abstract
AbstractOxo chemicals are valuable chemicals for synthesizing a wide array of industrial and consumer products. However, producing of oxo chemicals is predominately through the chemical process called hydroformylation, which requires petroleum-sourced materials and generates abundant greenhouse gas. Current concerns on global climate change have renewed the interest in reducing greenhouse gas emissions and recycling the plentiful greenhouse gas. A carbon–neutral manner in this regard is producing oxo chemicals biotechnologically using greenhouse gas as C1 feedstocks. Exemplifying isobutyraldehyde, this review demonstrates the significance of using greenhouse gas for oxo chemicals production. We highlight the current state and the potential of isobutyraldehyde synthesis with a special focus on the in vivo and in vitro scheme of C1-based biomanufacturing. Specifically, perspectives and scenarios toward carbon– and nitrogen–neutral isobutyraldehyde production are proposed. In addition, key challenges and promising approaches for enhancing isobutyraldehyde bioproduction are thoroughly discussed. This study will serve as a reference case in exploring the biotechnological potential and advancing oxo chemicals production derived from C1 feedstocks.
Collapse
|
11
|
Cho HY, Nam MS, Hong HJ, Song WS, Yoon SI. Structural and Biochemical Analysis of the Furan Aldehyde Reductase YugJ from Bacillus subtilis. Int J Mol Sci 2022; 23:ijms23031882. [PMID: 35163804 PMCID: PMC8836905 DOI: 10.3390/ijms23031882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
NAD(H)/NADP(H)-dependent aldehyde/alcohol oxidoreductase (AAOR) participates in a wide range of physiologically important cellular processes by reducing aldehydes or oxidizing alcohols. Among AAOR substrates, furan aldehyde is highly toxic to microorganisms. To counteract the toxic effect of furan aldehyde, some bacteria have evolved AAOR that converts furan aldehyde into a less toxic alcohol. Based on biochemical and structural analyses, we identified Bacillus subtilis YugJ as an atypical AAOR that reduces furan aldehyde. YugJ displayed high substrate specificity toward 5-hydroxymethylfurfural (HMF), a furan aldehyde, in an NADPH- and Ni2+-dependent manner. YugJ folds into a two-domain structure consisting of a Rossmann-like domain and an α-helical domain. YugJ interacts with NADP and Ni2+ using the interdomain cleft of YugJ. A comparative analysis of three YugJ structures indicated that NADP(H) binding plays a key role in modulating the interdomain dynamics of YugJ. Noticeably, a nitrate ion was found in proximity to the nicotinamide ring of NADP in the YugJ structure, and the HMF-reducing activity of YugJ was inhibited by nitrate, providing insights into the substrate-binding mode of YugJ. These findings contribute to the characterization of the YugJ-mediated furan aldehyde reduction mechanism and to the rational design of improved furan aldehyde reductases for the biofuel industry.
Collapse
Affiliation(s)
- Hye Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (H.Y.C.); (M.S.N.); (H.J.H.)
| | - Mi Sun Nam
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (H.Y.C.); (M.S.N.); (H.J.H.)
| | - Ho Jeong Hong
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (H.Y.C.); (M.S.N.); (H.J.H.)
| | - Wan Seok Song
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (W.S.S.); (S.-i.Y.)
| | - Sung-il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (H.Y.C.); (M.S.N.); (H.J.H.)
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (W.S.S.); (S.-i.Y.)
| |
Collapse
|
12
|
Chang D, Wang C, Ndayisenga F, Yu Z. Mutations in adaptively evolved Escherichia coli LGE2 facilitated the cost-effective upgrading of undetoxified bio-oil to bioethanol fuel. BIORESOUR BIOPROCESS 2021; 8:105. [PMID: 38650237 PMCID: PMC10991953 DOI: 10.1186/s40643-021-00459-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
Levoglucosan is a promising sugar present in the lignocellulose pyrolysis bio-oil, which is a renewable and environment-friendly source for various value-added productions. Although many microbial catalysts have been engineered to produce biofuels and chemicals from levoglucosan, the demerits that these biocatalysts can only utilize pure levoglucosan while inhibited by the inhibitors co-existing with levoglucosan in the bio-oil have greatly limited the industrial-scale application of these biocatalysts in lignocellulose biorefinery. In this study, the previously engineered Escherichia coli LGE2 was evolved for enhanced inhibitor tolerance using long-term adaptive evolution under the stress of multiple inhibitors and finally, a stable mutant E. coli-H was obtained after ~ 374 generations' evolution. In the bio-oil media with an extremely acidic pH of 3.1, E. coli-H with high inhibitor tolerance exhibited remarkable levoglucosan consumption and ethanol production abilities comparable to the control, while the growth of the non-evolved strain was completely blocked even when the pH was adjusted to 7.0. Finally, 8.4 g/L ethanol was achieved by E. coli-H in the undetoxified bio-oil media with ~ 2.0% (w/v) levoglucosan, reaching 82% of the theoretical yield. Whole-genome re-sequencing to monitor the acquisition of mutations identified 4 new mutations within the globally regulatory genes rssB, yqhA, and basR, and the - 10 box of the putative promoter of yqhD-dgkA operon. Especially, yqhA was the first time to be revealed as a gene responsible for inhibitor tolerance. The mutations were all responsible for improved fitness, while basR mutation greatly contributed to the fitness improvement of E. coli-H. This study, for the first time, generated an inhibitor-tolerant levoglucosan-utilizing strain that could produce cost-effective bioethanol from the toxic bio-oil without detoxification process, and provided important experimental evidence and valuable genetic/proteinic information for the development of other robust microbial platforms involved in lignocellulose biorefining processes.
Collapse
Affiliation(s)
- Dongdong Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Cong Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, 100085, People's Republic of China.
| |
Collapse
|
13
|
Dhyani R, Srivastava SK, Shankar K, Ghosh T, Beniwal A, Navani NK. A chemical genetic approach using genetically encoded reporters to detect and assess the toxicity of plant secondary metabolites against bacterial pathogens. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126399. [PMID: 34329040 DOI: 10.1016/j.jhazmat.2021.126399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Plant secondary metabolites are emerging as attractive alternatives in the development of therapeutics against infectious and chronic diseases. Due to the present pandemic, therapeutics showing toxicity against bacterial pathogens and viruses are gaining interest. Plant metabolites of terpenoid and phenylpropanoid categories have known antibacterial and antiviral properties. These metabolites have also been associated with toxicity to eukaryotic cells in terms of carcinogenicity, hepatotoxicity, and neurotoxicity. Sensing methods that can report the exact antibacterial dosage, formation, and accumulation of these antibacterial compounds are needed. The whole-cell reporters for such antibacterial metabolites are cost-effective and easy to maintain. In the present study, battery of toxicity sensors containing fluorescent transcriptional bioreporters was constructed, followed by fine-tuning the response using gene-debilitated E. coli mutants. This study shows that by combining regulatory switches with chemical genetics strategy, it may be possible to detect and elucidate the mode of action of effective antibacterial plant secondary metabolites - thymol, cinnamaldehyde, eugenol, and carvacrol in both pure and complex formats. Apart from the detection of adulteration of pure compounds present in complex mixture of essential oils, this approach will be useful to detect authenticity of essential oils and thus reduce unintended harmful effects on human and animal health.
Collapse
Affiliation(s)
- Rajat Dhyani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | | | - Krishna Shankar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Tamoghna Ghosh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Arun Beniwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
14
|
Merchel Piovesan Pereira B, Adil Salim M, Rai N, Tagkopoulos I. Tolerance to Glutaraldehyde in Escherichia coli Mediated by Overexpression of the Aldehyde Reductase YqhD by YqhC. Front Microbiol 2021; 12:680553. [PMID: 34248896 PMCID: PMC8262776 DOI: 10.3389/fmicb.2021.680553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Glutaraldehyde is a widely used biocide on the market for about 50 years. Despite its broad application, several reports on the emergence of bacterial resistance, and occasional outbreaks caused by poorly disinfection, there is a gap of knowledge on the bacterial adaptation, tolerance, and resistance mechanisms to glutaraldehyde. Here, we analyze the effects of the independent selection of mutations in the transcriptional regulator yqhC for biological replicates of Escherichia coli cells subjected to adaptive laboratory evolution (ALE) in the presence of glutaraldehyde. The evolved strains showed improved survival in the biocide (11-26% increase in fitness) as a result of mutations in the activator yqhC, which led to the overexpression of the yqhD aldehyde reductase gene by 8 to over 30-fold (3.1-5.2 log2FC range). The protective effect was exclusive to yqhD as other aldehyde reductase genes of E. coli, such as yahK, ybbO, yghA, and ahr did not offer protection against the biocide. We describe a novel mechanism of tolerance to glutaraldehyde based on the activation of the aldehyde reductase YqhD by YqhC and bring attention to the potential for the selection of such tolerance mechanism outside the laboratory, given the existence of YqhD homologs in various pathogenic and opportunistic bacterial species.
