1
|
Wu M, Lai CY, Wang Y, Yuan Z, Guo J. Microbial nitrate reduction in propane- or butane-based membrane biofilm reactors under oxygen-limiting conditions. WATER RESEARCH 2023; 235:119887. [PMID: 36947926 DOI: 10.1016/j.watres.2023.119887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Nitrate contamination has been commonly detected in water environments and poses serious hazards to human health. Previously methane was proposed as a promising electron donor to remove nitrate from contaminated water. Compared with pure methane, natural gas, which not only contains methane but also other short chain gaseous alkanes (SCGAs), is less expensive and more widely available, representing a more attractive electron source for removing oxidized contaminants. However, it remains unknown if these SCGAs can be utilized as electron donors for nitrate reduction. Here, two lab-scale membrane biofilm reactors (MBfRs) separately supplied with propane and butane were operated under oxygen-limiting conditions to test its feasibility of microbial nitrate reduction. Long-term performance suggested nitrate could be continuously removed at a rate of ∼40-50 mg N/L/d using propane/butane as electron donors. In the absence of propane/butane, nitrate removal rates significantly decreased both in the long-term operation (∼2-10 and ∼4-9 mg N/L/d for propane- and butane-based MBfRs, respectively) and batch tests, indicating nitrate bio-reduction was driven by propane/butane. The consumption rates of nitrate and propane/butane dramatically decreased under anaerobic conditions, but recovered after resupplying limited oxygen, suggesting oxygen was an essential triggering factor for propane/butane-based nitrate reduction. High-throughput sequencing targeting 16S rRNA, bmoX and narG genes indicated Mycobacterium/Rhodococcus/Thauera were the potential microorganisms oxidizing propane/butane, while various denitrifiers (e.g. Dechloromonas, Denitratisoma, Zoogloea, Acidovorax, Variovorax, Pseudogulbenkiania and Rhodanobacter) might perform nitrate reduction in the biofilms. Our findings provide evidence to link SCGA oxidation with nitrate reduction under oxygen-limiting conditions and may ultimately facilitate the design of cost-effective techniques for ex-situ groundwater remediation using natural gas.
Collapse
Affiliation(s)
- Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Yulu Wang
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
2
|
Bourceau OM, Ferdelman T, Lavik G, Mussmann M, Kuypers MMM, Marchant HK. Simultaneous sulfate and nitrate reduction in coastal sediments. ISME COMMUNICATIONS 2023; 3:17. [PMID: 36882570 PMCID: PMC9992702 DOI: 10.1038/s43705-023-00222-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 03/09/2023]
Abstract
The oscillating redox conditions that characterize coastal sandy sediments foster microbial communities capable of respiring oxygen and nitrate simultaneously, thereby increasing the potential for organic matter remineralization, nitrogen (N)-loss and emissions of the greenhouse gas nitrous oxide. It is unknown to what extent these conditions also lead to overlaps between dissimilatory nitrate and sulfate respiration. Here, we show that sulfate and nitrate respiration co-occur in the surface sediments of an intertidal sand flat. Furthermore, we found strong correlations between dissimilatory nitrite reduction to ammonium (DNRA) and sulfate reduction rates. Until now, the nitrogen and sulfur cycles were assumed to be mainly linked in marine sediments by the activity of nitrate-reducing sulfide oxidisers. However, transcriptomic analyses revealed that the functional marker gene for DNRA (nrfA) was more associated with microorganisms known to reduce sulfate rather than oxidise sulfide. Our results suggest that when nitrate is supplied to the sediment community upon tidal inundation, part of the sulfate reducing community may switch respiratory strategy to DNRA. Therefore increases in sulfate reduction rate in-situ may result in enhanced DNRA and reduced denitrification rates. Intriguingly, the shift from denitrification to DNRA did not influence the amount of N2O produced by the denitrifying community. Our results imply that microorganisms classically considered as sulfate reducers control the potential for DNRA within coastal sediments when redox conditions oscillate and therefore retain ammonium that would otherwise be removed by denitrification, exacerbating eutrophication.
Collapse
Affiliation(s)
- O M Bourceau
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - T Ferdelman
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - G Lavik
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - M Mussmann
- University of Vienna, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, A-1030, Vienna, Austria
| | - M M M Kuypers
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - H K Marchant
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359, Bremen, Germany.
