1
|
Kumari K, Sharma PK, Singh RP. Unravelling the transcriptome response of Enterobacter sp. S-33 under varying temperature. Arch Microbiol 2024; 206:81. [PMID: 38294553 DOI: 10.1007/s00203-023-03792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
Enterobacter genus includes the bacteria occupying every aspect of environment, however, their adaptability at varying temperature is not clear. In the present study, we analyzed the transcriptome response of Enterobacter sp. S-33 and their functional genes under various temperatures (30-45 ℃) that were expressed and accumulated in cells under temperature-stress. During a temperature shift from 37 to 45 ℃, 165 genes showed differential expression including 112 up-regulated and 53 down-regulated. In particular, heat-shock genes such as CspA, 16 kDa heat shock protein A/B and transcriptional regulators such as LysR, TetR, and LuxR were differentially expressed, indicating the role of complex molecular mechanism of Enterobacter adapting to temperature stress. Similarly, genes associated to signal transduction, ABC transporters, iron homeostasis, and quorum sensing were also induced. The Gene ontology enrichment analysis of differentially expressed genes (DEGs) were categorized into "transmembrane transport", "tRNA binding", "hydrogen sulfide biosynthetic process" and "sulfate assimilation" terms. In addition, Kyoto Encyclopedia of Genes and Genomes pathways showed that ABC transporter as well as quorum sensing pathways were significantly enriched. Overall, current study has contributed to explore the adaptive molecular mechanisms of Enterobacter spp. upon temperature change, which further opens new avenues for future in-depth functional studies.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| |
Collapse
|
2
|
Pandey SS. The Role of Iron in Phytopathogenic Microbe-Plant Interactions: Insights into Virulence and Host Immune Response. PLANTS (BASEL, SWITZERLAND) 2023; 12:3173. [PMID: 37687419 PMCID: PMC10563075 DOI: 10.3390/plants12173173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Iron is an essential element required for the growth and survival of nearly all forms of life. It serves as a catalytic component in multiple enzymatic reactions, such as photosynthesis, respiration, and DNA replication. However, the excessive accumulation of iron can result in cellular toxicity due to the production of reactive oxygen species (ROS) through the Fenton reaction. Therefore, to maintain iron homeostasis, organisms have developed a complex regulatory network at the molecular level. Besides catalyzing cellular redox reactions, iron also regulates virulence-associated functions in several microbial pathogens. Hosts and pathogens have evolved sophisticated strategies to compete against each other over iron resources. Although the role of iron in microbial pathogenesis in animals has been extensively studied, mechanistic insights into phytopathogenic microbe-plant associations remain poorly understood. Recent intensive research has provided intriguing insights into the role of iron in several plant-pathogen interactions. This review aims to describe the recent advances in understanding the role of iron in the lifestyle and virulence of phytopathogenic microbes, focusing on bacteria and host immune responses.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India; ; Tel.: +91-361-2270095 (ext. 216)
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| |
Collapse
|
3
|
Zhao L, Tabari E, Rong H, Dong X, Xue D, Su Z. Antisense transcription and its roles in adaption to environmental stress in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533988. [PMID: 36993172 PMCID: PMC10055363 DOI: 10.1101/2023.03.23.533988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
UNLABELLED It has been reported that a highly varying proportion (1% ∼ 93%) of genes in various prokaryotes have antisense RNA (asRNA) transcription. However, the extent of the pervasiveness of asRNA transcription in the well-studied E. coli K12 strain has thus far been an issue of debate. Furthermore, very little is known about the expression patterns and functions of asRNAs under various conditions. To fill these gaps, we determined the transcriptomes and proteomes of E. coli K12 at multiple time points in five culture conditions using strand-specific RNA-seq, differential RNA-seq, and quantitative mass spectrometry methods. To reduce artifacts of possible transcriptional noise, we identified asRNA using stringent criteria with biological replicate verification and transcription start sites (TSSs) information included. We identified a total of 660 asRNAs, which were generally short and largely condition-dependently transcribed. We found that the proportions of the genes which had asRNA transcription highly depended on the culture conditions and time points. We classified the transcriptional activities of the genes in six transcriptional modes according to their relative levels of asRNA to mRNA. Many genes changed their transcriptional modes at different time points of the culture conditions, and such transitions can be described in a well-defined manner. Intriguingly, the protein levels and mRNA levels of genes in the sense-only/sense-dominant mode were moderately correlated, but the same was not true for genes in the balanced/antisense-dominant mode, in which asRNAs were at a comparable or higher level to mRNAs. These observations were further validated by western blot on candidate genes, where an increase in asRNA transcription diminished gene expression in one case and enhanced it in another. These results suggest that asRNAs may directly or indirectly regulate translation by forming duplexes with cognate mRNAs. Thus, asRNAs may play an important role in the bacterium's responses to environmental changes during growth and adaption to different environments. IMPORTANCE The cis -antisense RNA (asRNA) is a type of understudied RNA molecules in prokaryotes, which is believed to be important in regulating gene expression. Our current understanding of asRNA is constrained by inconsistent reports about its identification and properties. These discrepancies are partially caused by a lack of sufficient samples, biological replicates, and culture conditions. This study aimed to overcome these disadvantages and identified 660 putative asRNAs using integrated information from strand-specific RNA-seq, differential RNA-seq, and mass spectrometry methods. In addition, we explored the relative expression between asRNAs and sense RNAs and investigated asRNA regulated transcriptional activity changes over different culture conditions and time points. Our work strongly suggests that asRNAs may play a crucial role in bacterium's responses to environmental changes during growth and adaption to different environments.