Collapse
Affiliation(s)
- Beatriz Merchel Piovesan Pereira
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Muhammad Adil Salim
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Navneet Rai
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| | - Ilias Tagkopoulos
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Shimada T, Ogasawara H, Kobayashi I, Kobayashi N, Ishihama A. Single-Target Regulators Constitute the Minority Group of Transcription Factors in Escherichia coli K-12. Front Microbiol 2021; 12:697803. [PMID: 34220787 PMCID: PMC8249747 DOI: 10.3389/fmicb.2021.697803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
The identification of regulatory targets of all transcription factors (TFs) is critical for understanding the entire network of genome regulation. A total of approximately 300 TFs exist in the model prokaryote Escherichia coli K-12, but the identification of whole sets of their direct targets is impossible with use of in vivo approaches. For this end, the most direct and quick approach is to identify the TF-binding sites in vitro on the genome. We then developed and utilized the gSELEX screening system in vitro for identification of more than 150 E. coli TF-binding sites along the E. coli genome. Based on the number of predicted regulatory targets, we classified E. coli K-12 TFs into four groups, altogether forming a hierarchy ranging from a single-target TF (ST-TF) to local TFs, global TFs, and nucleoid-associated TFs controlling as many as 1,000 targets. Using the collection of purified TFs and a library of genome DNA segments from a single and the same E. coli K-12, we identified here a total of 11 novel ST-TFs, CsqR, CusR, HprR, NorR, PepA, PutA, QseA, RspR, UvrY, ZraR, and YqhC. The regulation of single-target promoters was analyzed in details for the hitherto uncharacterized QseA and RspR. In most cases, the ST-TF gene and its regulatory target genes are adjacently located on the E. coli K-12 genome, implying their simultaneous transfer in the course of genome evolution. The newly identified 11 ST-TFs and the total of 13 hitherto identified altogether constitute the minority group of TFs in E. coli K-12.
Collapse
Affiliation(s)
| | - Hiroshi Ogasawara
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Nagano, Japan.,Research Center for Fungal and Microbial Dynamism, Shinshu University, Nagano, Japan
| | - Ikki Kobayashi
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Naoki Kobayashi
- Department of Frontier Science, Hosei University, Koganei, Japan
| | - Akira Ishihama
- Department of Frontier Science, Hosei University, Koganei, Japan.,Micro-Nano Technology Research Center, Hosei University, Koganei, Japan
| |
Collapse
|
16
|
Arginine glycosylation enhances methylglyoxal detoxification. Sci Rep 2021; 11:3834. [PMID: 33589708 PMCID: PMC7884692 DOI: 10.1038/s41598-021-83437-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Type III secretion system effector proteins have primarily been characterized for their interactions with host cell proteins and their ability to disrupt host signaling pathways. We are testing the hypothesis that some effectors are active within the bacterium, where they modulate bacterial signal transduction and physiology. We previously determined that the Citrobacter rodentium effector NleB possesses an intra-bacterial glycosyltransferase activity that increases glutathione synthetase activity to protect the bacterium from oxidative stress. Here we investigated the potential intra-bacterial activities of NleB orthologs in Salmonella enterica and found that SseK1 and SseK3 mediate resistance to methylglyoxal. SseK1 glycosylates specific arginine residues on four proteins involved in methylglyoxal detoxification, namely GloA (R9), GloB (R190), GloC (R160), and YajL (R149). SseK1-mediated Arg-glycosylation of these four proteins significantly enhances their catalytic activity, thus providing another important example of the intra-bacterial activities of type three secretion system effector proteins. These data are also the first demonstration that a Salmonella T3SS effector is active within the bacterium.
Collapse
|
17
|
Knutson SD, Sanford AA, Swenson CS, Korn MM, Manuel BA, Heemstra JM. Thermoreversible Control of Nucleic Acid Structure and Function with Glyoxal Caging. J Am Chem Soc 2020; 142:17766-17781. [PMID: 33017148 DOI: 10.1021/jacs.0c08996] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Controlling the structure and activity of nucleic acids dramatically expands their potential for application in therapeutics, biosensing, nanotechnology, and biocomputing. Several methods have been developed to impart responsiveness of DNA and RNA to small-molecule and light-based stimuli. However, heat-triggered control of nucleic acids has remained largely unexplored, leaving a significant gap in responsive nucleic acid technology. Moreover, current technologies have been limited to natural nucleic acids and are often incompatible with polymerase-generated sequences. Here we show that glyoxal, a well-characterized compound that covalently attaches to the Watson-Crick-Franklin face of several nucleobases, addresses these limitations by thermoreversibly modulating the structure and activity of virtually any nucleic acid scaffold. Using a variety of DNA and RNA constructs, we demonstrate that glyoxal modification is easily installed and potently disrupts nucleic acid structure and function. We also characterize the kinetics of decaging and show that activity can be restored via tunable thermal removal of glyoxal adducts under a variety of conditions. We further illustrate the versatility of this approach by reversibly caging a 2'-O-methylated RNA aptamer as well as synthetic threose nucleic acid (TNA) and peptide nucleic acid (PNA) scaffolds. Glyoxal caging can also be used to reversibly disrupt enzyme-nucleic acid interactions, and we show that caging of guide RNA allows for tunable and reversible control over CRISPR-Cas9 activity. We also demonstrate glyoxal caging as an effective method for enhancing PCR specificity, and we cage a biostable antisense oligonucleotide for time-release activation and titration of gene expression in living cells. Together, glyoxalation is a straightforward and scarless method for imparting reversible thermal responsiveness to theoretically any nucleic acid architecture, addressing a significant need in synthetic biology and offering a versatile new tool for constructing programmable nucleic acid components in medicine, nanotechnology, and biocomputing.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Aimee A Sanford
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Colin S Swenson
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Megan M Korn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Brea A Manuel
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
18
|
Characterizing the Mechanism of Action of an Ancient Antimicrobial, Manuka Honey, against Pseudomonas aeruginosa Using Modern Transcriptomics. mSystems 2020; 5:5/3/e00106-20. [PMID: 32606022 PMCID: PMC7329319 DOI: 10.1128/msystems.00106-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Manuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, Pseudomonas aeruginosa We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing. Manuka honey uniquely affects genes involved in the explosive cell lysis process and in maintaining the electron transport chain, causing protons to leak across membranes and collapsing the proton motive force, and it induces membrane depolarization and permeabilization in P. aeruginosa These data indicate that the activity of manuka honey comes from multiple mechanisms of action that do not engender bacterial resistance.IMPORTANCE The threat of antimicrobial resistance to human health has prompted interest in complex, natural products with antimicrobial activity. Honey has been an effective topical wound treatment throughout history, predominantly due to its broad-spectrum antimicrobial activity. Unlike traditional antibiotics, honey-resistant bacteria have not been reported; however, honey remains underutilized in the clinic in part due to a lack of understanding of its mechanism of action. Here, we demonstrate that honey affects multiple processes in bacteria, and this is not explained by its major antibacterial components. Honey also uniquely affects bacterial membranes, and this can be exploited for combination therapy with antibiotics that are otherwise ineffective on their own. We argue that honey should be included as part of the current array of wound treatments due to its effective antibacterial activity that does not promote resistance in bacteria.