| |
Collapse
|
3
|
Moroz OM, Hnatush SO, Yavorska GV, Zvir GI. Dissimilatory reduction of sulfate, nitrate and nitrite ions by bacteria Desulfovibrio sp. under the influence of potassium dichromate. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In the process of anaerobic respiration, sulfate reducing bacteria, besides sulfates, can use other electron acceptors: nitrates, nitrites, oxidized forms of heavy metals, in particular, hexavalent chromium, which are harmful for organisms. Selection of pollutant-resistant stains of this kind of bacteria isolated from technogenically altered ecotopes, capable of reductive transformation of various nature pollutants, is an especially relevant task for the creation of new effective remediation biotechnologies. The purpose of this work was to investigate the regularities of usage of sulfate, nitrate or nitrite ions by bacteria of the Desulfovibrio genus, isolated from Yavorivske Lake, at conditions of simultaneous presence in the medium of another electron acceptor – Cr(VI), to establish a succession of electron acceptors’ reduction by investigated sulfidogenic bacteria and to evaluate the efficiency of their possible application in technologies of complex purification of the environment from metal, sulfur and nitrogen compounds. Bacteria were grown under anaerobic conditions for 10 days in Kravtsov-Sorokin medium without Mohr’s salt. To study the efficiency of sulfate, nitrate, or nitrite ions’ reduction at simultaneous presence in the medium of Cr(VI), bacteria were sown in media with Na2SO4×10H2O, NaNO3, NaNO2 or K2Cr2O7 to final SO42–, NO3–, NO2– or Cr(VI) concentration in the medium of 3.47 (concentration of SO42– in medium of standard composition) or 1.74, 3.47, 5.21, 6.94, 10.41 mM. Biomass was determined turbidimetrically, and the concentrations of sulfate, nitrate, nitrite, ammonium ions, hydrogen sulfide, Cr(VI), Cr(ІІІ) in cultural liquid were determined by spectrophotometric method. It has been established that Cr(VI) inhibits the biomass accumulation, sulfate ions’ reduction and hydrogen sulfide production by Desulfovibrio sp. after simultaneous introduction into the medium of 3.47 mM SO42– and 1.74–10.41 mM Cr(VI). In the medium with the same initial content (3.47 mM) of SO42– and Cr(VI), bacteria reduced 2.1–2.3 times more Cr(VI) than sulfate ions with Cr(III) production at concentrations up to 2.2 times higher than hydrogen sulfide. It has been shown that K2Cr2O7 inhibits the biomass accumulation, the nitrate ions reduction and the ammonium ions production by bacteria after simultaneous addition into the medium of 3.47 mM NO3– and 1.74–10.41 mM Cr(VI) or 1.74–10.41 mM NO3– and 3.47 mM Cr(VI). In the medium with the same initial content (3.47 mM) of NO3– and Cr(VI) bacteria reduced 1.1–1.3 times more nitrate ions than Cr(VI) with the production of ammonium ions at concentrations up to 1.3 times higher than that of Cr(III). It has been established that K2Cr2O7 inhibits the biomass accumulation, the nitrite ions’ reduction and the ammonium ions’ production by bacteria after simultaneous addition into the medium of 3.47 mM NO2– and 1.74–10.41 mM Cr(VI) or 1.74–10.41 mM NO2– and 3.47 mM Cr(VI). In the medium with the same initial content (3.47 mM) NO2– and Cr(VI) the reduction of Cr(VI) by bacteria practically did not differ from the reduction of nitrite ions (was only slightly lower – up to 1.1 times), almost the same concentrations of trivalent chromium and ammonium ions in the cultural liquid were detected. The processes of nitrate and nitride reduction, carried out by bacteria of Desulfovibrio genus, were revealed to be less sensitive to the negative influence of sodium dichromate, as compared with the process of sulfate ions’ reduction, which in the medium with 3.47 mM SO42– and 1.74–10.41 mM Cr(VІ) decreased by 3.2–4.6 times as compared with this process in the medium with only Na2SO4×10H2O. The investigated strains of bacteria are adapted to high concentrations of toxic pollutants (up to 10.41 mM) and therefore are promising for application in technologies of complex environment purification from hexavalent chromium, sulfur and nitrogen compounds.