Collapse
|
4
|
Regmi R, Penton CR, Anderson J, Gupta VVSR. Do small RNAs unlock the below ground microbiome-plant interaction mystery? Front Mol Biosci 2022; 9:1017392. [PMID: 36406267 PMCID: PMC9670543 DOI: 10.3389/fmolb.2022.1017392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2023] Open
Abstract
Over the past few decades, regulatory RNAs, such as small RNAs (sRNAs), have received increasing attention in the context of host-microbe interactions due to their diverse roles in controlling various biological processes in eukaryotes. In addition, studies have identified an increasing number of sRNAs with novel functions across a wide range of bacteria. What is not well understood is why cells regulate gene expression through post-transcriptional mechanisms rather than at the initiation of transcription. The finding of a multitude of sRNAs and their identified associated targets has allowed further investigation into the role of sRNAs in mediating gene regulation. These foundational data allow for further development of hypotheses concerning how a precise control of gene activity is accomplished through the combination of transcriptional and post-transcriptional regulation. Recently, sRNAs have been reported to participate in interkingdom communication and signalling where sRNAs originating from one kingdom are able to target or control gene expression in another kingdom. For example, small RNAs of fungal pathogens that silence plant genes and vice-versa plant sRNAs that mediate bacterial gene expression. However, there is currently a lack of evidence regarding sRNA-based inter-kingdom signalling across more than two interacting organisms. A habitat that provides an excellent opportunity to investigate interconnectivity is the plant rhizosphere, a multifaceted ecosystem where plants and associated soil microbes are known to interact. In this paper, we discuss how the interconnectivity of bacteria, fungi, and plants within the rhizosphere may be mediated by bacterial sRNAs with a particular focus on disease suppressive and non-suppressive soils. We discuss the potential roles sRNAs may play in the below-ground world and identify potential areas of future research, particularly in reference to the regulation of plant immunity genes by bacterial and fungal communities in disease-suppressive and non-disease-suppressive soils.
Collapse
Affiliation(s)
- Roshan Regmi
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| | - C. Ryan Penton
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jonathan Anderson
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Canberra, SA, Australia
| | - Vadakattu V. S. R. Gupta
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| |
Collapse
|
5
|
Kreitmeier M, Ardern Z, Abele M, Ludwig C, Scherer S, Neuhaus K. Spotlight on alternative frame coding: Two long overlapping genes in Pseudomonas aeruginosa are translated and under purifying selection. iScience 2022; 25:103844. [PMID: 35198897 PMCID: PMC8850804 DOI: 10.1016/j.isci.2022.103844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/14/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
The existence of overlapping genes (OLGs) with significant coding overlaps revolutionizes our understanding of genomic complexity. We report two exceptionally long (957 nt and 1536 nt), evolutionarily novel, translated antisense open reading frames (ORFs) embedded within annotated genes in the pathogenic Gram-negative bacterium Pseudomonas aeruginosa. Both OLG pairs show sequence features consistent with being genes and transcriptional signals in RNA sequencing. Translation of both OLGs was confirmed by ribosome profiling and mass spectrometry. Quantitative proteomics of samples taken during different phases of growth revealed regulation of protein abundances, implying biological functionality. Both OLGs are taxonomically restricted, and likely arose by overprinting within the genus. Evidence for purifying selection further supports functionality. The OLGs reported here, designated olg1 and olg2, are the longest yet proposed in prokaryotes and are among the best attested in terms of translation and evolutionary constraint. These results highlight a potentially large unexplored dimension of prokaryotic genomes.
Collapse
Affiliation(s)
- Michaela Kreitmeier
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Zachary Ardern
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Miriam Abele
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technische Universität München, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technische Universität München, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
6
|
Kandel PP, Naumova M, Fautt C, Patel RR, Triplett LR, Hockett KL. Genome Mining Shows Ubiquitous Presence and Extensive Diversity of Toxin-Antitoxin Systems in Pseudomonas syringae. Front Microbiol 2022; 12:815911. [PMID: 35095819 PMCID: PMC8790059 DOI: 10.3389/fmicb.2021.815911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems consist of two or more adjacent genes, encoding a toxin and an antitoxin. TA systems are implicated in evolutionary and physiological functions including genome maintenance, antibiotics persistence, phage defense, and virulence. Eight classes of TA systems have been described, based on the mechanism of toxin neutralization by the antitoxin. Although studied well in model species of clinical significance, little is known about the TA system abundance and diversity, and their potential roles in stress tolerance and virulence of plant pathogens. In this study, we screened the genomes of 339 strains representing the genetic and lifestyle diversity of the Pseudomonas syringae species complex for TA systems. Using bioinformatic search and prediction tools, including SLING, BLAST, HMMER, TADB2.0, and T1TAdb, we show that P. syringae strains encode 26 different families of TA systems targeting diverse cellular functions. TA systems in this species are almost exclusively type II. We predicted a median of 15 TA systems per genome, and we identified six type II TA families that are found in more than 80% of strains, while others are more sporadic. The majority of predicted TA genes are chromosomally encoded. Further functional characterization of the predicted TA systems could reveal how these widely prevalent gene modules potentially impact P. syringae ecology, virulence, and disease management practices.