Collapse
|
19
|
Deb SS, Reshamwala SMS, Lali AM. Activation of alternative metabolic pathways diverts carbon flux away from isobutanol formation in an engineered Escherichia coli strain. Biotechnol Lett 2019; 41:823-836. [PMID: 31093837 DOI: 10.1007/s10529-019-02683-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Metabolic engineering efforts are guided by identifying gene targets for overexpression and/or deletion. Isobutanol, a biofuel candidate, is biosynthesized using the valine biosynthesis pathway and enzymes of the Ehrlich pathway. Most reported studies for isobutanol production in Escherichia coli employ multicopy plasmids, an approach that suffers from disadvantages such as plasmid instability, increased metabolic burden, and use of antibiotics to maintain selection pressure. Cofactor imbalance is another issue that may limit production of isobutanol, as two enzymes of the pathway utilize NADPH as a cofactor. RESULTS To address these issues, we constructed E. coli strains with chromosomally-integrated, codon-optimized isobutanol pathway genes (ilvGM, ilvC, kivd, adh) selected on the basis of their cofactor preferences. Genes involved in diverting pyruvate flux toward fermentation byproducts were deleted. Metabolite analyses of the constructed strains revealed extracellular accumulation of significant amounts of isobutyraldehyde, a pathway intermediate, and the overflow metabolites 2,3-butanediol and acetol. CONCLUSIONS These results demonstrate that the genetic modifications carried out led to activation of alternative pathways that diverted carbon flux toward formation of unwanted metabolites. The present study highlights how precursor metabolites can be metabolized through enzymatic routes that have not been considered important in previous studies due to the different strategies employed therein. The insights gained from the present study will allow rational genetic modification of host cells for production of metabolites of interest.
Collapse
Affiliation(s)
- Shalini S Deb
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathatlal Parekh Marg, Matunga (East), Mumbai, Maharashtra, 400019, India
| | - Shamlan M S Reshamwala
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathatlal Parekh Marg, Matunga (East), Mumbai, Maharashtra, 400019, India.
| | - Arvind M Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathatlal Parekh Marg, Matunga (East), Mumbai, Maharashtra, 400019, India
- Department of Chemical Engineering, Institute of Chemical Technology, Nathatlal Parekh Marg, Matunga (East), Mumbai, Maharashtra, 400019, India
| |
Collapse
|
20
|
Zhou S, Zhuang Y, Zhu X, Yao F, Li H, Li H, Zou X, Wu J, Zhou H, Nuer G, Huang Y, Li S, Peng Q. YhjX Regulates the Growth of Escherichia coli in the Presence of a Subinhibitory Concentration of Gentamicin and Mediates the Adaptive Resistance to Gentamicin. Front Microbiol 2019; 10:1180. [PMID: 31191496 PMCID: PMC6545925 DOI: 10.3389/fmicb.2019.01180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/09/2019] [Indexed: 02/05/2023] Open
Abstract
The mechanisms of adaptive resistance of Escherichia coli to aminoglycosides remain unclear. Our RNA-Seq study found that expression of yhjX was markedly upregulated during initial exposure to subinhibitory concentrations of gentamicin. The expression of yhjX was then downregulated dramatically during a second exposure to gentamicin compared to the first exposure. YhjX encodes a putative transporter of the major facilitator superfamily, which is known to be the sole target of the YpdA/YpdB two-component system, the expression of which is highly and specifically induced by pyruvate. To investigate the effect of yhjX on the adaptive resistance of E. coli, in the present study, we constructed yhjX deletion and complemented strains of E. coli ATCC25922. Changes in extracellular pyruvate levels of wide-type and yhjX mutant were measured to determine whether YhjX functions as a pyruvate transporter. The results showed that yhjX deletion improved the growth of E. coli in medium containing subinhibitory concentrations of gentamicin. The yhjX deletion mutant did not exhibit adaptive resistance to subinhibitory concentrations of gentamicin. YhjX might not function as a pyruvate efflux pump in E. coli but was associated with the decrease following a sharp increase in the extracellular pyruvate level. Our findings indicate that yhjX regulates the growth of E. coli in the presence of a subinhibitory concentration of gentamicin and mediates the adaptive resistance to gentamicin.
Collapse
Affiliation(s)
- Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yijing Zhuang
- Department of Science and Education, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaojuan Zhu
- Department of Anesthesiology, First People’s Hospital of Kashi, Kashi, China
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Haiyan Li
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Huifang Li
- Department of Anesthesiology, First People’s Hospital of Kashi, Kashi, China
| | - Xiaoguang Zou
- Department of Pharmacy, First People’s Hospital of Kashi, Kashi, China
| | - Jianhua Wu
- Department of Science and Education, First People’s Hospital of Kashi, Kashi, China
| | - Huifang Zhou
- Department of Clinical Laboratory, First People’s Hospital of Kashi, Kashi, China
| | - Gulibaier Nuer
- Department of Anesthesiology, First People’s Hospital of Kashi, Kashi, China
| | - Yuanchun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shao Li
- Department of Hepatobiliary II, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qing Peng
- Department of Hepatobiliary II, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Qing Peng,
| |
Collapse
|
21
|
Transcriptional profiling of the mutualistic bacterium Vibrio fischeri and an hfq mutant under modeled microgravity. NPJ Microgravity 2018; 4:25. [PMID: 30588486 PMCID: PMC6299092 DOI: 10.1038/s41526-018-0060-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
For long-duration space missions, it is critical to maintain health-associated homeostasis between astronauts and their microbiome. To achieve this goal it is important to more fully understand the host–symbiont relationship under the physiological stress conditions of spaceflight. To address this issue we examined the impact of a spaceflight analog, low-shear-modeled microgravity (LSMMG), on the transcriptome of the mutualistic bacterium Vibrio fischeri. Cultures of V. fischeri and a mutant defective in the global regulator Hfq (∆hfq) were exposed to either LSMMG or gravity conditions for 12 h (exponential growth) and 24 h (stationary phase growth). Comparative transcriptomic analysis revealed few to no significant differentially expressed genes between gravity and the LSMMG conditions in the wild type or mutant V. fischeri at exponential or stationary phase. There was, however, a pronounced change in transcriptomic profiles during the transition between exponential and stationary phase growth in both V. fischeri cultures including an overall decrease in gene expression associated with translational activity and an increase in stress response. There were also several upregulated stress genes specific to the LSMMG condition during the transition to stationary phase growth. The ∆hfq mutants exhibited a distinctive transcriptome profile with a significant increase in transcripts associated with flagellar synthesis and transcriptional regulators under LSMMG conditions compared to gravity controls. These results indicate the loss of Hfq significantly influences gene expression under LSMMG conditions in a bacterial symbiont. Together, these results improve our understanding of the mechanisms by which microgravity alters the physiology of beneficial host-associated microbes.
Collapse
|
22
|
Jia X, Kelly RM, Han Y. Simultaneous biosynthesis of ( R)-acetoin and ethylene glycol from D-xylose through in vitro metabolic engineering. Metab Eng Commun 2018; 7:e00074. [PMID: 30197863 PMCID: PMC6127078 DOI: 10.1016/j.mec.2018.e00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/18/2018] [Accepted: 06/24/2018] [Indexed: 11/28/2022] Open
Abstract
(R)-acetoin is a four-carbon platform compound used as the precursor for synthesizing novel optically active materials. Ethylene glycol (EG) is a large-volume two-carbon commodity chemical used as the anti-freezing agent and building-block molecule for various polymers. Currently established microbial fermentation processes for converting monosaccharides to either (R)-acetoin or EG are plagued by the formation of undesirable by-products. We show here that a cell-free bioreaction scheme can generate enantiomerically pure acetoin and EG as co-products from biomass-derived D-xylose. The seven-step, ATP-free system included in situ cofactor regeneration and recruited enzymes from Escherichia coli W3110, Bacillus subtilis shaijiu 32 and Caulobacter crescentus CB 2. Optimized in vitro biocatalytic conditions generated 3.2 mM (R)-acetoin with stereoisomeric purity of 99.5% from 10 mM D-xylose at 30 °C and pH 7.5 after 24 h, with an initial (R)-acetoin productivity of 1.0 mM/h. Concomitantly, EG was produced at 5.5 mM, with an initial productivity of 1.7 mM/h. This in vitro biocatalytic platform illustrates the potential for production of multiple value-added biomolecules from biomass-based sugars with no ATP requirement.
