1
|
Hsieh SC, Peters JE. Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons. Annu Rev Biochem 2024; 93:139-161. [PMID: 38598855 PMCID: PMC11406308 DOI: 10.1146/annurev-biochem-030122-041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated nuclease) defense systems have been naturally coopted for guide RNA-directed transposition on multiple occasions. In all cases, cooption occurred with diverse elements related to the bacterial transposon Tn7. Tn7 tightly controls transposition; the transposase is activated only when special targets are recognized by dedicated target-site selection proteins. Tn7 and the Tn7-like elements that coopted CRISPR-Cas systems evolved complementary targeting pathways: one that recognizes a highly conserved site in the chromosome and a second pathway that targets mobile plasmids capable of cell-to-cell transfer. Tn7 and Tn7-like elements deliver a single integration into the site they recognize and also control the orientation of the integration event, providing future potential for use as programmable gene-integration tools. Early work has shown that guide RNA-directed transposition systems can be adapted to diverse hosts, even within microbial communities, suggesting great potential for engineering these systems as powerful gene-editing tools.
Collapse
Affiliation(s)
- Shan-Chi Hsieh
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
2
|
Stanton CR, Petrovski S, Batinovic S. Isolation of a PRD1-like phage uncovers the carriage of three putative conjugative plasmids in clinical Burkholderia contaminans. Res Microbiol 2024; 175:104202. [PMID: 38582389 DOI: 10.1016/j.resmic.2024.104202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of increasingly multi-drug resistant opportunistic bacteria. This resistance is driven through a combination of intrinsic factors and the carriage of a broad range of conjugative plasmids harbouring virulence determinants. Therefore, novel treatments are required to treat and prevent further spread of these virulence determinants. In the search for phages infective for clinical Bcc isolates, CSP1 phage, a PRD1-like phage was isolated. CSP1 phage was found to require pilus machinery commonly encoded on conjugative plasmids to facilitate infection of Gram-negative bacteria genera including Escherichia and Pseudomonas. Whole genome sequencing and characterisation of one of the clinical Burkholderia isolates revealed it to be Burkholderia contaminans. B. contaminans 5080 was found to contain a genome of over 8 Mbp encoding multiple intrinsic resistance factors, such as efflux pump systems, but more interestingly, carried three novel plasmids encoding multiple putative virulence factors for increased host fitness, including antimicrobial resistance. Even though PRD1-like phages are broad host range, their use in novel antimicrobial treatments shouldn't be dismissed, as the dissemination potential of conjugative plasmids is extensive. Continued survey of clinical bacterial strains is also key to understanding the spread of antimicrobial resistance determinants and plasmid evolution.
Collapse
Affiliation(s)
- Cassandra R Stanton
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia.
| | - Steven Batinovic
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia; Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| |
Collapse
|
3
|
Siddiquee R, Pong CH, Hall RM, Ataide SF. A programmable seekRNA guides target selection by IS1111 and IS110 type insertion sequences. Nat Commun 2024; 15:5235. [PMID: 38898016 PMCID: PMC11187229 DOI: 10.1038/s41467-024-49474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
IS1111 and IS110 insertion sequence (IS) family members encode an unusual DEDD transposase type and exhibit specific target site selection. The IS1111 group include identifiable subterminal inverted repeats (sTIR) not found in the IS110 type1. IS in both families include a noncoding region (NCR) of significant length and, as each individual IS or group of closely related IS selects a different site, we had previously proposed that an NCR-derived RNA was involved in target selection2. Here, we find that the NCR is usually downstream of the transposase gene in IS1111 family IS and upstream in the IS110 type. Four IS1111 and one IS110 family members that target different sequences are used to demonstrate that the NCR determines a short seeker RNA (seekRNA) that co-purified with the transposase. The seekRNA is essential for transposition of the IS or a cargo flanked by IS ends from and to the preferred target. Short sequences matching both top and bottom strands of the target are present in the seekRNA but their order in IS1111 and IS110 family IS is reversed. Reprogramming the seekRNA and donor flank to target a different site is demonstrated, indicating future biotechnological potential for these systems.
Collapse
Affiliation(s)
- Rezwan Siddiquee
- School of Life and Environmental Sciences, The University of Sydney, University of Sydney, NSW 2006, Australia
| | - Carol H Pong
- School of Life and Environmental Sciences, The University of Sydney, University of Sydney, NSW 2006, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, University of Sydney, NSW 2006, Australia.
| | - Sandro F Ataide
- School of Life and Environmental Sciences, The University of Sydney, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
4
|
Hwang J, Ye DY, Jung GY, Jang S. Mobile genetic element-based gene editing and genome engineering: Recent advances and applications. Biotechnol Adv 2024; 72:108343. [PMID: 38521283 DOI: 10.1016/j.biotechadv.2024.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Genome engineering has revolutionized several scientific fields, ranging from biochemistry and fundamental research to therapeutic uses and crop development. Diverse engineering toolkits have been developed and used to effectively modify the genome sequences of organisms. However, there is a lack of extensive reviews on genome engineering technologies based on mobile genetic elements (MGEs), which induce genetic diversity within host cells by changing their locations in the genome. This review provides a comprehensive update on the versatility of MGEs as powerful genome engineering tools that offers efficient solutions to challenges associated with genome engineering. MGEs, including DNA transposons, retrotransposons, retrons, and CRISPR-associated transposons, offer various advantages, such as a broad host range, genome-wide mutagenesis, efficient large-size DNA integration, multiplexing capabilities, and in situ single-stranded DNA generation. We focused on the components, mechanisms, and features of each MGE-based tool to highlight their cellular applications. Finally, we discussed the current challenges of MGE-based genome engineering and provided insights into the evolving landscape of this transformative technology. In conclusion, the combination of genome engineering with MGE demonstrates remarkable potential for addressing various challenges and advancing the field of genetic manipulation, and promises to revolutionize our ability to engineer and understand the genomes of diverse organisms.