Collapse
Affiliation(s)
- Prem P. Kandel
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States,*Correspondence: Prem P. kandel,
| | - Marina Naumova
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
| | - Chad Fautt
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
| | - Ravikumar R. Patel
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Lindsay R. Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Kevin L. Hockett
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States,Kevin L. Hockett,
| |
Collapse
|
7
|
Yu C, Yang F, Xue D, Wang X, Chen H. The Regulatory Functions of σ 54 Factor in Phytopathogenic Bacteria. Int J Mol Sci 2021; 22:ijms222312692. [PMID: 34884502 PMCID: PMC8657755 DOI: 10.3390/ijms222312692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
σ54 factor (RpoN), a type of transcriptional regulatory factor, is widely found in pathogenic bacteria. It binds to core RNA polymerase (RNAP) and regulates the transcription of many functional genes in an enhancer-binding protein (EBP)-dependent manner. σ54 has two conserved functional domains: the activator-interacting domain located at the N-terminal and the DNA-binding domain located at the C-terminal. RpoN directly binds to the highly conserved sequence, GGN10GC, at the −24/−12 position relative to the transcription start site of target genes. In general, bacteria contain one or two RpoNs but multiple EBPs. A single RpoN can bind to different EBPs in order to regulate various biological functions. Thus, the overlapping and unique regulatory pathways of two RpoNs and multiple EBP-dependent regulatory pathways form a complex regulatory network in bacteria. However, the regulatory role of RpoN and EBPs is still poorly understood in phytopathogenic bacteria, which cause economically important crop diseases and pose a serious threat to world food security. In this review, we summarize the current knowledge on the regulatory function of RpoN, including swimming motility, flagella synthesis, bacterial growth, type IV pilus (T4Ps), twitching motility, type III secretion system (T3SS), and virulence-associated phenotypes in phytopathogenic bacteria. These findings and knowledge prove the key regulatory role of RpoN in bacterial growth and pathogenesis, as well as lay the groundwork for further elucidation of the complex regulatory network of RpoN in bacteria.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Dingrong Xue
- National Engineering Laboratory of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China;
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
- Correspondence:
| |
Collapse
|
8
|
Identification of IAA-regulated genes in Pseudomonas syringae pv. tomato strain DC3000. J Bacteriol 2021; 204:e0038021. [PMID: 34662236 DOI: 10.1128/jb.00380-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The auxin indole-3-acetic acid (IAA) is a plant hormone that not only regulates plant growth and development but also plays important roles in plant-microbe interactions. We previously reported that IAA alters expression of several virulence-related genes in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000). To learn more about the impact of IAA on regulation of PtoDC3000 gene expression we performed a global transcriptomic analysis of bacteria grown in culture, in the presence or absence of exogenous IAA. We observed that IAA repressed expression of genes involved in the Type III secretion (T3S) system and motility and promoted expression of several known and putative transcriptional regulators. Several of these regulators are orthologs of factors known to regulate stress responses and accordingly expression of several stress response-related genes was also upregulated by IAA. Similar trends in expression for several genes were also observed by RT-qPCR. Using an Arabidopsis thaliana auxin receptor mutant that accumulates elevated auxin, we found that many of the P. syringae genes regulated by IAA in vitro were also regulated by auxin in planta. Collectively the data indicate that IAA modulates many aspects of PtoDC3000 biology, presumably to promote both virulence and survival under stressful conditions, including those encountered in or on plant leaves. IMPORTANCE Indole-3-acetic acid (IAA), a form of the plant hormone auxin, is used by many plant-associated bacteria as a cue to sense the plant environment. Previously, we showed that IAA can promote disease in interactions between the plant pathogen Pseudomonas syringae strain PtoDC000 and one of its hosts, Arabidopsis thaliana. However, the mechanisms by which IAA impacts the biology of PtoDC3000 and promotes disease are not well understood. Here we demonstrate that IAA is a signal molecule that regulates gene expression in PtoDC3000. The presence of exogenous IAA affects expression of over 700 genes in the bacteria, including genes involved in Type III secretion and genes involved in stress response. This work offers insight into the roles of auxin promoting pathogenesis.