Collapse
Key Words
- (R)-acetoin
- BSA, bovine serum albumin
- Cofactor regeneration
- D-xylose
- EG, ethylene glycol
- EMP, Embden-Meyerhoff-Parnas
- Ethylene glycol
- FAD, flavin adenine dinucleotide
- GC, gas chromatography
- HPLC, high-pressure liquid chromatography
- IPTG, isopropyl-β-D-thiogalactopyranoside
- In vitro metabolic engineering
- LB, lysogeny broth
- NAD+, oxidized nicotinamide adenine dinucleotide
- NADH, reduced nicotinamide adenine dinucleotide
- PET, polyethylene terephthalate
- PP, pentose phosphate
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- ThDP, Thiamine diphosphate
- ee, enantiomeric excess
Collapse
Affiliation(s)
- Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Frazão CR, Maton V, François JM, Walther T. Development of a Metabolite Sensor for High-Throughput Detection of Aldehydes in Escherichia Coli. Front Bioeng Biotechnol 2018; 6:118. [PMID: 30191150 PMCID: PMC6115493 DOI: 10.3389/fbioe.2018.00118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/03/2018] [Indexed: 01/31/2023] Open
Abstract
We have developed a fluorescence-based metabolite sensor enabling in vivo detection of various aldehydes of biotechnological interest in Escherichia coli. YqhC is a transcriptional regulator that is known to be involved in the upregulation of the yqhD-dgkA operon in the presence of aldehydes. We took advantage of this property by constructing a bi-modular biosensor, in which a sensing module constitutively expresses yqhC while a reporter module drives the expression of the syfp2 reporter gene that is put under control of the yqhD promoter. The sensitivity of the sensor has been optimized by engineering the 5′-UTRs of both the sensing and the reporter modules resulting in a 70-fold gain of fluorescence in response to the model compound glycolaldehyde at 5 mM. The optimized sensor further responded to other aldehydes when supplemented to the cultivation medium at concentrations of 1–10 mM. We furthermore showed that this metabolite sensor was functional in vivo as it responded to the presence of glycoladehyde that is specifically produced upon induction of a synthetic xylulose-1-phosphate pathway expressed in E. coli. This bi-modular sensor can therefore be employed as an exquisite tool for FACS-based ultra-high-throughput screening of aldehyde (over) producing enzymes.
Collapse
Affiliation(s)
- Cláudio R Frazão
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | - Victor Maton
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | - Jean M François
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France.,Toulouse White Biotechnology (TWB), Toulouse, France
| | - Thomas Walther
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| |
Collapse
|
24
|
A modular metabolic engineering approach for the production of 1,2-propanediol from glycerol by Saccharomyces cerevisiae. Metab Eng 2017; 44:223-235. [DOI: 10.1016/j.ymben.2017.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 10/04/2017] [Indexed: 01/20/2023]
|
25
|
Dydecka A, Bloch S, Rizvi A, Perez S, Nejman-Falenczyk B, Topka G, Gasior T, Necel A, Wegrzyn G, Donaldson LW, Wegrzyn A. Bad Phages in Good Bacteria: Role of the Mysterious orf63 of λ and Shiga Toxin-Converting Φ24 B Bacteriophages. Front Microbiol 2017; 8:1618. [PMID: 28890713 PMCID: PMC5575149 DOI: 10.3389/fmicb.2017.01618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
Lambdoid bacteriophages form a group of viruses that shares a common schema of genome organization and lifecycle. Some of them can play crucial roles in creating the pathogenic profiles of Escherichia coli strains. For example, Shiga toxin-producing E. coli (STEC) acquired stx genes, encoding Shiga toxins, via lambdoid prophages (Stx phages). The results obtained so far present the evidence for the relation between the exo-xis region of the phage genome and lambdoid phage development, however molecular mechanisms of activities of the exo-xis genes' products are still unknown. In view of this, we decided to determine the influence of the uncharacterized open reading frame orf63 of the exo-xis region on lambdoid phages development using recombinant prophages, λ and Stx phage Φ24B. We have demonstrated that orf63 codes for a folded protein, thus, it is a functional gene. NMR spectroscopy and analytical gel filtration were used to extend this observation further. From backbone chemical shifts, Orf63 is oligomeric in solution, likely a trimer and consistent with its small size (63 aa.), is comprised of two helices, likely intertwined to form the oligomer. We observed that the deletion of phage orf63 does not impair the intracellular lambdoid phage lytic development, however delays the time and decreases the efficiency of prophage induction and in consequence results in increased survival of E. coli during phage lytic development. Additionally, the deletion of phage orf63 negatively influences expression of the major phage genes and open reading frames from the exo-xis region during prophage induction with hydrogen peroxide. We conclude, that lambdoid phage orf63 may have specific functions in the regulation of lambdoid phages development, especially at the stage of the lysis vs. lysogenization decision. Besides, orf63 probably participates in the regulation of the level of expression of essential phage genes and open reading frames from the exo-xis region during prophage induction.
Collapse
Affiliation(s)
- Aleksandra Dydecka
- Department of Molecular Biology, Faculty of Biology, University of GdanskGdansk, Poland
| | - Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of GdanskGdansk, Poland
| | - Ali Rizvi
- Department of Biology, York UniversityToronto, ON, Canada
| | - Shaili Perez
- Department of Biology, York UniversityToronto, ON, Canada
| | | | - Gracja Topka
- Department of Molecular Biology, Faculty of Biology, University of GdanskGdansk, Poland
| | - Tomasz Gasior
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsaw, Poland
| | - Agnieszka Necel
- Department of Molecular Biology, Faculty of Biology, University of GdanskGdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of GdanskGdansk, Poland
| | | | - Alicja Wegrzyn
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsaw, Poland
| |
Collapse
|
26
|
Toxic Electrophiles Induce Expression of the Multidrug Efflux Pump MexEF-OprN in Pseudomonas aeruginosa through a Novel Transcriptional Regulator, CmrA. Antimicrob Agents Chemother 2017; 61:AAC.00585-17. [PMID: 28507116 DOI: 10.1128/aac.00585-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
The multidrug efflux system MexEF-OprN is produced at low levels in wild-type strains of Pseudomonas aeruginosa However, in so-called nfxC mutants, mutational alteration of the gene mexS results in constitutive overexpression of the pump, along with increased resistance of the bacterium to chloramphenicol, fluoroquinolones, and trimethoprim. In this study, analysis of in vitro-selected chloramphenicol-resistant clones of strain PA14 led to the identification of a new class of MexEF-OprN-overproducing mutants (called nfxC2) exhibiting alterations in an as-yet-uncharacterized gene, PA14_38040 (homolog of PA2047 in strain PAO1). This gene is predicted to encode an AraC-like transcriptional regulator and was called cmrA (for chloramphenicol resistance activator). In nfxC2 mutants, the mutated CmrA increases its proper gene expression and upregulates the operon mexEF-oprN through MexS and MexT, resulting in a multidrug resistance phenotype without significant loss in bacterial virulence. Transcriptomic experiments demonstrated that CmrA positively regulates a small set of 11 genes, including PA14_38020 (homolog of PA2048), which is required for the MexS/T-dependent activation of mexEF-oprN PA2048 codes for a protein sharing conserved domains with the quinol monooxygenase YgiN from Escherichia coli Interestingly, exposure of strain PA14 to toxic electrophilic molecules (glyoxal, methylglyoxal, and cinnamaldehyde) strongly activates the CmrA pathway and upregulates MexEF-OprN and, thus, increases the resistance of P. aeruginosa to the pump substrates. A picture emerges in which MexEF-OprN is central in the response of the pathogen to stresses affecting intracellular redox homeostasis.
Collapse
|
27
|
King JR, Woolston BM, Stephanopoulos G. Designing a New Entry Point into Isoprenoid Metabolism by Exploiting Fructose-6-Phosphate Aldolase Side Reactivity of Escherichia coli. ACS Synth Biol 2017; 6:1416-1426. [PMID: 28375628 DOI: 10.1021/acssynbio.7b00072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 2C-methyl-d-erythritol-4-phosphate (MEP) pathway in Escherichia coli has been highlighted for its potential to provide access to myriad isoprenoid chemicals of industrial and therapeutic relevance and discover antibiotic targets to treat microbial human pathogens. Here, we describe a metabolic engineering strategy for the de novo construction of a biosynthetic pathway that produces 1-dexoxy-d-xylulose-5-phosphate (DXP), the precursor metabolite of the MEP pathway, from the simple and renewable starting materials d-arabinose and hydroxyacetone. Unlike most metabolic engineering efforts in which cell metabolism is reprogrammed with enzymes that are highly specific to their desired reaction, we highlight the promiscuous activity of the native E. coli fructose-6-phosphate aldolase as central to the metabolic rerouting of carbon to DXP. We use mass spectrometric isotopomer analysis of intracellular metabolites to show that the engineered pathway is able to support in vivo DXP biosynthesis in E. coli. The engineered DXP synthesis is further able to rescue cells that were chemically inhibited in their ability to produce DXP and to increase terpene titers in strains harboring the non-native lycopene pathway. In addition to providing an alternative metabolic pathway to produce isoprenoids, the results here highlight the potential role of pathway evolution to circumvent metabolic inhibitors in the development of microbial antibiotic resistance.