Collapse
|
4
|
Payne N, Kpebe A, Guendon C, Baffert C, Ros J, Lebrun R, Denis Y, Shintu L, Brugna M. The electron-bifurcating FeFe-hydrogenase Hnd is involved in ethanol metabolism in Desulfovibrio fructosovorans grown on pyruvate. Mol Microbiol 2022; 117:907-920. [PMID: 35066935 DOI: 10.1111/mmi.14881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Desulfovibrio fructosovorans, a sulfate-reducing bacterium, possesses six gene clusters encoding six hydrogenases catalyzing the reversible oxidation of H2 into protons and electrons. Among them, Hnd is an electron-bifurcating hydrogenase, coupling the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin with electrons derived from H2 . It was previously hypothesized that its biological function involves the production of NADPH necessary for biosynthetic purposes. However, it was subsequently demonstrated that Hnd is instead a NAD+ -reducing enzyme, thus its specific function has yet to be established. To understand the physiological role of Hnd in D. fructosovorans, we compared the hnd deletion mutant with the wild-type strain grown on pyruvate. Growth, metabolites production and comsumption, and gene expression were compared under three different growth conditions. Our results indicate that hnd is strongly regulated at the transcriptional level and that its deletion has a drastic effect on the expression of genes for two enzymes, an aldehyde ferredoxin oxidoreductase and an alcohol dehydrogenase. We demonstrated here that Hnd is involved in ethanol metabolism when bacteria grow fermentatively and proposed that Hnd might oxidize part of the H2 produced during fermentation generating both NADH and reduced ferredoxin for ethanol production via its electron bifurcation mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Julien Ros
- CNRS, Aix Marseille Univ, BIP, Marseille, France
| | - Régine Lebrun
- CNRS, Aix Marseille Univ, Plate-forme Protéomique de l'IMM, FR 3479, Marseille Protéomique (MaP), Marseille, France
| | - Yann Denis
- CNRS, Aix Marseille Univ, Plate-forme Transcriptomique, Marseille, France
| | - Laetitia Shintu
- CNRS, Aix Marseille Univ, Centrale Marseille, ISM2, Marseille, France
| | | |
Collapse
|
5
|
Hu J, Richwine JD, Keyser PD, Li L, Yao F, Jagadamma S, DeBruyn JM. Nitrogen Fertilization and Native C 4 Grass Species Alter Abundance, Activity, and Diversity of Soil Diazotrophic Communities. Front Microbiol 2021; 12:675693. [PMID: 34305840 PMCID: PMC8297707 DOI: 10.3389/fmicb.2021.675693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/14/2021] [Indexed: 01/31/2023] Open
Abstract
Native C4 grasses have become the preferred species for native perennial pastures and bioenergy production due to their high productivity under low soil nitrogen (N) status. One reason for their low N requirement is that C4 grasses may benefit from soil diazotrophs and promote biological N fixation. Our objective was to evaluate the impact of N fertilization rates (0, 67, and 202 kg N ha-1) and grass species (switchgrass [Panicum virgatum] and big bluestem [Andropogon gerardii]) on the abundance, activity, diversity, and community composition of soil diazotrophs over three agricultural seasons (grass green-up, initial harvest, and second harvest) in a field experiment in East Tennessee, United States. Nitrogen fertilization rate had a stronger influence on diazotroph population size and activity (determined by nifH gene and transcript abundances) and community composition (determined by nifH gene amplicon sequencing) than agricultural season or grass species. Excessive fertilization (202 kg N ha-1) resulted in fewer nifH transcripts compared to moderate fertilization (67 kg N ha-1) and decreased both richness and evenness of diazotrophic community, reflecting an inhibitory effect of high N application rates on soil diazotrophic community. Overall, cluster I and cluster III diazotrophs were dominant in this native C4 grass system. Diazotroph population size and activity were directly related to soil water content (SWC) based on structural equation modeling. Soil pH, SWC, and C and N availability were related to the variability of diazotrophic community composition. Our results revealed relationships between soil diazotrophic community and associated soil properties, adding to our understanding of the response of soil diazotrophs to N fertilization and grass species in native C4 grass systems.
Collapse
Affiliation(s)
- Jialin Hu
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jonathan D. Richwine
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, United States
| | - Patrick D. Keyser
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, United States
| | - Lidong Li
- United States Department of Agriculture—Agricultural Research Service, Agroecosystem Management Research Unit, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Fei Yao
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sindhu Jagadamma
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jennifer M. DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
6
|
El-Sesy ME, Ibrahim SS. Application of central composite design approach for optimization nitrate removal from aqueous solution by immobilized Pseudomonas putida. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2931-2946. [PMID: 34185690 DOI: 10.2166/wst.2021.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High nitrate concentration is a dangerous pollutant in the environment. Immobilization for the optimum denitrifying bacterial strain isolated from collected wastewater samples was suggested for bioremediation of excessive nitrate concentration from aqueous solutions and its denitrification activity under different pH, nitrate concentration, bacterial beads, temperature and sodium alginate concentration conditions was explored. The active isolate was identified as Pseudomonas putida MT364822.1 by 16S rRNA analysis. Nitrate bioremediation process was optimized by applying response surface methodology based on central composite design approach. Nitrate uptake was significantly affected by variables of study (P-value <0.05). Maximum removal of nitrate (91.1%) was achieved at pH 7, nitrate concentration 400 mg/L, immobilized bacterial beads 3.0 g/L, temperature 35 °C and sodium alginate concentration 2.5% as optimal variable values. For application, immobilized P. putida MT364822.1 removed 82.2% of nitrate from raw fish farm effluent. Storage and reusability experiments showed that the immobilized strain stronger and more stable than the pure strain. The results suggested that immobilized P. putida MT364822.1 is a highly promising and suitable microorganism for use in the bio-removal of nitrate, and the central composite design was more effective in optimizing variables to achieve the best nitrate removal efficiency.