Collapse
Affiliation(s)
- Jaeseong Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|
5
|
Ross K, Zerillo MM, Chandler M, Varani AM. Annotation and Comparative Genomics of Prokaryotic Transposable Elements. Methods Mol Biol 2024; 2802:189-213. [PMID: 38819561 DOI: 10.1007/978-1-0716-3838-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The data generated in nearly 30 years of bacterial genome sequencing has revealed the abundance of transposable elements (TE) and their importance in genome and transcript remodeling through the mediation of DNA insertions and deletions, structural rearrangements, and regulation of gene expression. Furthermore, what we have learned from studying transposition mechanisms and their regulation in bacterial TE is fundamental to our current understanding of TE in other organisms because much of what has been observed in bacteria is conserved in all domains of life. However, unlike eukaryotic TE, prokaryotic TE sequester and transmit important classes of genes that impact host fitness, such as resistance to antibiotics and heavy metals and virulence factors affecting animals and plants, among other acquired traits. This provides dynamism and plasticity to bacteria, which would otherwise be propagated clonally. The insertion sequences (IS), the simplest form of prokaryotic TE, are autonomous and compact mobile genetic elements. These can be organized into compound transposons, in which two similar IS can flank any DNA segment and render it transposable. Other more complex structures, called unit transposons, can be grouped into four major families (Tn3, Tn7, Tn402, Tn554) with specific genetic characteristics. This chapter will revisit the prominent structural features of these elements, focusing on a genomic annotation framework and comparative analysis. Relevant aspects of TE will also be presented, stressing their key position in genome impact and evolution, especially in the emergence of antimicrobial resistance and other adaptive traits.
Collapse
Affiliation(s)
- Karen Ross
- Protein Information Resource, Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | | | - Mick Chandler
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Alessandro M Varani
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, Unesp - São Paulo State University, Jaboticabal, Brazil.
| |
Collapse
|
6
|
Tenjo-Castaño F, Montoya G, Carabias A. Transposons and CRISPR: Rewiring Gene Editing. Biochemistry 2023; 62:3521-3532. [PMID: 36130724 PMCID: PMC10734217 DOI: 10.1021/acs.biochem.2c00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Indexed: 11/30/2022]
Abstract
CRISPR-Cas is driving a gene editing revolution because of its simple reprogramming. However, off-target effects and dependence on the double-strand break repair pathways impose important limitations. Because homology-directed repair acts primarily in actively dividing cells, many of the current gene correction/replacement approaches are restricted to a minority of cell types. Furthermore, current approaches display low efficiency upon insertion of large DNA cargos (e.g., sequences containing multiple gene circuits with tunable functionalities). Recent research has revealed new links between CRISPR-Cas systems and transposons providing new scaffolds that might overcome some of these limitations. Here, we comment on two new transposon-associated RNA-guided mechanisms considering their potential as new gene editing solutions. Initially, we focus on a group of small RNA-guided endonucleases of the IS200/IS605 family of transposons, which likely evolved into class 2 CRISPR effector nucleases (Cas9s and Cas12s). We explore the diversity of these nucleases (named OMEGA, obligate mobile element-guided activity) and analyze their similarities with class 2 gene editors. OMEGA nucleases can perform gene editing in human cells and constitute promising candidates for the design of new compact RNA-guided platforms. Then, we address the co-option of the RNA-guided activity of different CRISPR effector nucleases by a specialized group of Tn7-like transposons to target transposon integration. We describe the various mechanisms used by these RNA-guided transposons for target site selection and integration. Finally, we assess the potential of these new systems to circumvent some of the current gene editing challenges.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Arturo Carabias
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| |
Collapse
|
7
|
Johnston EL, Zavan L, Bitto NJ, Petrovski S, Hill AF, Kaparakis-Liaskos M. Planktonic and Biofilm-Derived Pseudomonas aeruginosa Outer Membrane Vesicles Facilitate Horizontal Gene Transfer of Plasmid DNA. Microbiol Spectr 2023; 11:e0517922. [PMID: 36946779 PMCID: PMC10100964 DOI: 10.1128/spectrum.05179-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/12/2023] [Indexed: 03/23/2023] Open
Abstract
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria package various cargo, including DNA that can be transferred to other bacteria or to host cells. OMV-associated DNA has been implicated in mediating horizontal gene transfer (HGT) between bacteria, which includes the dissemination of antibiotic resistance genes within and between bacterial species. Despite the known ability of OMVs to mediate HGT, the mechanisms of DNA packaging into OMVs remain poorly characterized, as does the effect of bacterial growth conditions on the DNA cargo composition of OMVs and their subsequent abilities to mediate HGT. In this study, we examined the DNA content of OMVs produced by the opportunistic pathogen Pseudomonas aeruginosa grown in either planktonic or biofilm conditions. Analysis of planktonic growth-derived OMVs revealed their ability to package and protect plasmid DNA from DNase degradation and to transfer plasmid-encoded antibiotic resistance genes to recipient, antibiotic-sensitive P. aeruginosa bacteria at a greater efficiency than transformation with plasmid alone. Comparisons of planktonic and biofilm-derived P. aeruginosa OMVs demonstrated that biofilm-derived OMVs were smaller but were associated with more plasmid DNA than planktonic-derived OMVs. Additionally, biofilm-derived P. aeruginosa OMVs were more efficient in the transformation of competent P. aeruginosa bacteria, compared to transformations with an equivalent number of planktonic-derived OMVs. The findings of this study highlight the importance of bacterial growth conditions for