Collapse
|
9
|
Pusic P, Sonnleitner E, Bläsi U. Specific and Global RNA Regulators in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:8632. [PMID: 34445336 PMCID: PMC8395346 DOI: 10.3390/ijms22168632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa (Pae) is an opportunistic pathogen showing a high intrinsic resistance to a wide variety of antibiotics. It causes nosocomial infections that are particularly detrimental to immunocompromised individuals and to patients suffering from cystic fibrosis. We provide a snapshot on regulatory RNAs of Pae that impact on metabolism, pathogenicity and antibiotic susceptibility. Different experimental approaches such as in silico predictions, co-purification with the RNA chaperone Hfq as well as high-throughput RNA sequencing identified several hundreds of regulatory RNA candidates in Pae. Notwithstanding, using in vitro and in vivo assays, the function of only a few has been revealed. Here, we focus on well-characterized small base-pairing RNAs, regulating specific target genes as well as on larger protein-binding RNAs that sequester and thereby modulate the activity of translational repressors. As the latter impact large gene networks governing metabolism, acute or chronic infections, these protein-binding RNAs in conjunction with their cognate proteins are regarded as global post-transcriptional regulators.
Collapse
Affiliation(s)
- Petra Pusic
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
10
|
Pobre V, Graça-Lopes G, Saramago M, Ankenbauer A, Takors R, Arraiano CM, Viegas SC. Prediction of novel non-coding RNAs relevant for the growth of Pseudomonas putida in a bioreactor. MICROBIOLOGY-SGM 2020; 166:149-156. [PMID: 31860438 DOI: 10.1099/mic.0.000875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas putida is a micro-organism with great potential for industry due to its stress-endurance traits and easy manipulation of the metabolism. However, optimization is still required to improve production yields. In the last years, manipulation of bacterial small non-coding RNAs (ncRNAs) has been recognized as an effective tool to improve the production of industrial compounds. So far, very few ncRNAs are annotated in P. putida beyond the generally conserved. In the present study, P. putida was cultivated in a two-compartment scale-down bioreactor that simulates large-scale industrial bioreactors. We performed RNA-Seq of samples collected at distinct locations and time-points to predict novel and potentially important ncRNAs for the adaptation of P. putida to bioreactor stress conditions. Instead of using a purely genomic approach, we have rather identified regions of putative ncRNAs with high expression levels using two different programs (Artemis and sRNA detect). Only the regions identified with both approaches were considered for further analysis and, in total, 725 novel ncRNAs were predicted. We also found that their expression was not constant throughout the bioreactor, showing different patterns of expression with time and position. This is the first work focusing on the ncRNAs whose expression is triggered in a bioreactor environment. This information is of great importance for industry, since it provides possible targets to engineer more effective P. putida strains for large-scale production.
Collapse
Affiliation(s)
- Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Gil Graça-Lopes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Andreas Ankenbauer
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
11
|
Barroso R, García-Mauriño SM, Tomás-Gallardo L, Andújar E, Pérez-Alegre M, Santero E, Canosa I. The CbrB Regulon: Promoter dissection reveals novel insights into the CbrAB expression network in Pseudomonas putida. PLoS One 2018; 13:e0209191. [PMID: 30557364 PMCID: PMC6296734 DOI: 10.1371/journal.pone.0209191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/30/2018] [Indexed: 11/18/2022] Open
Abstract
CbrAB is a high ranked global regulatory system exclusive of the Pseudomonads that responds to carbon limiting conditions. It has become necessary to define the particular regulon of CbrB and discriminate it from the downstream cascades through other regulatory components. We have performed in vivo binding analysis of CbrB in P. putida and determined that it directly controls the expression of at least 61 genes; 20% involved in regulatory functions, including the previously identified CrcZ and CrcY small regulatory RNAs. The remaining are porines or transporters (20%), metabolic enzymes (16%), activities related to protein translation (5%) and orfs of uncharacterised function (38%). Amongst the later, we have selected the operon PP2810-13 to make an exhaustive analysis of the CbrB binding sequences, together with those of crcZ and crcY. We describe the implication of three independent non-palindromic subsites with a variable spacing in three different targets; CrcZ, CrcY and operon PP2810-13 in the CbrAB activation. CbrB is a quite peculiar σN-dependent activator since it is barely dependent on phosphorylation for transcriptional activation. With the depiction of the precise contacts of CbrB with the DNA, the analysis of the multimerisation status and its dependence on other factors such as RpoN o IHF, we propose a model of transcriptional activation.