Collapse
Affiliation(s)
- Marwa E El-Sesy
- Microbiology Department, Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Cairo, Egypt and Inorganic Chemistry Department, Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Cairo, Egypt E-mail:
| | - Sabah S Ibrahim
- Microbiology Department, Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Cairo, Egypt and Inorganic Chemistry Department, Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Cairo, Egypt E-mail:
| |
Collapse
|
7
|
Marietou A. Sulfate reducing microorganisms in high temperature oil reservoirs. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:99-131. [PMID: 34353505 DOI: 10.1016/bs.aambs.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High temperature reservoirs offer a window into the microbial life of the deep biosphere. Sulfate reducing microorganisms have been recovered from high temperature oil reservoirs around the globe and characterized using culture-dependent and culture-independent approaches. The activities of sulfate reducers contribute to reservoir souring and hydrocarbon degradation among other attracting considerable interest from the oil industry for the last 100 years. The extremes of temperature and pressure shape the activities and distribution of sulfate reducing bacteria and archaea in high temperature reservoirs. This chapter will attempt to summarize the key findings on the diversity and activities of sulfate reducing microorganisms in high temperature reservoirs.
Collapse
Affiliation(s)
- Angeliki Marietou
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Physicochemical and biological controls of sulfide accumulation in a high temperature oil reservoir. Appl Microbiol Biotechnol 2020; 104:8467-8478. [DOI: 10.1007/s00253-020-10828-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 08/11/2020] [Indexed: 01/04/2023]
|
9
|
Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium". Appl Environ Microbiol 2018; 84:AEM.02224-17. [PMID: 29247059 PMCID: PMC5812927 DOI: 10.1128/aem.02224-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/08/2017] [Indexed: 01/16/2023] Open
Abstract
Nitrospirae spp. distantly related to thermophilic, sulfate-reducing Thermodesulfovibrio species are regularly observed in environmental surveys of anoxic marine and freshwater habitats. Here we present a metaproteogenomic analysis of Nitrospirae bacterium Nbg-4 as a representative of this clade. Its genome was assembled from replicated metagenomes of rice paddy soil that was used to grow rice in the presence and absence of gypsum (CaSO4·2H2O). Nbg-4 encoded the full pathway of dissimilatory sulfate reduction and showed expression of this pathway in gypsum-amended anoxic bulk soil as revealed by parallel metaproteomics. In addition, Nbg-4 encoded the full pathway of dissimilatory nitrate reduction to ammonia (DNRA), with expression of its first step being detected in bulk soil without gypsum amendment. The relative abundances of Nbg-4 were similar under both treatments, indicating that Nbg-4 maintained stable populations while shifting its energy metabolism. Whether Nbg-4 is a strict sulfate reducer or can couple sulfur oxidation to DNRA by operating the pathway of dissimilatory sulfate reduction in reverse could not be resolved. Further genome reconstruction revealed the potential to utilize butyrate, formate, H2, or acetate as an electron donor; the Wood-Ljungdahl pathway was expressed under both treatments. Comparison to publicly available Nitrospirae genome bins revealed the pathway for dissimilatory sulfate reduction also in related Nitrospirae recovered from groundwater. Subsequent phylogenomics showed that such microorganisms form a novel genus within the Nitrospirae, with Nbg-4 as a representative species. Based on the widespread occurrence of this novel genus, we propose for Nbg-4 the name “Candidatus Sulfobium mesophilum,” gen. nov., sp. nov. IMPORTANCE Rice paddies are indispensable for the food supply but are a major source of the greenhouse gas methane. If it were not counterbalanced by cryptic sulfur cycling, methane emission from rice paddy fields would be even higher. However, the microorganisms involved in this sulfur cycling are little understood. By using an environmental systems biology approach with Italian rice paddy soil, we could retrieve the population genome of a novel member of the phylum Nitrospirae. This microorganism encoded the full pathway of dissimilatory sulfate reduction and expressed it in anoxic paddy soil under sulfate-enriched conditions. Phylogenomics and comparison to the results of environmental surveys showed that such microorganisms are actually widespread in freshwater and marine environments. At the same time, they represent an undiscovered genus within the little-explored phylum Nitrospirae. Our results will be important for the design of enrichment strategies and postgenomic studies to further understanding of the contribution of these novel Nitrospirae spp. to the global sulfur cycle.