the packaging of DNA within P. aeruginosa OMVs and their ability to facilitate HGT, thus contributing to the spread of antibiotic resistance genes between P. aeruginosa bacteria. IMPORTANCE Bacterial membrane vesicles (BMVs) mediate interbacterial communication, and their ability to package DNA specifically contributes to biofilm formation, antibiotic resistance, and HGT between bacteria. However, the ability of P. aeruginosa OMVs to mediate HGT has not yet been demonstrated. Here, we reveal that P. aeruginosa planktonic and biofilm-derived OMVs can deliver plasmid-encoded antibiotic resistance to recipient P. aeruginosa. Additionally, we demonstrated that P. aeruginosa biofilm-derived OMVs were associated with more plasmid DNA compared to planktonic-derived OMVs and were more efficient in the transfer of plasmid DNA to recipient bacteria. Overall, this demonstrated the ability of P. aeruginosa OMVs to facilitate the dissemination of antibiotic resistance genes, thereby enabling the survival of susceptible bacteria during antibiotic treatment. Investigating the roles of biofilm-derived BMVs may contribute to furthering our understanding of the role of BMVs in HGT and the spread of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Ella L. Johnston
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Lauren Zavan
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Natalie J. Bitto
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Andrew F. Hill
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Tenjo-Castaño F, Sofos N, López-Méndez B, Stutzke LS, Fuglsang A, Stella S, Montoya G. Structure of the TnsB transposase-DNA complex of type V-K CRISPR-associated transposon. Nat Commun 2022; 13:5792. [PMID: 36184667 PMCID: PMC9527255 DOI: 10.1038/s41467-022-33504-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
CRISPR-associated transposons (CASTs) are mobile genetic elements that co-opted CRISPR-Cas systems for RNA-guided transposition. Here we present the 2.4 Å cryo-EM structure of the Scytonema hofmannii (sh) TnsB transposase from Type V-K CAST, bound to the strand transfer DNA. The strand transfer complex displays an intertwined pseudo-symmetrical architecture. Two protomers involved in strand transfer display a catalytically competent active site composed by DDE residues, while other two, which play a key structural role, show active sites where the catalytic residues are not properly positioned for phosphodiester hydrolysis. Transposon end recognition is accomplished by the NTD1/2 helical domains. A singular in trans association of NTD1 domains of the catalytically competent subunits with the inactive DDE domains reinforces the assembly. Collectively, the structural features suggest that catalysis is coupled to protein-DNA assembly to secure proper DNA integration. DNA binding residue mutants reveal that lack of specificity decreases activity, but it could increase transposition in some cases. Our structure sheds light on the strand transfer reaction of DDE transposases and offers new insights into CAST transposition. The cryo-EM structure of the type VK CRISPR-associated TnsB transposase sheds light onto RNA-guided transposition, providing new possibilities to redesign CRISPR-associated transposon systems.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - Nicholas Sofos
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - Blanca López-Méndez
- Protein Purification and Characterisation Facility, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - Luisa S Stutzke
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anders Fuglsang
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - Stefano Stella
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark.,Twelve Bio ApS, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
9
|
Considerations for the Analysis of Bacterial Membrane Vesicles: Methods of Vesicle Production and Quantification Can Influence Biological and Experimental Outcomes. Microbiol Spectr 2021; 9:e0127321. [PMID: 34937167 PMCID: PMC8694105 DOI: 10.1128/spectrum.01273-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori, Pseudomonas aeruginosa, and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. IMPORTANCE Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions.
Collapse
|
10
|
Brovedan MA, Marchiaro PM, Díaz MS, Faccone D, Corso A, Pasteran F, Viale AM, Limansky AS. Pseudomonas putida group species as reservoirs of mobilizable Tn402-like class 1 integrons carrying bla VIM-2 metallo-β-lactamase genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105131. [PMID: 34748986 DOI: 10.1016/j.meegid.2021.105131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
The Pseudomonas putida group (P. putida G) is composed of at least 21 species associated with a wide range of environments, including the clinical setting. Here, we characterized 13 carbapenem-resistant P. putida G clinical isolates bearing class 1 integrons/transposons (class 1 In/Tn) carrying blaVIM-2 metallo-β-lactamase gene cassettes obtained from hospitals of Argentina. Multilocus sequencing (MLSA) and phylogenetic analyses based on 16S rDNA, gyrB and rpoD sequences distinguished 7 species among them. blaVIM-2 was found in three different cassette arrays: In41 (blaVIM-2-aacA4), In899 (only blaVIM-2), and In528 (dfrB1-aacA4-blaVIM-2). In41 and In899 were associated with complete tniABQC transposition modules and IRi/IRt boundaries characteristic of the Tn5053/Tn402 transposons, which were designated Tn6335 and Tn6336, respectively. The class 1 In/Tn element carrying In528, however, exhibited a defective tni module bearing only the tniC (transposase) gene, associated with a complete IS6100 bounded with two oppositely-oriented IRt end regions. In some P. putida G isolates including P. asiatica, P. juntendi, P. putida G/II, and P. putida G/V, Tn6335/Tn6336 were carried by pLD209-type conjugative plasmids capable of self-mobilization to P. aeruginosa or Escherichia coli. In other isolates of P. asiatica, P. putida G/II, and P. monteiliieilii, however, these blaVIM-2-containing class 1 In/Tn elements were found inserted into the res regions preceding the tnpR (resolvase) gene of particular Tn21 subgroup members of Tn3 transposons. The overall results reinforce the notion of P. putida G members as blaVIM-2 reservoirs, and shed light on the mechanisms of dissemination of carbapenem resistance genes to other pathogenic bacteria in the clinical setting.