Collapse
Affiliation(s)
- Jason R. King
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Benjamin M. Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
28
|
Bacterial Responses to Glyoxal and Methylglyoxal: Reactive Electrophilic Species. Int J Mol Sci 2017; 18:ijms18010169. [PMID: 28106725 PMCID: PMC5297802 DOI: 10.3390/ijms18010169] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 11/29/2022] Open
Abstract
Glyoxal (GO) and methylglyoxal (MG), belonging to α-oxoaldehydes, are produced by organisms from bacteria to humans by glucose oxidation, lipid peroxidation, and DNA oxidation. Since glyoxals contain two adjacent reactive carbonyl groups, they are referred to as reactive electrophilic species (RES), and are damaging to proteins and nucleotides. Therefore, glyoxals cause various diseases in humans, such as diabetes and neurodegenerative diseases, from which all living organisms need to be protected. Although the glyoxalase system has been known for some time, details on how glyoxals are sensed and detoxified in the cell have not been fully elucidated, and are only beginning to be uncovered. In this review, we will summarize the current knowledge on bacterial responses to glyoxal, and specifically focus on the glyoxal-associated regulators YqhC and NemR, as well as their detoxification mediated by glutathione (GSH)-dependent/independent glyoxalases and NAD(P)H-dependent reductases. Furthermore, we will address questions and future directions.
Collapse
|
29
|
Ku JT, Simanjuntak W, Lan EI. Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:291. [PMID: 29213330 PMCID: PMC5713646 DOI: 10.1186/s13068-017-0978-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/26/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND n-Butyraldehyde is a high-production volume chemical produced exclusively from hydroformylation of propylene. It is a versatile chemical used in the synthesis of diverse C4-C8 alcohols, carboxylic acids, esters, and amines. Its high demand and broad applications make it an ideal chemical to be produced from biomass. RESULTS An Escherichia coli strain was engineered to produce n-butyraldehyde directly from glucose by expressing a modified Clostridium CoA-dependent n-butanol production pathway with mono-functional Coenzyme A-acylating aldehyde dehydrogenase (Aldh) instead of the natural bifunctional aldehyde/alcohol dehydrogenase. Aldh from Clostridium beijerinckii outperformed the other tested homologues. However, the presence of native alcohol dehydrogenase led to spontaneous conversion of n-butyraldehyde to n-butanol. This problem was addressed by knocking out native E. coli alcohol dehydrogenases, significantly improving the butyraldehyde-to-butanol ratio. This ratio was further increased reducing media complexity from Terrific broth to M9 media containing 2% yeast extract. To increase production titer, in situ liquid-liquid extraction using dodecane and oleyl alcohol was investigated. Results showed oleyl alcohol as a better extractant, increasing the titer of n-butyraldehyde produced to 630 mg/L. CONCLUSION This study demonstrated n-butyraldehyde production from glucose. Through sequential strain and condition optimizations, butyraldehyde-to-butanol ratio was improved significantly compared to the parent strain. Results from this work may serve as a basis for further development of renewable n-butyraldehyde production.
Collapse
Affiliation(s)
- Jason T. Ku
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 1001 Daxue Road, Hsinchu, 300 Taiwan
| | - Wiwik Simanjuntak
- Department of Biological Science and Technology, National Chiao Tung University, 1001 Daxue Road, Hsinchu, 300 Taiwan
| | - Ethan I. Lan
- Department of Biological Science and Technology, National Chiao Tung University, 1001 Daxue Road, Hsinchu, 300 Taiwan
| |
Collapse
|
30
|
Cabulong RB, Valdehuesa KNG, Ramos KRM, Nisola GM, Lee WK, Lee CR, Chung WJ. Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli. Enzyme Microb Technol 2016; 97:11-20. [PMID: 28010767 DOI: 10.1016/j.enzmictec.2016.10.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/07/2016] [Accepted: 10/30/2016] [Indexed: 12/01/2022]
Abstract
The microbial production of renewable ethylene glycol (EG) has been gaining attention recently due to its growing importance in chemical and polymer industries. EG has been successfully produced biosynthetically from d-xylose through several novel pathways. The first report on EG biosynthesis employed the Dahms pathway in Escherichia coli wherein 71% of the theoretical yield was achieved. This report further improved the EG yield by implementing metabolic engineering strategies. First, d-xylonic acid accumulation was reduced by employing a weak promoter which provided a tighter control over Xdh expression. Second, EG yield was further improved by expressing the YjgB, which was identified as the most suitable aldehyde reductase endogenous to E. coli. Finally, cellular growth, d-xylose consumption, and EG yield were further increased by blocking a competing reaction. The final strain (WTXB) was able to reach up to 98% of the theoretical yield (25% higher as compared to the first study), the highest reported value for EG production from d-xylose.
Collapse
Affiliation(s)
- Rhudith B Cabulong
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Kris Niño G Valdehuesa
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Kristine Rose M Ramos
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Grace M Nisola
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Chang Ro Lee
- Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Wook-Jin Chung
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea.
| |
Collapse
|
31
|
Lee C, Kim J, Kwon M, Lee K, Min H, Kim SH, Kim D, Lee N, Kim J, Kim D, Ko C, Park C. Screening for Escherichia coli K-12 genes conferring glyoxal resistance or sensitivity by transposon insertions. FEMS Microbiol Lett 2016; 363:fnw199. [PMID: 27535647 DOI: 10.1093/femsle/fnw199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 12/14/2022] Open
Abstract
Glyoxal (GO) belongs to the reactive electrophilic species generated in vivo in all organisms. In order to identify targets of GO and their response mechanisms, we attempted to screen for GO-sensitive mutants by random insertions of TnphoA-132. The genes responsible for GO susceptibility were functionally classified as the following: (i) tRNA modification; trmE, gidA and truA, (ii) DNA repair; recA and recC, (iii) toxin-antitoxin; mqsA and (iv) redox metabolism; yqhD and caiC In addition, an insertion in the crp gene, encoding the cAMP responsive transcription factor, exhibits a GO-resistant phenotype, which is consistent with the phenotype of adenylate cyclase (cya) mutant showing GO resistance. This suggests that global regulation involving cAMP is operated in a stress response to GO. To further characterize the CRP-regulated genes directly associated with GO resistance, we created double mutants deficient in both crp and one of the candidate genes including yqhD, gloA and sodB The results indicate that these genes are negatively regulated by CRP as confirmed by real-time RT-PCR. We propose that tRNA as well as DNA are the targets of GO and that toxin/antitoxin, antioxidant and cAMP are involved in cellular response to GO.