Collapse
|
10
|
Fan F, Zhang B, Morrill P, Husain T. Isolation of nitrate-reducing bacteria from an offshore reservoir and the associated biosurfactant production. RSC Adv 2018; 8:26596-26609. [PMID: 35541051 PMCID: PMC9083026 DOI: 10.1039/c8ra03377c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/13/2018] [Indexed: 11/21/2022] Open
Abstract
Biosurfactant producing nitrate-reducing bacteria (NRB) in anaerobic reservoir environments are closely associated with souring (H2S) control in the offshore oil and gas industry. Five NRB strains were screened from offshore produced water samples and all were identified as Pseudomonas stutzeri. Their biosurfactant producing abilities when fed on either glucose or glycerol media were investigated. P. stutzeri CX3 reduced the medium surface tension to 33.5 and 29.6 mN m−1, respectively, while growing on glucose or glycerol media. The CX3 strain was further inoculated to examine its growth performance, resulting in 32.4% and 94.5% of nitrate consumption over 228 hours of monitoring in two media, respectively. The composition analysis of the biosurfactant product generated by P. stutzeri CX3 was conducted through thin-layer chromatography, gas chromatography with a flame ionization detector (FID) and Fourier transform infrared spectroscopy (FT-IR). The biosurfactant product was identified as a mixture of a small part of lipopeptides and a large part of glycolipids while its critical micellar concentration (CMC) was as low as 35 mg L−1. The biosurfactant product demonstrated high stability over a wide range of temperature (4–121 °C), pH (2–10), and salinity (0–20% w/v) concentration. The results provided valuable technical and methodological support for effective offshore reservoir souring control and associated enhanced oil recovery activities. Biosurfactant producing nitrate-reducing bacteria (NRB) in anaerobic reservoir environments are closely associated with souring (H2S) control in the offshore oil and gas industry.![]()
Collapse
Affiliation(s)
- Fuqiang Fan
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory
- Faculty of Engineering and Applied Science
- Memorial University of Newfoundland
- St. John's
- Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory
- Faculty of Engineering and Applied Science
- Memorial University of Newfoundland
- St. John's
- Canada
| | - Penny L. Morrill
- Earth Sciences
- Faculty of Science
- Memorial University of Newfoundland
- St. John's
- Canada
| | - Tahir Husain
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory
- Faculty of Engineering and Applied Science
- Memorial University of Newfoundland
- St. John's
- Canada
| |
Collapse
|
11
|
Cadby IT, Faulkner M, Cheneby J, Long J, van Helden J, Dolla A, Cole JA. Coordinated response of the Desulfovibrio desulfuricans 27774 transcriptome to nitrate, nitrite and nitric oxide. Sci Rep 2017; 7:16228. [PMID: 29176637 PMCID: PMC5701242 DOI: 10.1038/s41598-017-16403-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/08/2017] [Indexed: 01/06/2023] Open
Abstract
The sulfate reducing bacterium Desulfovibrio desulfuricans inhabits both the human gut and external environments. It can reduce nitrate and nitrite as alternative electron acceptors to sulfate to support growth. Like other sulphate reducing bacteria, it can also protect itself against nitrosative stress caused by NO generated when nitrite accumulates. By combining in vitro experiments with bioinformatic and RNA-seq data, metabolic responses to nitrate or NO and how nitrate and nitrite reduction are coordinated with the response to nitrosative stress were revealed. Although nitrate and nitrite reduction are tightly regulated in response to substrate availability, the global responses to nitrate or NO were largely regulated independently. Multiple NADH dehydrogenases, transcription factors of unknown function and genes for iron uptake were differentially expressed in response to electron acceptor availability or nitrosative stress. Amongst many fascinating problems for future research, the data revealed a YtfE orthologue, Ddes_1165, that is implicated in the repair of nitrosative damage. The combined data suggest that three transcription factors coordinate this regulation in which NrfS-NrfR coordinates nitrate and nitrite reduction to minimize toxicity due to nitrite accumulation, HcpR1 serves a global role in regulating the response to nitrate, and HcpR2 regulates the response to nitrosative stress.