Collapse
Affiliation(s)
- Marco A Brovedan
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Patricia M Marchiaro
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María S Díaz
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego Faccone
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Pasteran
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro M Viale
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Adriana S Limansky
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
11
|
Rajabal V, Taner F, Sanlidag T, Suer K, Guler E, Sayan M, Petrovski S. Genetic characterisation of antibiotic resistance transposons Tn6608 and Tn6609 isolated from clinical Pseudomonas strains in Cyprus. J Glob Antimicrob Resist 2021; 26:330-334. [PMID: 34363995 DOI: 10.1016/j.jgar.2021.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Antibiotic therapy for Pseudomonas infections is becoming increasingly difficult. In this study, the transposons from two multidrug-resistant (MDR) clinical Pseudomonas strains containing related transposons responsible for giving rise to resistance determinants were characterised. METHODS Two MDR clinical Pseudomonas isolates were obtained from a medical facility in Cyprus. The strains were identified as Pseudomonas putida C54 and Pseudomonas aeruginosa C69. DNA was extracted from both strains and was sequenced. Transposons were identified, annotated and compared with DNA sequences in GenBank. RESULTS Two related nested transposons, here named Tn6608 (from P. putida C54) and Tn6609 (from P. aeruginosa C69), were characterised. The transposons are built on an ancestral Tn1403 base element (here named Tn1403A) that contains only the transposition module (tnpA and tnpR) and the associated cargo gene module (orfA, orfB, orfC and orfD) flanked by a 38-bp inverted repeat. The nested transposons identified in this study have evolved via acquisition of multiple transposons, adding multiple resistance genes to an ancestral transposon that originally lacked any resistance determinants. CONCLUSION Transposons related to Tn6608 and Tn6609 have evolved and are globally disseminated. Of particular interest is that most of these nested transposons are located within the same site in a genomic island, providing alternative avenues for dissemination.
Collapse
Affiliation(s)
- Vaheesan Rajabal
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Ferdiye Taner
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia; Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Nicosia, Cyprus
| | - Tamer Sanlidag
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | - Kaya Suer
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Emrah Guler
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Murat Sayan
- DESAM Research Institute, Near East University, Nicosia, Cyprus; Faculty of Medicine, Clinical Laboratory, PCR Unit, Kocaeli University, Kocaeli, Turkey
| | - Steve Petrovski
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|
12
|
Tn 6603, a Carrier of Tn 5053 Family Transposons, Occurs in the Chromosome and in a Genomic Island of Pseudomonas aeruginosa Clinical Strains. Microorganisms 2020; 8:microorganisms8121997. [PMID: 33333808 PMCID: PMC7765201 DOI: 10.3390/microorganisms8121997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Transposons of the Pseudomonasaeruginosa accessory gene pool contribute to phenotype and to genome plasticity. We studied local P. aeruginosa strains to ascertain the encroachment of mer-type res site hunter transposons into clinical settings and their associations with other functional modules. Five different Tn5053 family transposons were detected, all chromosomal. Some were solitary elements; one was in res of Tn1013#, a relative of a reported carrier of int-type res site hunters (class 1 integrons), but most were in res of Tn6603, a new Tn501-related transposon of unknown phenotype. Most of the Tn6603::Tn elements, and some Tn6603 and Tn6603::Tn elements found in GenBank sequences, were at identical sites in an hypothetical gene of P. aeruginosa genomic island PAGI-5v. The island in clonally differing strains was at either of two tRNALys loci, suggesting lateral transfer to these sites. This observation is consistent with the membership of the prototype PAGI-5 island to the ICE family of mobile genetic elements. Additionally, the res site hunters in the nested transposons occupied different positions in the Tn6603 carrier. This suggested independent insertion events on five occasions at least. Tn5053 family members that were mer-/tni-defective were found in Tn6603- and Tn501-like carriers in GenBank sequences of non-clinical Pseudomonas spp. The transposition events in these cases presumably utilized tni functions in trans, as can occur with class 1 integrons. We suggest that in the clinical context, P. aeruginosa strains that carry Tn6603 alone or in PAGI-5v can serve to disseminate functional res site hunters; these in turn can provide the requisite trans-acting tni functions to assist in the dissemination of class 1 integrons, and hence of their associated antibiotic resistance determinants.