Collapse
Affiliation(s)
- Rocío Barroso
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain
| | - Sofía M. García-Mauriño
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain
| | | | - Eloísa Andújar
- Genomics unit, CABIMER/ CSIC/ Universidad de Sevilla/ Universidad Pablo de Olavide/ Junta de Andalucía, Seville, Spain
| | - Mónica Pérez-Alegre
- Genomics unit, CABIMER/ CSIC/ Universidad de Sevilla/ Universidad Pablo de Olavide/ Junta de Andalucía, Seville, Spain
| | - Eduardo Santero
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain
| | - Inés Canosa
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain
- * E-mail:
| |
Collapse
|
12
|
Re-programming of Pseudomonas syringae pv. actinidiae gene expression during early stages of infection of kiwifruit. BMC Genomics 2018; 19:822. [PMID: 30442113 PMCID: PMC6238374 DOI: 10.1186/s12864-018-5197-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudomonas syringae is a widespread bacterial species complex that includes a number of significant plant pathogens. Amongst these, P. syringae pv. actinidiae (Psa) initiated a worldwide pandemic in 2008 on cultivars of Actinidia chinensis var. chinensis. To gain information about the expression of genes involved in pathogenicity we have carried out transcriptome analysis of Psa during the early stages of kiwifruit infection. RESULTS Gene expression in Psa was investigated during the first five days after infection of kiwifruit plantlets, using RNA-seq. Principal component and heatmap analyses showed distinct phases of gene expression during the time course of infection. The first phase was an immediate transient peak of induction around three hours post inoculation (HPI) that included genes that code for a Type VI Secretion System and nutrient acquisition (particularly phosphate). This was followed by a significant commitment, between 3 and 24 HPI, to the induction of genes encoding the Type III Secretion System (T3SS) and Type III Secreted Effectors (T3SE). Expression of these genes collectively accounted for 6.3% of the bacterial transcriptome at this stage. There was considerable variation in the expression levels of individual T3SEs but all followed the same temporal expression pattern, with the exception of hopAS1, which peaked later in expression at 48 HPI. As infection progressed over the time course of five days, there was an increase in the expression of genes with roles in sugar, amino acid and sulfur transport and the production of alginate and colanic acid. These are both polymers that are major constituents of extracellular polysaccharide substances (EPS) and are involved in biofilm production. Reverse transcription-quantitative PCR (RT-qPCR) on an independent infection time course experiment showed that the expression profile of selected bacterial genes at each infection phase correlated well with the RNA-seq data. CONCLUSIONS The results from this study indicate that there is a complex remodeling of the transcriptome during the early stages of infection, with at least three distinct phases of coordinated gene expression. These include genes induced during the immediate contact with the host, those involved in the initiation of infection, and finally those responsible for nutrient acquisition.
Collapse
|
13
|
Levy A, Conway JM, Dangl JL, Woyke T. Elucidating Bacterial Gene Functions in the Plant Microbiome. Cell Host Microbe 2018; 24:475-485. [DOI: 10.1016/j.chom.2018.09.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Giglio KM, Keohane CE, Stodghill PV, Steele AD, Fetzer C, Sieber SA, Filiatrault MJ, Wuest WM. Transcriptomic Profiling Suggests That Promysalin Alters the Metabolic Flux, Motility, and Iron Regulation in Pseudomonas putida KT2440. ACS Infect Dis 2018; 4:1179-1187. [PMID: 29801413 DOI: 10.1021/acsinfecdis.8b00041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Promysalin, a secondary metabolite produced by P. putida RW10S1, is a narrow-spectrum antibiotic that targets P. aeruginosa over other Pseudomonas spp. P. putida KT2440, a nonproducing strain, displays increased swarming motility and decreased pyoverdine production in the presence of exogenous promysalin. Herein, proteomic and transcriptomic experiments were used to provide insight about how promysalin elicits responses in PPKT2440 and rationalize its species selectivity. RNA-sequencing results suggest that promysalin affects PPKT2440 by (1) increasing swarming in a flagella-independent manner; (2) causing cells to behave as if they were experiencing an iron-deficient environment, and (3) shifting metabolism away from glucose conversion to pyruvate via the Entner-Doudoroff pathway. These findings highlight nature's ability to develop small molecules with specific targets, resulting in exquisite selectivity.
Collapse
Affiliation(s)
- Krista M. Giglio
- Emerging Pests and Pathogens
Research, United States Department of Agriculture, Agricultural Research
Service, 538 Tower Road, Ithaca, New York 14853, United States
| | - Colleen E. Keohane
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Paul V. Stodghill
- Emerging Pests and Pathogens
Research, United States Department of Agriculture, Agricultural Research
Service, 538 Tower Road, Ithaca, New York 14853, United States
| | - Andrew D. Steele
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christian Fetzer
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Melanie J. Filiatrault
- Emerging Pests and Pathogens
Research, United States Department of Agriculture, Agricultural Research
Service, 538 Tower Road, Ithaca, New York 14853, United States
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, 236 Tower Road, Ithaca, New York 14853, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory University, 201 Dowman Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
15
|
Abstract
A large number of antisense transcripts have been detected in diverse microbial genomes and considerable effort has been devoted to elucidating the functional role of antisense transcription. In this study, we reanalysed extensive RNA sequencing data from the opportunistic pathogen Pseudomonas aeruginosa and found that the majority of genes have a propensity for antisense transcription. Although antisense transcripts were found in more than 80 % of the genes of the P. aeruginosa genome, the majority of sequencing reads were mapping sense and only a minority (<2 %) were mapping antisense to genes. Similarly to the sense expression levels, the antisense expression levels varied under different environmental conditions, with the sense and antisense expression levels often being inversely regulated and modulated by the activity of alternative sigma factors. Environment-modulated antisense transcription showed a bias towards being antisense to genes within regions of genomic plasticity and to those encoding small regulatory RNAs. In the future, the validation and functional characterization of antisense transcripts, and novel transcripts that are antisense to small regulatory RNAs in particular, have the potential to contribute to our understanding of the various levels of transcriptional regulation and its dynamics in the bacterial pathogen P. aeruginosa.