Collapse
Affiliation(s)
- Ian T Cadby
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Matthew Faulkner
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- The Institute of Integrative Biology, Bioscience building, University of Liverpool, Liverpool, Merseyside, L69 7ZB, UK
| | - Jeanne Cheneby
- Aix Marseille Univ, INSERM, TAGC, UMR_S 1090, 163, Avenue de Luminy, 13288, Marseille, France
| | - Justine Long
- Aix Marseille Univ, INSERM, TAGC, UMR_S 1090, 163, Avenue de Luminy, 13288, Marseille, France
| | - Jacques van Helden
- Aix Marseille Univ, INSERM, TAGC, UMR_S 1090, 163, Avenue de Luminy, 13288, Marseille, France
| | - Alain Dolla
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - Jeffrey A Cole
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
12
|
Sousa JR, Silveira CM, Fontes P, Roma-Rodrigues C, Fernandes AR, Van Driessche G, Devreese B, Moura I, Moura JJ, Almeida MG. Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate - biosynthetic costs modulate substrate selection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1455-1469. [DOI: 10.1016/j.bbapap.2017.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 11/27/2022]
|
13
|
Cadby IT, Ibrahim SA, Faulkner M, Lee DJ, Browning D, Busby SJ, Lovering AL, Stapleton MR, Green J, Cole JA. Regulation, sensory domains and roles of twoDesulfovibrio desulfuricansATCC27774 Crp family transcription factors, HcpR1 and HcpR2, in response to nitrosative stress. Mol Microbiol 2016; 102:1120-1137. [DOI: 10.1111/mmi.13540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Ian T. Cadby
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Susan A. Ibrahim
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Matthew Faulkner
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - David J. Lee
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Douglas Browning
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Stephen J. Busby
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Andrew L. Lovering
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Melanie R. Stapleton
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Jeffrey Green
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Jeffrey A. Cole
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| |
Collapse
|
14
|
Marietou A. Nitrate reduction in sulfate-reducing bacteria. FEMS Microbiol Lett 2016; 363:fnw155. [DOI: 10.1093/femsle/fnw155] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2016] [Indexed: 12/27/2022] Open
|
15
|
Eaktasang N, Kang CS, Lim H, Kwean OS, Cho S, Kim Y, Kim HS. Production of electrically-conductive nanoscale filaments by sulfate-reducing bacteria in the microbial fuel cell. BIORESOURCE TECHNOLOGY 2016; 210:61-67. [PMID: 26818576 DOI: 10.1016/j.biortech.2015.12.090] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
This study reports that the obligate anaerobic microorganism, Desulfovibrio desulfuricans, a predominant sulfate-reducing bacterium (SRB) in soils and sediments, can produce nanoscale bacterial appendages for extracellular electron transfer. These nanofilaments were electrically-conductive (5.81S·m(-1)) and allowed SRBs to directly colonize the surface of insoluble or solid electron acceptors. Thus, the direct extracellular electron transfer to the insoluble electrode in the microbial fuel cell (MFC) was possible without inorganic electron-shuttling mediators. The production of nanofilaments was stimulated when only insoluble electron acceptors were available for cellular respiration. These results suggest that when availability of a soluble electron acceptor for SRBs (SO4(2-)) is limited, D. desulfuricans initiates the production of conductive nanofilaments as an alternative strategy to transfer electrons to insoluble electron acceptors. The findings of this study contribute to understanding of the role of SRBs in the biotransformation of various substances in soils and sediments and in the MFC.
Collapse
Affiliation(s)
- Numfon Eaktasang
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 Republic of Korea
| | - Christina S Kang
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 Republic of Korea
| | - Heejun Lim
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 Republic of Korea
| | - Oh Sung Kwean
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 Republic of Korea
| | - Suyeon Cho
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 Republic of Korea
| | - Yohan Kim
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 Republic of Korea
| | - Han S Kim
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 Republic of Korea.
| |
Collapse
|
16
|
Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium. J Bacteriol 2015; 197:3400-8. [PMID: 26283774 DOI: 10.1128/jb.00319-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness at low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. We discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. IMPORTANCE The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.
Collapse
|
17
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
18
|
da Silva MLB, Soares HM, Furigo A, Schmidell W, Corseuil HX. Effects of Nitrate Injection on Microbial Enhanced Oil Recovery and Oilfield Reservoir Souring. Appl Biochem Biotechnol 2014; 174:1810-21. [DOI: 10.1007/s12010-014-1161-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
19
|
Sparacino-Watkins C, Stolz JF, Basu P. Nitrate and periplasmic nitrate reductases. Chem Soc Rev 2014; 43:676-706. [PMID: 24141308 DOI: 10.1039/c3cs60249d] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types--periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed.
Collapse
|
20
|
Engelbrektson A, Hubbard CG, Tom LM, Boussina A, Jin YT, Wong H, Piceno YM, Carlson HK, Conrad ME, Anderson G, Coates JD. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. Front Microbiol 2014; 5:315. [PMID: 25071731 PMCID: PMC4092371 DOI: 10.3389/fmicb.2014.00315] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/09/2014] [Indexed: 11/13/2022] Open
Abstract
Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (per)chlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 mM) treatment after an initial inhibition period. In contrast, no effluent sulfide was observed with (per)chlorate (10 mM). Microbial community analyses indicated temporal community shifts and phylogenetic clustering by treatment. Nitrate addition stimulated Xanthomonadaceae and Rhizobiaceae growth, supporting their role in nitrate metabolism. (Per)chlorate showed distinct effects on microbial community structure compared with nitrate and resulted in a general suppression of the community relative to the untreated control combined with a significant decrease in sulfate reducing species abundance indicating specific toxicity. Furthermore, chlorate stimulated Pseudomonadaceae and Pseudoalteromonadaceae, members of which are known chlorate respirers, suggesting that chlorate may also control sulfidogenesis by biocompetitive exclusion of sulfate-reduction. Perchlorate addition stimulated Desulfobulbaceae and Desulfomonadaceae, which contain sulfide oxidizing and elemental sulfur-reducing species respectively, suggesting that effluent sulfide concentrations may be controlled through sulfur redox cycling in addition to toxicity and biocompetitive exclusion. Sulfur isotope analyses further support sulfur cycling in the columns, even when sulfide is not detected. This study indicates that (per)chlorate show great promise as inhibitors of sulfidogenesis in natural communities and provides insight into which organisms and respiratory processes are involved.