Collapse
|
13
|
Hamidian M, Hall RM. The AbaR antibiotic resistance islands found in Acinetobacter baumannii global clone 1 - Structure, origin and evolution. Drug Resist Updat 2018; 41:26-39. [PMID: 30472242 DOI: 10.1016/j.drup.2018.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 11/28/2022]
Abstract
In multiply resistant Acinetobacter baumannii, complex transposons located in the chromosomal comM gene carry antibiotic and heavy metal resistance determinants. For one type, known collectively as AbaR, the ancestral form, AbaR0, entered a member of global clone 1 (GC1) in the mid 1970s and continued to evolve in situ forming many variants. In AbaR0, antibiotic and mercuric ion resistance genes are located between copies of a cadmium-zinc resistance transposon, Tn6018, and this composite transposon is in a class III transposon, Tn6019, carrying arsenate/arsenite resistance genes and five tni transposition genes. The antibiotic resistance genes in the AbaR0 and derived AbaR3 configurations are aphA1b, blaTEM, catA1, sul1, tetA(A), and cassette-associated aacC1 and aadA1 genes. These genes are in a specific arrangement of fragments from well-known transposons, e.g. Tn1, Tn1721, Tn1696 and Tn2670, that arose in an IncM1 plasmid. All known GC1 lineage 1 isolates carry AbaR0 or AbaR3, which arose around 1990, or a variant derived from one of them. Variants arose via deletions caused by one of three internal IS26s, by recombination between duplicate copies of sul1 or Tn6018, or by gene cassette addition or replacement. A few GC2 isolates also carry an AbaR island with different cassette-associated genes, aacA4 and oxa20.
Collapse
Affiliation(s)
- Mohammad Hamidian
- School of Molecular and Microbial Biosciences, The University of Sydney, NSW 2006, Australia; The ithree institute, University of Technology Sydney, Ultimo 2007, NSW, Australia
| | - Ruth M Hall
- School of Molecular and Microbial Biosciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
14
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1368] [Impact Index Per Article: 195.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Luk-In S, Pulsrikarn C, Bangtrakulnonth A, Chatsuwan T, Kulwichit W. Occurrence of a novel class 1 integron harboring qnrVC4 in Salmonella Rissen. Diagn Microbiol Infect Dis 2017; 88:282-286. [PMID: 28427794 DOI: 10.1016/j.diagmicrobio.2017.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 11/18/2022]
Abstract
We described qnrVC4 in S. Rissen 166ANSS50, a swine isolate, which was detected in the study on quinolone resistance mechanisms of nontyphoidal Salmonella in Thailand. The isolate was found to harbor a ̴17-kb non-conjugative plasmid carrying qnrVC4 within 8.91kb of a novel In4-like class 1 integron (In805). It contained the multi-drug resistance gene cassettes of qnrVC4-qacH4-aacA4-cmlA7-blaOXA-10-aadA1-dfrA14 and unusual 3'-CS of mobC-IS6100. This 1014-bp qnrVC4 cassette included with promoter (PqnrVC4: -35 TTGAGA and -10 TAGTCT) showed high homology with qnrVC4 in superintegron of V. cholerae O1 El Tor. The qnrVC4 recombinant plasmid resulted in 4-, 8-, and 16-fold increase in the MICs of nalidixic acid (2-8μg/mL), ciprofloxacin (0.015-0.125μg/mL), and norfloxacin (0.03-0.5μg/mL), respectively. In addition, the backbone plasmid revealed a novel replicon belonging to the MOBQ1 group from the broad-host-range mobilisable IncQ1 plasmid RFS1010 based on relaxase sequences. This is the first known report of qnrVC in Salmonella enterica. The qnrVC4 gene was co-transferred with other resistance genes via a novel plasmid-borne In805. This allowed the spread of this resistance gene to Enterobacteriaceae.
Collapse
Affiliation(s)
- Sirirat Luk-In
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Chaiwat Pulsrikarn
- World Health Organization National Salmonella and Shigella Centre, Nonthaburi, Thailand
| | - Aroon Bangtrakulnonth
- World Health Organization National Salmonella and Shigella Centre, Nonthaburi, Thailand
| | | | - Wanla Kulwichit
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Abstract
Transposons of the Tn3 family form a widespread and remarkably homogeneous group of bacterial transposable elements in terms of transposition functions and an extremely versatile system for mediating gene reassortment and genomic plasticity owing to their modular organization. They have made major contributions to antimicrobial drug resistance dissemination or to endowing environmental bacteria with novel catabolic capacities. Here, we discuss the dynamic aspects inherent to the diversity and mosaic structure of Tn3-family transposons and their derivatives. We also provide an overview of current knowledge of the replicative transposition mechanism of the family, emphasizing most recent work aimed at understanding this mechanism at the biochemical level. Previous and recent data are put in perspective with those obtained for other transposable elements to build up a tentative model linking the activities of the Tn3-family transposase protein with the cellular process of DNA replication, suggesting new lines for further investigation. Finally, we summarize our current view of the DNA site-specific recombination mechanisms responsible for converting replicative transposition intermediates into final products, comparing paradigm systems using a serine recombinase with more recently characterized systems that use a tyrosine recombinase.