Collapse
Affiliation(s)
- Denitsa Eckweiler
- Present address: Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE, Centre of Experimental and Clinical Infection Research, Hannover, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Institute of Molecular Bacteriology, TWINCORE, Centre of Experimental and Clinical Infection Research, Hannover, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
16
|
An AlgU-Regulated Antisense Transcript Encoded within the Pseudomonas syringae fleQ Gene Has a Positive Effect on Motility. J Bacteriol 2018; 200:JB.00576-17. [PMID: 29311280 DOI: 10.1128/jb.00576-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/04/2018] [Indexed: 12/29/2022] Open
Abstract
Production of bacterial flagella is controlled by a multitiered regulatory system that coordinates the expression of 40 to 50 subunits and ordered assembly of these elaborate structures. Flagellar expression is environmentally controlled, presumably to optimize the benefits and liabilities of having these organelles on cell growth and survival. We recently reported a global survey of AlgU-dependent regulation and binding in Pseudomonas syringae pv. tomato DC3000 that included evidence for strong downregulation of many flagellar and chemotaxis motility genes. Here, we returned to those data to look for other AlgU-dependent influences on the flagellar regulatory network. We identified an AlgU-dependent antisense transcript expressed from within the fleQ gene, the master regulator of flagellar biosynthesis in Pseudomonas We tested whether expression of this antisense RNA influenced bacterial behavior and found that it reduces AlgU-dependent downregulation of motility. Importantly, this antisense expression influenced motility only under conditions in which AlgU was expressed. Comparative sequence analysis of the locus containing the antisense transcript's AlgU-dependent promoter in over 300 Pseudomonas genomes revealed sequence conservation in most strains that encode AlgU. This suggests that the antisense transcript plays an important role that is conserved across most of the genus Pseudomonas IMPORTANCE Pseudomonas syringae is a globally distributed host-specific bacterial pathogen that causes disease in a wide-range of plants. An elaborate gene expression regulation network controls flagellum production, which is important for proper flagellum assembly and a key aspect of certain lifestyle transitions. P. syringae pv. tomato DC3000 uses flagellum-powered motility in the early stages of host colonization and adopts a sessile lifestyle after entering plant tissues, but the regulation of this transition is not understood. Our work demonstrates a link between regulation of motility and global transcriptional control that facilitates bacterial growth and disease in plants. Additionally, sequence comparisons suggest that this regulation mechanism is conserved in most members of the genus Pseudomonas.
Collapse
|
17
|
Ca 2+-Induced Two-Component System CvsSR Regulates the Type III Secretion System and the Extracytoplasmic Function Sigma Factor AlgU in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 2018; 200:JB.00538-17. [PMID: 29263098 DOI: 10.1128/jb.00538-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022] Open
Abstract
Two-component systems (TCSs) of bacteria regulate many different aspects of the bacterial life cycle, including pathogenesis. Most TCSs remain uncharacterized, with no information about the signal(s) or regulatory targets and/or role in bacterial pathogenesis. Here, we characterized a TCS in the plant-pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 composed of the histidine kinase CvsS and the response regulator CvsR. CvsSR is necessary for virulence of P. syringae pv. tomato DC3000, since ΔcvsS and ΔcvsR strains produced fewer symptoms than the wild type (WT) and demonstrated reduced growth on multiple hosts. We discovered that expression of cvsSR is induced by Ca2+ concentrations found in leaf apoplastic fluid. Thus, Ca2+ can be added to the list of signals that promote pathogenesis of P. syringae pv. tomato DC3000 during host colonization. Through chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and global transcriptome analysis (RNA-seq), we discerned the CvsR regulon. CvsR directly activated expression of the type III secretion system regulators, hrpR and hrpS, that regulate P. syringae pv. tomato DC3000 virulence in a type III secretion system-dependent manner. CvsR also indirectly repressed transcription of the extracytoplasmic sigma factor algU and production of alginate. Phenotypic analysis determined that CvsSR inversely regulated biofilm formation, swarming motility, and cellulose production in a Ca2+-dependent manner. Overall, our results show that CvsSR is a key regulatory hub critical for interaction with host plants.IMPORTANCE Pathogenic bacteria must be able to react and respond to the surrounding environment, make use of available resources, and avert or counter host immune responses. Often, these abilities rely on two-component systems (TCSs) composed of interacting proteins that modulate gene expression. We identified a TCS in the plant-pathogenic bacterium Pseudomonas syringae that responds to the presence of calcium, which is an important signal during the plant defense response. We showed that when P. syringae is grown in the presence of calcium, this TCS regulates expression of factors contributing to disease. Overall, our results provide a better understanding of how bacterial pathogens respond to plant signals and control systems necessary for eliciting disease.