Collapse
Affiliation(s)
- Changhan Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jihong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Minsuk Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Kihyun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Haeyoung Min
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Seong Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Dongkyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Nayoung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jiyeun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Doyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Changmin Ko
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Chankyu Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
32
|
Jayakody LN, Ferdouse J, Hayashi N, Kitagaki H. Identification and detoxification of glycolaldehyde, an unattended bioethanol fermentation inhibitor. Crit Rev Biotechnol 2016; 37:177-189. [PMID: 26953525 DOI: 10.3109/07388551.2015.1128877] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although there have been approximately 60 chemical compounds identified as potent fermentation inhibitors in lignocellulose hydrolysate, our research group recently discovered glycolaldehyde as a key fermentation inhibitor during second generation biofuel production. Accordingly, we have developed a yeast S. cerevisiae strain exhibiting tolerance to glycolaldehyde. During this glycolaldehyde study, we established novel approaches for rational engineering of inhibitor-tolerant S. cerevisiae strains, including engineering redox cofactors and engineering the SUMOylation pathway. These new technical dimensions provide a novel platform for engineering S. cerevisiae strains to overcome one of the key barriers for industrialization of lignocellulosic ethanol production. As such, this review discusses novel biochemical insight of glycolaldehyde in the context of the biofuel industry.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- a Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana , IL , USA.,b Department of Biochemistry and Applied Biosciences United Graduate School of Agricultural Sciences , Kagoshima University , Kagoshima , Japan , and
| | - Jannatul Ferdouse
- c Department of Environmental Sciences Faculty of Agriculture , Saga University , Saga , Japan
| | - Nobuyuki Hayashi
- c Department of Environmental Sciences Faculty of Agriculture , Saga University , Saga , Japan
| | - Hiroshi Kitagaki
- b Department of Biochemistry and Applied Biosciences United Graduate School of Agricultural Sciences , Kagoshima University , Kagoshima , Japan , and.,c Department of Environmental Sciences Faculty of Agriculture , Saga University , Saga , Japan
| |
Collapse
|
33
|
Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose. Metab Eng 2016; 33:12-18. [DOI: 10.1016/j.ymben.2015.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/14/2015] [Accepted: 10/30/2015] [Indexed: 11/23/2022]
|
34
|
Yao R, Xiong D, Hu H, Wakayama M, Yu W, Zhang X, Shimizu K. Elucidation of the co-metabolism of glycerol and glucose in Escherichia coli by genetic engineering, transcription profiling, and (13)C metabolic flux analysis. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:175. [PMID: 27555881 PMCID: PMC4994220 DOI: 10.1186/s13068-016-0591-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/15/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Glycerol, a byproduct of biodiesel, has become a readily available and inexpensive carbon source for the production of high-value products. However, the main drawback of glycerol utilization is the low consumption rate and shortage of NADPH formation, which may limit the production of NADPH-requiring products. To overcome these problems, we constructed a carbon catabolite repression-negative ΔptsGglpK* mutant by both blocking a key glucose PTS transporter and enhancing the glycerol conversion. The mutant can recover normal growth by co-utilization of glycerol and glucose after loss of glucose PTS transporter. To reveal the metabolic potential of the ΔptsGglpK* mutant, this study examined the flux distributions and regulation of the co-metabolism of glycerol and glucose in the mutant. RESULTS By labeling experiments using [1,3-(13)C]glycerol and [1-(13)C]glucose, (13)C metabolic flux analysis was employed to decipher the metabolisms of both the wild-type strain and the ΔptsGglpK* mutant in chemostat cultures. When cells were maintained at a low dilution rate (0.1 h(-1)), the two strains showed similar fluxome profiles. When the dilution rate was increased, both strains upgraded their pentose phosphate pathway, glycolysis and anaplerotic reactions, while the ΔptsGglpK* mutant was able to catabolize much more glycerol than glucose (more than tenfold higher). Compared with the wild-type strain, the mutant repressed its flux through the TCA cycle, resulting in higher acetate overflow. The regulation of fluxomes was consistent with transcriptional profiling of several key genes relevant to the TCA cycle and transhydrogenase, namely gltA, icdA, sdhA and pntA. In addition, cofactor fluxes and their pool sizes were determined. The ΔptsGglpK* mutant affected the redox NADPH/NADH state and reduced the ATP level. Redox signaling activated the ArcA regulatory system, which was responsible for TCA cycle repression. CONCLUSIONS This work employs both (13)C-MFA and transcription/metabolite analysis for quantitative investigation of the co-metabolism of glycerol and glucose in the ΔptsGglpK* mutant. The ArcA regulatory system dominates the control of flux redistribution. The ΔptsGglpK* mutant can be used as a platform for microbial cell factories for the production of biofuels and biochemicals, since most of fuel molecule (e.g., alcohols) synthesis requires excess reducing equivalents.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Dewang Xiong
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Masataka Wakayama
- Institute for Advanced Biosciences, Keio University, 246-2, Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052 Japan
| | - Wenjuan Yu
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Kazuyuki Shimizu
- Institute for Advanced Biosciences, Keio University, 246-2, Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052 Japan
| |
Collapse
|
35
|
Lee C, Lee J, Lee JY, Park C. Characterization of theEscherichia coliYajL, YhbO and ElbB glyoxalases. FEMS Microbiol Lett 2015; 363:fnv239. [DOI: 10.1093/femsle/fnv239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2015] [Indexed: 01/07/2023] Open
|
36
|
The functional landscape bound to the transcription factors of Escherichia coli K-12. Comput Biol Chem 2015; 58:93-103. [PMID: 26094112 DOI: 10.1016/j.compbiolchem.2015.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 05/31/2015] [Accepted: 06/03/2015] [Indexed: 01/05/2023]
Abstract
Motivated by the experimental evidences accumulated in the last ten years and based on information deposited in RegulonDB, literature look up, and sequence analysis, we analyze the repertoire of 304 DNA-binding Transcription factors (TFs) in Escherichia coli K-12. These regulators were grouped in 78 evolutionary families and are regulating almost half of the total genes in this bacterium. In structural terms, 60% of TFs are composed by two-domains, 30% are monodomain, and 10% three- and four-structural domains. As previously noticed, the most abundant DNA-binding domain corresponds to the winged helix-turn-helix, with few alternative DNA-binding structures, resembling the hypothesis of successful protein structures with the emergence of new ones at low scales. In summary, we identified and described the characteristics associated to the DNA-binding TF in E. coli K-12. We also identified twelve functional modules based on a co-regulated gene matrix. Finally, diverse regulons were predicted based on direct associations between the TFs and potential regulated genes. This analysis should increase our knowledge about the gene regulation in the bacterium E. coli K-12, and provide more additional clues for comprehensive modelling of transcriptional regulatory networks in other bacteria.
Collapse
|
37
|
Valdehuesa KNG, Lee WK, Ramos KRM, Cabulong RB, Choi J, Liu H, Nisola GM, Chung WJ. Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli. Bioprocess Biosyst Eng 2015; 38:1761-72. [PMID: 26048478 DOI: 10.1007/s00449-015-1417-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022]
Abstract
Biosynthetic pathways for the production of biofuels often rely on inherent aldehyde reductases (ALRs) of the microbial host. These native ALRs play vital roles in the success of the microbial production of 1,3-propanediol, 1,4-butanediol, and isobutanol. In the present study, the main ALR for 1,2,4-butanetriol (BT) production in Escherichia coli was identified. Results of real-time PCR analysis for ALRs in EWBT305 revealed the increased expression of adhP, fucO, adhE, and yqhD genes during BT production. The highest increase of expression was observed up to four times in yqhD. Singular deletion of adhP, fucO, or adhE gene showed marginal differences in BT production compared to that of the parent strain, EWBT305. Remarkably, yqhD gene deletion (KBTA4 strain) almost completely abolished BT production while its re-introduction (wild-type gene with its native promoter) on a low copy plasmid restored 75 % of BT production (KBTA4-2 strain). This suggests that yqhD gene is the main ALR of the BT pathway. In addition, KBTA4 showed almost no NADPH-dependent ALR activity, but was also restored upon re-introduction of the yqhD gene (KBTA4-2 strain). Therefore, the required ALR activity to complete the BT pathway was mainly contributed by YqhD. Increased gene expression and promiscuity of YqhD were both found essential factors to render YqhD as the key ALR for the BT pathway.
Collapse
Affiliation(s)
- Kris Niño G Valdehuesa
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Yongin City, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng 2014; 25:227-37. [PMID: 25108218 DOI: 10.1016/j.ymben.2014.07.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/30/2014] [Accepted: 07/30/2014] [Indexed: 01/15/2023]
Abstract
Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90-99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2-C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production.
Collapse
|
39
|
Siedler S, Bringer S, Polen T, Bott M. NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: influence on global gene expression and role of oxygen supply. Biotechnol Bioeng 2014; 111:2067-75. [PMID: 24771245 DOI: 10.1002/bit.25271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/25/2014] [Accepted: 04/14/2014] [Indexed: 11/11/2022]
Abstract
An Escherichia coli ΔpfkA mutant lacking the major phosphofructokinase possesses a partially cyclized pentose phosphate pathway leading to an increased NADPH per glucose ratio. This effect decreases the amount of glucose required for NADPH regeneration in reductive biotransformations, such as the conversion of methyl acetoacetate (MAA) to (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis. Here, global transcriptional analyses were performed to study regulatory responses during reductive biotransformation. DNA microarray analysis revealed amongst other things increased expression of soxS, supporting previous results indicating that a high NADPH demand contributes to the activation of SoxR, the transcriptional activator of soxS. Furthermore, several target genes of the ArcAB two-component system showed a lower mRNA level in the reference strain than in the ΔpfkA mutant, pointing to an increased QH2 /Q ratio in the reference strain. This prompted us to analyze yields and productivities of MAA reduction to MHB under different oxygen regimes in a bioreactor. Under anaerobic conditions, the specific MHB production rates of both strains were comparable (7.4 ± 0.2 mmolMHB h(-1) gcdw (-1) ) and lower than under conditions of 15% dissolved oxygen, where those of the reference strain (12.8 mmol h(-1) gcdw (-1) ) and of the ΔpfkA mutant (11.0 mmol h(-1) gcdw (-1) ) were 73% and 49% higher. While the oxygen transfer rate (OTR) of the reference strain increased after the addition of MAA, presumably due to the oxidation of the acetate accumulated before MAA addition, the OTR of the ΔpfkA strain strongly decreased, indicating a very low respiration rate despite sufficient oxygen supply. The latter effect can likely be attributed to a restricted conversion of NADPH into NADH via the soluble transhydrogenase SthA, as the enzyme is outcompeted in the presence of MAA by the recombinant NADPH-dependent alcohol dehydrogenase. The differences in respiration rates can explain the suggested higher ArcAB activity in the reference strain.