Collapse
|
17
|
Sun F, Zhou D, Wang Q, Feng J, Feng W, Luo W, Zhang D, Liu Y, Qiu X, Yin Z, Chen W, Xia P. The first report of detecting the bla SIM-2 gene and determining the complete sequence of the SIM-encoding plasmid. Clin Microbiol Infect 2016; 22:347-351. [DOI: 10.1016/j.cmi.2015.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
18
|
Monsieurs P, Hobman J, Vandenbussche G, Mergeay M, Van Houdt R. Response of Cupriavidus metallidurans CH34 to Metals. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20594-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
19
|
Living in an Extremely Polluted Environment: Clues from the Genome of Melanin-Producing Aeromonas salmonicida subsp. pectinolytica 34melT. Appl Environ Microbiol 2015; 81:5235-48. [PMID: 26025898 DOI: 10.1128/aem.00903-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Aeromonas salmonicida subsp. pectinolytica 34mel(T) can be considered an extremophile due to the characteristics of the heavily polluted river from which it was isolated. While four subspecies of A. salmonicida are known fish pathogens, 34mel(T) belongs to the only subspecies isolated solely from the environment. Genome analysis revealed a high metabolic versatility, the capability to cope with diverse stress agents, and the lack of several virulence factors found in pathogenic Aeromonas. The most relevant phenotypic characteristics of 34mel(T) are pectin degradation, a distinctive trait of A. salmonicida subsp. pectinolytica, and melanin production. Genes coding for three pectate lyases were detected in a cluster, unique to this microorganism, that contains all genes needed for pectin degradation. Melanin synthesis in 34mel(T) is hypothesized to occur through the homogentisate pathway, as no tyrosinases or laccases were detected and the homogentisate 1,2-dioxygenase gene is inactivated by a transposon insertion, leading to the accumulation of the melanin precursor homogentisate. Comparative genome analysis of other melanogenic Aeromonas strains revealed that this gene was inactivated by transposon insertions or point mutations, indicating that melanin biosynthesis in Aeromonas occurs through the homogentisate pathway. Horizontal gene transfer could have contributed to the adaptation of 34mel(T) to a highly polluted environment, as 13 genomic islands were identified in its genome, some of them containing genes coding for fitness-related traits. Heavy metal resistance genes were also found, along with others associated with oxidative and nitrosative stresses. These characteristics, together with melanin production and the ability to use different substrates, may explain the ability of this microorganism to live in an extremely polluted environment.
Collapse
|
20
|
Tn6249, a new Tn6162 transposon derivative carrying a double-integron platform and involved with acquisition of the blaVIM-1 metallo-β-lactamase gene in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 59:1583-7. [PMID: 25547348 DOI: 10.1128/aac.04047-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The In70.2 integron platform appears to be a conserved structure involved in the dissemination of the blaVIM-1 metallo-β-lactamase gene in Pseudomonas aeruginosa. The genetic context of the In70.2 integron platform from P. aeruginosa VR-143/97, the VIM-1-producing index strain isolated in Italy in 1997, was fully characterized by a next-generation sequencing approach refined by conventional sequencing. The In70.2 integron platform from VR-143/97 was found to be associated with a defective Tn402-like transposon inserted into the urf2 gene of a Tn3 family transposon of an original structure, named Tn6249, which also carried a partially deleted mer operon and an In90 integron platform in a tail-to-tail orientation. Tn6249 was inserted into a PACS171b-like genomic island, which was in turn inserted into the endA gene of the Pseudomonas chromosomal backbone. Tn6249 showed a similar structure and a conserved location with respect to that of Tn6060, a Tn3 family transposon associated with In70.2 and carrying a double-integron platform, which was detected in a VIM-1-producing P. aeruginosa strain isolated in Australia in 2008. Both Tn6249 and Tn6060 are apparently derived from Tn6162, a mercury resistance transposon carrying an integron platform, which was found in P. aeruginosa isolates from different geographic locations. The conservation of the genetic context of Tn6249 and Tn6060 suggests an in situ evolution of these elements after the insertion of a Tn6162-like ancestor into the PACS171b-like genomic island (GI) present in the genome of a successful widespread P. aeruginosa clonal lineage.
Collapse
|
21
|
Domingues S, da Silva GJ, Nielsen KM. Integrons: Vehicles and pathways for horizontal dissemination in bacteria. Mob Genet Elements 2014; 2:211-223. [PMID: 23550063 PMCID: PMC3575428 DOI: 10.4161/mge.22967] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrons are genetic elements first described at the end of the 1980s. Although most integrons were initially described in human clinical isolates, they have now been identified in many non-clinical environments, such as water and soil. Integrons are present in ≈10% of the sequenced bacterial genomes and are frequently linked to mobile genetic elements (MGEs); particularly the class 1 integrons. Genetic linkage to a diverse set of MGEs facilitates horizontal transfer of class 1 integrons within and between bacterial populations and species. The mechanistic aspects limiting transfer of MGEs will therefore limit the transfer of class 1 integrons. However, horizontal movement due to genes provided in trans and homologous recombination can result in class 1 integron dynamics independent of MGEs. A key determinant for continued dissemination of class 1 integrons is the probability that transferred MGEs will be vertically inherited in the recipient bacterial population. Heritability depends both on genetic stability as well as the fitness costs conferred to the host. Here we review the factors known to govern the dissemination of class 1 integrons in bacteria.