Collapse
|
18
|
Pinatel E, Peano C. RNA Sequencing and Analysis in Microorganisms for Metabolic Network Reconstruction. Methods Mol Biol 2018; 1716:239-265. [PMID: 29222757 DOI: 10.1007/978-1-4939-7528-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
There is a strict interplay between metabolic networks and transcriptional regulation in bacteria; indeed, the transcriptome regulation, affecting the expression of large gene sets, can be used to predict the likely "on" or "off" state of metabolic genes as a function of environmental factors. Up to date, many bacterial transcriptomes have been studied by RNAseq, hundreds of experiments have been performed, and Giga bases of sequences have been produced. All this transcriptional information could potentially be integrated into metabolic networks in order to obtain a more comprehensive view of their regulation and to increase their prediction power.To get high-quality transcriptomic data, to be integrated into metabolic networks, it is paramount to clearly know how to produce highly informative RNA sequencing libraries and how to manage RNA sequencing data.In this chapter, we will get across the main steps of an RNAseq experiment: from removal of ribosomal RNAs, to strand-specific library preparation, till data analysis and integration. We will try to share our experience and know-how, to give you a precise protocol to follow, and some useful recommendations or tips and tricks to adopt in order to go straightforward toward a successful RNAseq experiment.
Collapse
Affiliation(s)
- Eva Pinatel
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Italy.
| |
Collapse
|
19
|
Álvarez-Fraga L, Rumbo-Feal S, Pérez A, Gómez MJ, Gayoso C, Vallejo JA, Ohneck EJ, Valle J, Actis LA, Beceiro A, Bou G, Poza M. Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in Acinetobacter baumannii ATCC 17978. PLoS One 2017; 12:e0182084. [PMID: 28763494 PMCID: PMC5538643 DOI: 10.1371/journal.pone.0182084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/12/2017] [Indexed: 12/30/2022] Open
Abstract
Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978.
Collapse
Affiliation(s)
- Laura Álvarez-Fraga
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Soraya Rumbo-Feal
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Astrid Pérez
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Manuel J. Gómez
- Department of Molecular Evolution, Center for Astrobiology, INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Carmen Gayoso
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Juan A. Vallejo
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Emily J. Ohneck
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Jaione Valle
- Departamento de Biofilms Microbianos, Instituto de Agrobiotecnología, Navarra, Spain
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Alejandro Beceiro
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Germán Bou
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
- * E-mail: (GB); (MP)
| | - Margarita Poza
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
- * E-mail: (GB); (MP)
| |
Collapse
|
20
|
Butcher BG, Bao Z, Wilson J, Stodghill P, Swingle B, Filiatrault M, Schneider D, Cartinhour S. The ECF sigma factor, PSPTO_1043, in Pseudomonas syringae pv. tomato DC3000 is induced by oxidative stress and regulates genes involved in oxidative stress response. PLoS One 2017; 12:e0180340. [PMID: 28700608 PMCID: PMC5507510 DOI: 10.1371/journal.pone.0180340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/14/2017] [Indexed: 01/14/2023] Open
Abstract
The bacterial plant pathogen Pseudomonas syringae adapts to changes in the environment by modifying its gene expression profile. In many cases, the response is mediated by the activation of extracytoplasmic function (ECF) sigma factors that direct RNA polymerase to transcribe specific sets of genes. In this study we focus on PSPTO_1043, one of ten ECF sigma factors in P. syringae pv. tomato DC3000 (DC3000). PSPTO_1043, together with PSPTO_1042, encode an RpoERsp/ChrR-like sigma/anti-sigma factor pair. Although this gene pair is unique to the P. syringae group among the pseudomonads, homologous genes can be found in photosynthetic genera such as Rhodospirillum, Thalassospira, Phaeospirillum and Parvibaculum. Using ChIP-Seq, we detected 137 putative PSPTO_1043 binding sites and identified a likely promoter motif. We characterized 13 promoter candidates, six of which regulate genes that appear to be found only in P. syringae. PSPTO_1043 responds to the presence of singlet oxygen (1O2) and tert-butyl hydroperoxide (tBOOH) and several of the genes regulated by PSPTO_1043 appear to be involved in response to oxidative stress.
Collapse
Affiliation(s)
- Bronwyn G. Butcher
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
| | - Zhongmeng Bao
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
| | - Janet Wilson
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| | - Paul Stodghill
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
- * E-mail:
| | - Bryan Swingle
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| | - Melanie Filiatrault
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| | - David Schneider
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| | - Samuel Cartinhour
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States of America
- Robert W. Holley Center, USDA-ARS, 583 Tower Road, Ithaca, NY 14853, United States of America
| |
Collapse
|
21
|
Liu Y, Gokhale CS, Rainey PB, Zhang XX. Unravelling the complexity and redundancy of carbon catabolic repression in Pseudomonas fluorescens SBW25. Mol Microbiol 2017; 105:589-605. [PMID: 28557013 DOI: 10.1111/mmi.13720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
The two-component system CbrAB is the principal regulator for cellular metabolic balance in Pseudomonas fluorescens SBW25 and is necessary for growth on many substrates including xylose. To understand the regulatory linkage between CbrAB and genes for xylose utilization (xut), we performed transposon mutagenesis of ΔcbrB to select for Xut+ suppressors. This led to identification of crc and hfq. Subsequent genetic and biochemical analysis showed that Crc and Hfq are key mediators of succinate-provoked carbon catabolite repression (CCR). Specifically, Crc/Hfq sequentially bind to mRNAs of both the transcriptional activator and structural genes involved in xylose catabolism. However, in the absence of succinate, repression is relieved through competitive binding by two ncRNAs, CrcY and CrcZ, whose expression is activated by CbrAB. These findings provoke a model for CCR in which it is assumed that crc and hfq are functionally complementary, whereas crcY and crcZ are genetically redundant. Inactivation of either crcY or crcZ produced no effects on bacterial fitness in laboratory media, however, results of mathematical modelling predict that the co-existence of crcY and crcZ requires separate functional identity. Finally, we provide empirical evidence that CCR is advantageous in nutrient-complex environments where preferred carbon sources are present at high concentrations but fluctuate in their availability.