Collapse
Affiliation(s)
- Anna Engelbrektson
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | | | - Lauren M Tom
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - Aaron Boussina
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | - Yong T Jin
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | - Hayden Wong
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | - Yvette M Piceno
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - Hans K Carlson
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | - Mark E Conrad
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - Gary Anderson
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA ; Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| |
Collapse
|
21
|
Papaspyrou S, Smith CJ, Dong LF, Whitby C, Dumbrell AJ, Nedwell DB. Nitrate reduction functional genes and nitrate reduction potentials persist in deeper estuarine sediments. Why? PLoS One 2014; 9:e94111. [PMID: 24728381 PMCID: PMC3984109 DOI: 10.1371/journal.pone.0094111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 03/13/2014] [Indexed: 11/18/2022] Open
Abstract
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases.
Collapse
Affiliation(s)
- Sokratis Papaspyrou
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
- * E-mail:
| | - Cindy J. Smith
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | - Liang F. Dong
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | - Corinne Whitby
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | - Alex J. Dumbrell
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | - David B. Nedwell
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| |
Collapse
|
22
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part I. {Fe(SγCys)4} proteins. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Giacomucci L, Purdy KJ, Zanardini E, Polo A, Cappitelli F. A new non-degenerate primer pair for the specific detection of the nitrite reductase gene nrfA in the genus Desulfovibrio. J Mol Microbiol Biotechnol 2012; 22:345-51. [PMID: 23295220 DOI: 10.1159/000345768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dissimilatory nitrate reduction to ammonia (DNRA) is the process in which nitrate is reduced, via nitrite, to ammonia. Bacteria known to carry out DNRA mainly originate from wastewater treatment plants, where DNRA is a relevant process. The ability to carry out DNRA is phylogenetically widespread, and the gene nrfA, encoding for the key enzyme of the second step of the pathway, could be used as a marker for this process. In this study we developed a new primer pair specific for nrfA in the genus Desulfovibrio. The specificity of the primer pair was tested on DNA from thirteen species of Desulfovibrio and DNA from two wastewater samples. PCR amplifications yielded products of the expected size (850 bp), and sequences obtained from Desulfovibrio strains and environmental sample clone libraries matched the Desulfovibrio nrfA gene. Nevertheless, we found nrfA gene sequences in the environmental samples that are not present in the databases. The new primer set can be used to obtain more sequences of the nrfA gene and improve our knowledge of the DNRA pathway in this genus, e.g. with the aim to improve the wastewater treatment process.
Collapse
Affiliation(s)
- L Giacomucci
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
24
|
Akob DM, Lee SH, Sheth M, Küsel K, Watson DB, Palumbo AV, Kostka JE, Chin KJ. Gene Expression Correlates with Process Rates Quantified for Sulfate- and Fe(III)-Reducing Bacteria in U(VI)-Contaminated Sediments. Front Microbiol 2012; 3:280. [PMID: 22908009 PMCID: PMC3415069 DOI: 10.3389/fmicb.2012.00280] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/18/2012] [Indexed: 11/25/2022] Open
Abstract
Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI) reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III) and sulfate reduction pathways in order to monitor these processes during in situ U(VI) remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA) and the dissimilatory (bi)sulfite reductase gene (dsrA), were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC) site at Oak Ridge, TN, USA. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III)-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation.