Collapse
Affiliation(s)
- Sara Domingues
- Centre of Pharmaceutical Studies; Faculty of Pharmacy; University of Coimbra; Coimbra, Portugal ; Department of Pharmacy; Faculty of Health Sciences; University of Tromsø; Tromsø, Norway
| | | | | |
Collapse
|
22
|
Gifford B, Tucci J, McIlroy SJ, Petrovski S. Isolation and characterization of two plasmids in a clinical Acinetobacter nosocomialis strain. BMC Res Notes 2014; 7:732. [PMID: 25326196 PMCID: PMC4210605 DOI: 10.1186/1756-0500-7-732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/10/2014] [Indexed: 11/11/2022] Open
Abstract
Background Acinetobacter species are recognised as important nosocomial pathogens that have become a major cause of invasive opportunistic infections in hospitalised patients. Their clinical significance is largely due to the rapid development of antimicrobial resistance among strains. The development of antibiotic resistance among bacterial strains occurs frequently by the acquisition of resistance genes by gene transfer systems such as bacterial plasmids. Method Multi-antibiotic resistant Acinetobacter nosocomialis strain 178 was isolated from a hospital in Melbourne, Australia. This strain was screened for the presence of plasmids. The two plasmids isolated were sequenced and annotated. Results Two plasmids isolated from a single clinical Acinetobacter nosocomialis strain were sequenced. One plasmid, designated pRAY*-v3, appears to have evolved via the same lineage as the pRAY plasmid isolated from an Acinetobacter baumannii in South Africa. The other plasmid, designated pAB49-v1, appears to be an evolutionary descendent from a cryptic plasmid isolated from an A. baumannii almost 20 years ago. Both of the plasmid sequences here share a high level of sequence similarity with their ancestors, however differences are noted. Conclusion The isolation of these plasmid-lineages across different decades and continents suggests their global dissemination.
Collapse
Affiliation(s)
| | | | | | - Steve Petrovski
- La Trobe Institute for Molecular Sciences, La Trobe University, Bendigo, Australia.
| |
Collapse
|
23
|
Siebor E, Neuwirth C. Proteus genomic island 1 (PGI1), a new resistance genomic island from two Proteus mirabilis French clinical isolates. J Antimicrob Chemother 2014; 69:3216-20. [PMID: 25114166 DOI: 10.1093/jac/dku314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To analyse the genetic environment of the antibiotic resistance genes in two clinical Proteus mirabilis isolates resistant to multiple antibiotics. METHODS PCR, gene walking and whole-genome sequencing were used to determine the sequence of the resistance regions, the surrounding genetic structure and the flanking chromosomal regions. RESULTS A genomic island of 81.1 kb named Proteus genomic island 1 (PGI1) located at the 3'-end of trmE (formerly known as thdF) was characterized. The large MDR region of PGI1 (55.4 kb) included a class 1 integron (aadB and aadA2) and regions deriving from several transposons: Tn2 (blaTEM-135), Tn21, Tn6020-like transposon (aphA1b), a hybrid Tn502/Tn5053 transposon, Tn501, a hybrid Tn1696/Tn1721 transposon [tetA(A)] carrying a class 1 integron (aadA1) and Tn5393 (strA and strB). Several ISs were also present (IS4321, IS1R and IS26). The PGI1 backbone (25.7 kb) was identical to that identified in Salmonella Heidelberg SL476 and shared some identity with the Salmonella genomic island 1 (SGI1) backbone. An IS26-mediated recombination event caused the division of the MDR region into two parts separated by a large chromosomal DNA fragment of 197 kb, the right end of PGI1 and this chromosomal sequence being in inverse orientation. CONCLUSIONS PGI1 is a new resistance genomic island from P. mirabilis belonging to the same island family as SGI1. The role of PGI1 in the spread of antimicrobial resistance genes among Enterobacteriaceae of medical importance needs to be evaluated.
Collapse
Affiliation(s)
- Eliane Siebor
- Laboratory of Bacteriology, University Hospital of Dijon, Plateau technique de Biologie, BP 37013, 21070 Dijon Cedex, France
| | - Catherine Neuwirth
- Laboratory of Bacteriology, University Hospital of Dijon, Plateau technique de Biologie, BP 37013, 21070 Dijon Cedex, France
| |
Collapse
|
24
|
The complete nucleotide sequence of the carbapenem resistance-conferring conjugative plasmid pLD209 from a Pseudomonas putida clinical strain reveals a chimeric design formed by modules derived from both environmental and clinical bacteria. Antimicrob Agents Chemother 2014; 58:1816-21. [PMID: 24395220 DOI: 10.1128/aac.02494-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete sequence of the carbapenem-resistance-conferring conjugative plasmid pLD209 from a Pseudomonas putida clinical strain is presented. pLD209 is formed by 3 well-defined regions: an adaptability module encompassing a Tn402-like class 1 integron of clinical origin containing blaVIM-2 and aacA4 gene cassettes, partitioning and transfer modules, and a replication module derived from plasmids of environmental bacteria. pLD209 is thus a mosaic of modules originating in both the clinical and environmental (nonclinical) microbiota.
Collapse
|
25
|
Abstract
Antibiotic resistance in Gram-negative bacteria is often due to the acquisition of resistance genes from a shared pool. In multiresistant isolates these genes, together with associated mobile elements, may be found in complex conglomerations on plasmids or on the chromosome. Analysis of available sequences reveals that these multiresistance regions (MRR) are modular, mosaic structures composed of different combinations of components from a limited set arranged in a limited number of ways. Components common to different MRR provide targets for homologous recombination, allowing these regions to evolve by combinatorial evolution, but our understanding of this process is far from complete. Advances in technology are leading to increasing amounts of sequence data, but currently available automated annotation methods usually focus on identifying ORFs and predicting protein function by homology. In MRR, where the genes are often well characterized, the challenge is to identify precisely which genes are present and to define the boundaries of complete and fragmented mobile elements. This review aims to summarize the types of mobile elements involved in multiresistance in Gram-negative bacteria and their associations with particular resistance genes, to describe common components of MRR and to illustrate methods for detailed analysis of these regions.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The University of Sydney, Westmead Hospital, Sydney, NSW 2145, Australia.