Collapse
Affiliation(s)
- Solvej Siedler
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | | | | | | |
Collapse
|
40
|
Carraro L, Fasolato L, Montemurro F, Martino ME, Balzan S, Servili M, Novelli E, Cardazzo B. Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12. Microb Biotechnol 2014; 7:265-75. [PMID: 24628798 PMCID: PMC3992022 DOI: 10.1111/1751-7915.12119] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 01/16/2014] [Accepted: 01/26/2014] [Indexed: 11/28/2022] Open
Abstract
Olive mill wastes are sources of phenolic compounds with a wide array of biological activities, including antimicrobial effects. A potential option for bioremediation to overcome ecological problems is the reutilization of these natural compounds in food production. The aim of this work was to gain a better understanding of the antimicrobial mode of action of a phenols extract from olive vegetation water (PEOVW) at molecular level by studying Escherichia coli as a model microorganism. Genome-wide transcriptional analysis was performed on E. coli K-12 exposed to PEOVW. The repression of genes for flagellar synthesis and the involvement of genes linked to biofilm formation and stress response were observed. Sub-inhibitory concentrations of PEOVW significantly decreased biofilm formation, swarming and swimming motility, thus confirming the gene expression data. This study provides interesting insights on the molecular action of PEOVW on E. coli K-12. Given these anti-biofilm properties and considering that biofilm formation is a serious problem for the food industry and human health, PEOVW has proved to be a high-value natural product.
Collapse
Affiliation(s)
- Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Filomena Montemurro
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Stefania Balzan
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Maurizio Servili
- Department of Economical and Food Science, University of PerugiaPerugia, 06123, Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| |
Collapse
|
41
|
Zhu H, Yi X, Liu Y, Hu H, Wood TK, Zhang X. Production of acetol from glycerol using engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2013; 149:238-43. [PMID: 24113547 DOI: 10.1016/j.biortech.2013.09.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 05/11/2023]
Abstract
Escherichia coli Lin43 is a strain which has some mutations in glycerol kinase (GlpK) and the repressor for the glycerol 3-phosphate regulon (GlpR). When exposed to glycerol, it quickly accumulates lethal levels of methylglyoxal, which is a precursor of acetol; acetol is important for the manufacture of polyols, acrolein, dyes, and skin tanning agents. This work reports the engineering of E. coli Lin 43 for the conversion of glycerol into acetol. First, the glyoxalase system was interrupted by deleting the gloA gene, which increased the acetol yield by 32%. In addition, the aldehyde reductase YqhD was overexpressed which led to an increase of acetol production by 11.4-fold. Acetol production was optimized by varying the cell density, glycerol concentration, supplemental carbon source, pH and temperature. Under the optimal conditions (OD600=20, 20 g/L glycerol, 2g/L succinate, pH 7.0, and 28°C), we obtained 5.4 g/L acetol in 21 h.
Collapse
Affiliation(s)
- Hongliang Zhu
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
42
|
Elleuche S, Fodor K, von der Heyde A, Klippel B, Wilmanns M, Antranikian G. Group III alcohol dehydrogenase from Pectobacterium atrosepticum: insights into enzymatic activity and organization of the metal ion-containing region. Appl Microbiol Biotechnol 2013; 98:4041-51. [PMID: 24265029 DOI: 10.1007/s00253-013-5374-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/15/2013] [Accepted: 10/31/2013] [Indexed: 12/01/2022]
Abstract
NAD(P)(+)-dependent alcohol dehydrogenases (ADH) are widely distributed in all phyla. These proteins can be assigned to three nonhomologous groups of isozymes, with group III being highly diverse with regards to catalytic activity and primary structure. Members of group III ADHs share a conserved stretch of amino acid residues important for cofactor binding and metal ion coordination, while sequence identities for complete proteins are highly diverse (<20 to >90 %). A putative group III ADH PaYqhD has been identified in BLAST analysis from the plant pathogenic enterobacterium Pectobacterium atrosepticum. The PaYqhD gene was expressed in the heterologous host Escherichia coli, and the recombinant protein was purified in a two-step purification procedure to homogeneity indicating an obligate dimerization of monomers. Four conserved amino acid residues involved in metal ion coordination were substituted with alanine, and their importance for catalytic activity was confirmed by circular dichroism spectrum determination, in vitro, and growth experiments. PaYqhD exhibits optimal activity at 40 °C with short carbon chain aldehyde compounds and NADPH as cofactor indicating the enzyme to be an aldehyde reductase. No oxidative activities towards alcoholic compounds were detectable. EDTA completely inhibited catalytic activity and was fully restored by the addition of Co(2+). Activity measurements together with sequence alignments and structure analysis confirmed that PaYqhD belongs to the butanol dehydrogenase-like enzymes within group III of ADHs.
Collapse
Affiliation(s)
- Skander Elleuche
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, 21073, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Aradská J, Šmidák R, Turkovičová L, Turňa J, Lubec G. Proteomic differences between tellurite-sensitive and tellurite-resistant E.coli. PLoS One 2013; 8:e78010. [PMID: 24244285 PMCID: PMC3823874 DOI: 10.1371/journal.pone.0078010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/11/2013] [Indexed: 01/20/2023] Open
Abstract
Tellurite containing compounds are in use for industrial processes and increasing delivery into the environment generates specific pollution that may well result in contamination and subsequent potential adverse effects on public health. It was the aim of the current study to reveal mechanism of toxicity in tellurite-sensitive and tellurite-resistant E. coli at the protein level. In this work an approach using gel-based mass spectrometrical analysis to identify a differential protein profile related to tellurite toxicity was used and the mechanism of ter operon-mediated tellurite resistance was addressed. E. coli BL21 was genetically manipulated for tellurite-resistance by the introduction of the resistance-conferring ter genes on the pLK18 plasmid. Potassium tellurite was added to cultures in order to obtain a final 3.9 micromolar concentration. Proteins from tellurite-sensitive and tellurite-resistant E. coli were run on 2-D gel electrophoresis, spots of interest were picked, in-gel digested and subsequently analysed by nano-LC-MS/MS (ion trap). In addition, Western blotting and measurement of enzymatic activity were performed to verify the expression of certain candidate proteins. Following exposure to tellurite, in contrast to tellurite-resistant bacteria, sensitive cells exhibited increased levels of antioxidant enzymes superoxide dismutases, catalase and oxidoreductase YqhD. Cysteine desulfurase, known to be related to tellurite toxicity as well as proteins involved in protein folding: GroEL, DnaK and EF-Tu were upregulated in sensitive cells. In resistant bacteria, several isoforms of four essential Ter proteins were observed and following tellurite treatment the abovementioned protein levels did not show any significant proteome changes as compared to the sensitive control. The absence of general defense mechanisms against tellurite toxicity in resistant bacteria thus provides further evidence that the four proteins of the ter operon function by a specific mode of action in the mechanism of tellurite resistance probably involving protein cascades from antioxidant and protein folding pathways.
Collapse
Affiliation(s)
- Jana Aradská
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - Roman Šmidák
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - Lenka Turkovičová
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - Ján Turňa
- Department of Molecular Biology, Faculty of Natural Science, Comenius University, Bratislava, Slovakia
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
44
|
Glyoxal detoxification in Escherichia coli K-12 by NADPH dependent aldo-keto reductases. J Microbiol 2013; 51:527-30. [PMID: 23990306 DOI: 10.1007/s12275-013-3087-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/21/2013] [Indexed: 10/26/2022]
Abstract
Glyoxal (GO) and methylglyoxal (MG) are reactive carbonyl compounds that are accumulated in vivo through various pathways. They are presumably detoxified through multiple pathways including glutathione (GSH)-dependent/independent glyoxalase systems and NAD(P)H dependent reductases. Previously, we reported an involvement of aldo-ketoreductases (AKRs) in MG detoxification. Here, we investigated the role of various AKRs (YqhE, YafB, YghZ, YeaE, and YajO) in GO metabolism. Enzyme activities of the AKRs to GO were measured, and GO sensitivities of the corresponding mutants were compared. In addition, we examined inductions of the AKR genes by GO. The results indicate that AKRs efficiently detoxify GO, among which YafB, YghZ, and YeaE are major players.