Collapse
|
25
|
da Silva SM, Pacheco I, Pereira IAC. Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774. J Biol Inorg Chem 2012; 17:831-8. [DOI: 10.1007/s00775-012-0900-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/08/2012] [Indexed: 10/28/2022]
|
26
|
Giacomucci L, Toja F, Sanmartín P, Toniolo L, Prieto B, Villa F, Cappitelli F. Degradation of nitrocellulose-based paint by Desulfovibrio desulfuricans ATCC 13541. Biodegradation 2012; 23:705-16. [PMID: 22367465 DOI: 10.1007/s10532-012-9546-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/15/2012] [Indexed: 11/24/2022]
Abstract
Nitrocellulose is one of the most commonly used compounds in ammunition and paint industries and its recalcitrance to degradation has a negative impact on human health and the environment. In this study the capability of Desulfovibrio desulfuricans ATCC 13541 to degrade nitrocellulose as binder in paint was assayed for the first time. Nitrocellulose-based paint degradation was followed by monitoring the variation in nitrate, nitrite and ammonium content in the culture medium using Ultraviolet-Visible spectroscopy. At the same time cell counts and ATP assay were performed to estimate bacterial density and activity in all samples. Infrared spectroscopy and colorimetric measurements of paint samples were performed to assess chemical and colour changes due to the microbial action. Microscope observations of nitrocellulose-based paint samples demonstrated the capability of the bacterium to adhere to the paint surface and change the paint adhesive characteristics. Finally, preliminary studies of nitrocellulose degradation pathway were conducted by assaying nitrate- and nitrite reductases activity in D. desulfuricans grown in presence or in absence of paint. We found that D. desulfuricans ATCC 13541 is able to transform nitrocellulose as paint binder and we hypothesised ammonification as degradation pathway. The results suggest that D. desulfuricans ATCC 13541 is a good candidate as a nitrocellulose-degrading bacterium.
Collapse
Affiliation(s)
- L Giacomucci
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Kraft B, Strous M, Tegetmeyer HE. Microbial nitrate respiration – Genes, enzymes and environmental distribution. J Biotechnol 2011; 155:104-17. [DOI: 10.1016/j.jbiotec.2010.12.025] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 12/07/2010] [Accepted: 12/20/2010] [Indexed: 01/13/2023]
|
28
|
An HcpR homologue from Desulfovibrio desulfuricans and its possible role in nitrate reduction and nitrosative stress. Biochem Soc Trans 2011; 39:224-9. [PMID: 21265778 DOI: 10.1042/bst0390224] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Escherichia coli CRP (cAMP receptor protein), is a global regulator of transcription that modulates gene expression by activation or repression at a range of promoters in E. coli. A major function is to regulate the selection of nutrients required for growth. The anaerobic sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC27774 is capable of utilizing sulfate, nitrite and nitrate as terminal electron acceptors. In the presence of both sulfate and nitrate, sulfate is reduced preferentially despite nitrate being the thermodynamically more favourable electron acceptor. Three inverted repeat sequences upstream of the D. desulfuricans ATCC27774 nap (nitrate reduction in the periplasm) operon have high levels of similarity to the consensus sequence for the E. coli CRP DNA-binding site. In other Desulfovibrio species a putative CRP homologue, HcpR [regulator of hcp (hybrid cluster protein) transcription], has a predicted regulon comprising genes involved in sulfate reduction and nitrosative stress. The presence of CRP consensus sites within the D. desulfuricans ATCC27774 nap promoter prompted a search for CRP homologues in the genomes of sulfate-reducing bacteria. This revealed the presence of a potential CRP homologue that we predict binds to CRP consensus sites such as those of the nap operon. Furthermore, we predict that much of the core HcpR regulon predicted in other Desulfovibrio species is conserved in D. desulfuricans.
Collapse
|
29
|
Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 2011; 77:3938-51. [PMID: 21515733 DOI: 10.1128/aem.02993-10] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We propose the use of Desulfovibrio desulfuricans ND132 as a model species for understanding the mechanism of microbial Hg methylation. Strain ND132 is an anaerobic dissimilatory sulfate-reducing bacterium (DSRB), isolated from estuarine mid-Chesapeake Bay sediments. It was chosen for study because of its exceptionally high rates of Hg methylation in culture and its metabolic similarity to the lost strain D. desulfuricans LS, the only organism for which methylation pathways have been partially defined. Strain ND132 is an incomplete oxidizer of short-chain fatty acids. It is capable of respiratory growth using fumarate as an electron acceptor, supporting growth without sulfide production. We used enriched stable Hg isotopes to show that ND132 simultaneously produces and degrades methylmercury (MeHg) during growth but does not produce elemental Hg. MeHg produced by cells is mainly excreted, and no MeHg is produced in spent medium. Mass balances for Hg and MeHg during the growth of cultures, including the distribution between filterable and particulate phases, illustrate how medium chemistry and growth phase dramatically affect Hg solubility and availability for methylation. The available information on Hg methylation among strains in the genus Desulfovibrio is summarized, and we present methylation rates for several previously untested species. About 50% of Desulfovibrio strains tested to date have the ability to produce MeHg. Importantly, the ability to produce MeHg is constitutive and does not confer Hg resistance. A 16S rRNA-based alignment of the genus Desulfovibrio allows the very preliminary assessment that there may be some evolutionary basis for the ability to produce MeHg within this genus.
Collapse
|