| |
Collapse
|
26
|
Petrovski S, Stanisich VA. Embedded elements in the IncPβ plasmids R772 and R906 can be mobilized and can serve as a source of diverse and novel elements. Microbiology (Reading) 2011; 157:1714-1725. [DOI: 10.1099/mic.0.047761-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IncP plasmids are important contributors to bacterial adaptation. Their phenotypic diversity is due largely to accessory regions located in one or two specific parts of the plasmid. The accessory regions are themselves diverse, as judged from sequenced plasmids mostly isolated from non-clinical sources. To further understand the diversity, evolutionary history and functional attributes of the accessory regions, we compared R906 and R772, focusing on the oriV–trfA accessory region. These IncPβ plasmids were from porcine and clinical sources, respectively. We found that the accessory regions formed potentially mobile elements, Tn510 (from R906) and Tn511 (from R772), that differed internally but had identical borders. Both elements appeared to have evolved from a TnAO22-like mer transposon that had inserted into an ancestral IncPβ plasmid and then accrued additional transposable elements and genes from various proteobacteria. Structural comparisons suggested that Tn510 (and a descendent in pB10), Tn511 and the mer element in pJP4 represent three lineages that evolved from the same widely dispersed IncPβ carrier. Functional studies on Tn511 revealed that its mer module is inactive due to a merT mutation, and that its aphAI region is prone to deletion. More significantly, we showed that by providing a suitable transposase gene in trans, the defective Tn510 and Tn511 could transpose intact or in part, and could also generate new elements (stable cointegrates and novel transposons). The ingredients for assisted transposition events similar to those observed here occur in natural microcosms, providing non-self-mobile elements with avenues for dispersal to new replicons and for structural diversification. This work provides an experimental demonstration of how the complex embedded elements uncovered in IncP plasmids and in other plasmid families may have been generated.
Collapse
Affiliation(s)
- Steve Petrovski
- Department of Microbiology, La Trobe University, Victoria 3086, Australia
| | - Vilma A. Stanisich
- Department of Microbiology, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
27
|
Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol 2011; 193:3556-68. [PMID: 21602358 DOI: 10.1128/jb.00297-11] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite extensive surveillance, food-borne Salmonella enterica infections continue to be a significant burden on public health systems worldwide. As the S. enterica species comprises sublineages that differ greatly in antigenic representation, virulence, and antimicrobial resistance phenotypes, a better understanding of the species' evolution is critical for the prediction and prevention of future outbreaks. The roles that virulence and resistance phenotype acquisition, exchange, and loss play in the evolution of S. enterica sublineages, which to a certain extent are represented by serotypes, remains mostly uncharacterized. Here, we compare 17 newly sequenced and phenotypically characterized nontyphoidal S. enterica strains to 11 previously sequenced S. enterica genomes to carry out the most comprehensive comparative analysis of this species so far. These phenotypic and genotypic data comparisons in the phylogenetic species context suggest that the evolution of known S. enterica sublineages is mediated mostly by two mechanisms, (i) the loss of coding sequences with known metabolic functions, which leads to functional reduction, and (ii) the acquisition of horizontally transferred phage and plasmid DNA, which provides virulence and resistance functions and leads to increasing specialization. Matches between S. enterica clustered regularly interspaced short palindromic repeats (CRISPR), part of a defense mechanism against invading plasmid and phage DNA, and plasmid and prophage regions suggest that CRISPR-mediated immunity could control short-term phenotype changes and mediate long-term sublineage evolution. CRISPR analysis could therefore be critical in assessing the evolutionary potential of S. enterica sublineages and aid in the prediction and prevention of future S. enterica outbreaks.
Collapse
|
28
|
Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 2011; 35:790-819. [PMID: 21517914 DOI: 10.1111/j.1574-6976.2011.00273.x] [Citation(s) in RCA: 387] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antibiotics were one of the great discoveries of the 20th century. However, resistance appeared even in the earliest years of the antibiotic era. Antibiotic resistance continues to become worse, despite the ever-increasing resources devoted to combat the problem. One of the most important factors in the development of resistance to antibiotics is the remarkable ability of bacteria to share genetic resources via Lateral Gene Transfer (LGT). LGT occurs on a global scale, such that in theory, any gene in any organism anywhere in the microbial biosphere might be mobilized and spread. With sufficiently strong selection, any gene may spread to a point where it establishes a global presence. From an antibiotic resistance perspective, this means that a resistance phenotype can appear in a diverse range of infections around the globe nearly simultaneously. We discuss the forces and agents that make this LGT possible and argue that the problem of resistance can ultimately only be managed by understanding the problem from a broad ecological and evolutionary perspective. We also argue that human activities are exacerbating the problem by increasing the tempo of LGT and bacterial evolution for many traits that are important to humans.
Collapse
Affiliation(s)
- Hatch W Stokes
- The i3 Institute, University of Technology, Broadway 2007, Sydney, NSW, Australia.
| | | |
Collapse
|
29
|
Abstract
Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable "core genome" and a highly variable "accessory genome." Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging.
Collapse
|
30
|
Petrovski S, Blackmore DW, Jackson KL, Stanisich VA. Mercury(II)-resistance transposons Tn502 and Tn512, from Pseudomonas clinical strains, are structurally different members of the Tn5053 family. Plasmid 2011; 65:58-64. [DOI: 10.1016/j.plasmid.2010.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/20/2010] [Accepted: 08/20/2010] [Indexed: 11/27/2022]
|