Collapse
|
45
|
Kwon K, Choi D, Hyun JK, Jung HS, Baek K, Park C. Novel glyoxalases fromArabidopsis thaliana. FEBS J 2013; 280:3328-39. [DOI: 10.1111/febs.12321] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Kyu Kwon
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu Daejeon Korea
| | - Dongwook Choi
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu Daejeon Korea
| | - Jae Kyung Hyun
- Division of Electron Microscopic Research; Korea Basic Science Institute; Daejeon Korea
| | - Hyun Suk Jung
- Division of Electron Microscopic Research; Korea Basic Science Institute; Daejeon Korea
| | - Kwanghee Baek
- Department of Genetic Engineering and Graduate School of Biotechnology; Kyung Hee University; Yongin Korea
| | - Chankyu Park
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu Daejeon Korea
| |
Collapse
|
46
|
Ozyamak E, de Almeida C, de Moura APS, Miller S, Booth IR. Integrated stress response of Escherichia coli to methylglyoxal: transcriptional readthrough from the nemRA operon enhances protection through increased expression of glyoxalase I. Mol Microbiol 2013; 88:936-50. [PMID: 23646895 PMCID: PMC3739934 DOI: 10.1111/mmi.12234] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2013] [Indexed: 12/02/2022]
Abstract
Methylglyoxal (MG) elicits activation of K+ efflux systems to protect cells against the toxicity of the electrophile. ChIP-chip targeting RNA polymerase, supported by a range of other biochemical measurements and mutant creation, was used to identify genes transcribed in response to MG and which complement this rapid response. The SOS DNA repair regulon is induced at cytotoxic levels of MG, even when exposure to MG is transient. Glyoxalase I alone among the core MG protective systems is induced in response to MG exposure. Increased expression is an indirect consequence of induction of the upstream nemRA operon, encoding an enzyme system that itself does not contribute to MG detoxification. Moreover, this induction, via nemRA only occurs when cells are exposed to growth inhibitory concentrations of MG. We show that the kdpFABCDE genes are induced and that this expression occurs as a result of depletion of cytoplasmic K+ consequent upon activation of the KefGB K+ efflux system. Finally, our analysis suggests that the transcriptional changes in response to MG are a culmination of the damage to DNA and proteins, but that some integrate specific functions, such as DNA repair, to augment the allosteric activation of the main protective system, KefGB.
Collapse
Affiliation(s)
- Ertan Ozyamak
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | | | | | | | | |
Collapse
|
47
|
Lee C, Shin J, Park C. Novel regulatory systemnemRA-gloAfor electrophile reduction inEscherichia coli K-12. Mol Microbiol 2013; 88:395-412. [DOI: 10.1111/mmi.12192] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Changhan Lee
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu; Daejeon; 305-701; Korea
| | - Jongcheol Shin
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu; Daejeon; 305-701; Korea
| | - Chankyu Park
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu; Daejeon; 305-701; Korea
| |
Collapse
|
48
|
Visvalingam J, Hernandez-Doria JD, Holley RA. Examination of the genome-wide transcriptional response of Escherichia coli O157:H7 to cinnamaldehyde exposure. Appl Environ Microbiol 2013; 79:942-50. [PMID: 23183978 PMCID: PMC3568558 DOI: 10.1128/aem.02767-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/20/2012] [Indexed: 02/06/2023] Open
Abstract
Cinnamaldehyde is a natural antimicrobial that has been found to be effective against many food-borne pathogens, including Escherichia coli O157:H7. Although its antimicrobial effects have been well investigated, limited information is available on its effects at the molecular level. Sublethal treatment at 200 mg/liter cinnamaldehyde inhibited growth of E. coli O157:H7 at 37°C and for ≤2 h caused cell elongation, but from 2 to 4 h growth resumed and cells reverted to normal length. To understand this transient behavior, genome-wide transcriptional analysis of E. coli O157:H7 was performed at 2 and 4 h of exposure to cinnamaldehyde in conjunction with reverse-phase high-performance liquid chromatography (RP-HPLC) analysis for cinnamaldehyde and other cinnamic compounds. Drastically different gene expression profiles were obtained at 2 and 4 h. RP-HPLC analysis showed that cinnamaldehyde was structurally stable for at least 2 h. At 2 h of exposure, cinnamaldehyde induced expression of many oxidative stress-related genes and repressed expression of DNA, protein, O-antigen, and fimbrial synthetic genes. At 4 h, many cinnamaldehyde-induced repressive effects on E. coli O157:H7 gene expression were reversed, and cells became more motile and grew at a slightly higher rate. Data indicated that by 4 h, E. coli O157:H7 was able to convert cinnamaldehyde into the less toxic cinnamic alcohol using dehydrogenase/reductase enzymes (YqhD and DkgA). This is the first study to characterize the ability of E. coli O157:H7 to convert cinnamaldehyde into cinnamic alcohol which, in turn, showed that the antimicrobial activity of cinnamaldehyde is mainly attributable to its carbonyl aldehyde group.
Collapse
Affiliation(s)
| | | | - Richard A. Holley
- Department of Food Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
49
|
Elleuche S, Klippel B, von der Heyde A, Antranikian G. Comparative analysis of two members of the metal ion-containing group III-alcohol dehydrogenases from Dickeya zeae. Biotechnol Lett 2013; 35:725-33. [PMID: 23362047 DOI: 10.1007/s10529-013-1137-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE OF WORK A pair of NAD(+)- and NADP(+)-dependent group III-alcohol dehydrogenases was characterized from the enterobacterium, Dickeya zeae, to expand our understanding of the distribution and biochemical properties of this interesting group of enzymes. Two putative group III-alcohol dehydrogenases (ADHs) were identified in the genome of Dickeya zeae. Amino acid alignments and phylogenetic analysis revealed that Adh3.1 and Adh3.2 are only distantly related (~25 % identity at the protein level). Both proteins were purified to homogeneity after heterologous expression in E. coli. A specific activity of 1.8 U/mg was measured for the NAD(+)-dependent enzyme Adh3.1 with ethanol used as substrate, while NADPH-dependent Adh3.2 preferred butanal (29.1 U/mg) as substrate. Maximum activity for Adh3.1 was at 50 °C and pH 10 and for Adh3.2 at 70 °C and pH 6. Cell viability assays were used to confirm activity towards butanal and glyoxals. Biochemical characterization and phylogenetic analyses led to the hypothesis that Adh3.1 and Adh3.2 are probably the result of an ancient gene duplication event followed by functional diversification.
Collapse
Affiliation(s)
- Skander Elleuche
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, 21073 Hamburg, Germany.
| | | | | | | |
Collapse
|
50
|
Liu H, Ramos KRM, Valdehuesa KNG, Nisola GM, Lee WK, Chung WJ. Biosynthesis of ethylene glycol in Escherichia coli. Appl Microbiol Biotechnol 2012; 97:3409-17. [PMID: 23233208 DOI: 10.1007/s00253-012-4618-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/31/2012] [Accepted: 11/23/2012] [Indexed: 11/26/2022]
Abstract
Ethylene glycol (EG) is an important platform chemical with steadily expanding global demand. Its commercial production is currently limited to fossil resources; no biosynthesis route has been delineated. Herein, a biosynthesis route for EG production from D-xylose is reported. This route consists of four steps: D-xylose → D-xylonate → 2-dehydro-3-deoxy-D-pentonate → glycoaldehyde → EG. Respective enzymes, D-xylose dehydrogenase, D-xylonate dehydratase, 2-dehydro-3-deoxy-D-pentonate aldolase, and glycoaldehyde reductase, were assembled. The route was implemented in a metabolically engineered Escherichia coli, in which the D-xylose → D-xylulose reaction was prevented by disrupting the D-xylose isomerase gene. The most efficient construct produced 11.7 g L(-1) of EG from 40.0 g L(-1) of D-xylose. Glycolate is a carbon-competing by-product during EG production in E. coli; blockage of glycoaldehyde → glycolate reaction was also performed by disrupting the gene encoding aldehyde dehydrogenase, but from this approach, EG productivity was not improved but rather led to D-xylonate accumulation. To channel more carbon flux towards EG than the glycolate pathway, further systematic metabolic engineering and fermentation optimization studies are still required to improve EG productivity.
Collapse
Affiliation(s)
- Huaiwei Liu
- Energy and Environment Fusion Technology Center (E2FTC), Department of Energy Science and Technology (DEST), Myongji University, Room 8807, Engineering College Building 2, San 38-2, Namdong, Cheoin-gu, Yongin, Gyeonggi 449-728, South Korea.
| | | | | | | | | | | |
Collapse
|