Collapse
Affiliation(s)
- Yunhao Liu
- Institute of Natural and Mathematical Sciences, Massey University at Albany, Auckland, 0745, New Zealand.,New Zealand Institute for Advanced Study, Massey University at Albany, Auckland, 0745, New Zealand
| | - Chaitanya S Gokhale
- New Zealand Institute for Advanced Study, Massey University at Albany, Auckland, 0745, New Zealand.,Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University at Albany, Auckland, 0745, New Zealand.,Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany.,Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), CNRS UMR 8231, PSL Research University, 75231 Paris Cedex 05, France
| | - Xue-Xian Zhang
- Institute of Natural and Mathematical Sciences, Massey University at Albany, Auckland, 0745, New Zealand
| |
Collapse
|
22
|
Wolf T, Schneiker-Bekel S, Neshat A, Ortseifen V, Wibberg D, Zemke T, Pühler A, Kalinowski J. Genome improvement of the acarbose producer Actinoplanes sp. SE50/110 and annotation refinement based on RNA-seq analysis. J Biotechnol 2017; 251:112-123. [PMID: 28427920 DOI: 10.1016/j.jbiotec.2017.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Abstract
Actinoplanes sp. SE50/110 is the natural producer of acarbose, which is used in the treatment of diabetes mellitus type II. However, until now the transcriptional organization and regulation of the acarbose biosynthesis are only understood rudimentarily. The genome sequence of Actinoplanes sp. SE50/110 was known before, but was resequenced in this study to remove assembly artifacts and incorrect base callings. The annotation of the genome was refined in a multi-step approach, including modern bioinformatic pipelines, transcriptome and proteome data. A whole transcriptome RNA-seq library as well as an RNA-seq library enriched for primary 5'-ends were used for the detection of transcription start sites, to correct tRNA predictions, to identify novel transcripts like small RNAs and to improve the annotation through the correction of falsely annotated translation start sites. The transcriptome data sets were also applied to identify 31 cis-regulatory RNA structures, such as riboswitches or RNA thermometers as well as three leaderless transcribed short peptides found in putative attenuators upstream of genes for amino acid biosynthesis. The transcriptional organization of the acarbose biosynthetic gene cluster was elucidated in detail and fourteen novel biosynthetic gene clusters were suggested. The accurate genome sequence and precise annotation of the Actinoplanes sp. SE50/110 genome will be the foundation for future genetic engineering and systems biology studies.
Collapse
Affiliation(s)
- Timo Wolf
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Susanne Schneiker-Bekel
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Armin Neshat
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Vera Ortseifen
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Daniel Wibberg
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Till Zemke
- Product Supply, Bayer Pharma AG, Friedrich Ebert Str. 217-475, 42117 Wuppertal, Germany
| | - Alfred Pühler
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
| |
Collapse
|
23
|
Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida. Appl Environ Microbiol 2017; 83:AEM.03236-16. [PMID: 28130298 DOI: 10.1128/aem.03236-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings.IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one condition, suggesting their involvement in adaptation to stress conditions and identifying interesting candidates for further functional characterization.
Collapse
|
24
|
Butcher BG, Chakravarthy S, D'Amico K, Stoos KB, Filiatrault MJ. Disruption of the carA gene in Pseudomonas syringae results in reduced fitness and alters motility. BMC Microbiol 2016; 16:194. [PMID: 27558694 PMCID: PMC4997734 DOI: 10.1186/s12866-016-0819-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/19/2016] [Indexed: 02/05/2023] Open
Abstract
Background Pseudomonas syringae infects diverse plant species and is widely used in the study of effector function and the molecular basis of disease. Although the relationship between bacterial metabolism, nutrient acquisition and virulence has attracted increasing attention in bacterial pathology, there is limited knowledge regarding these studies in Pseudomonas syringae. The aim of this study was to investigate the function of the carA gene and the small RNA P32, and characterize the regulation of these transcripts. Results Disruption of the carA gene (ΔcarA) which encodes the predicted small chain of carbamoylphosphate synthetase, resulted in arginine and pyrimidine auxotrophy in Pseudomonas syringae pv. tomato DC3000. Complementation with the wild type carA gene was able to restore growth to wild-type levels in minimal medium. Deletion of the small RNA P32, which resides immediately upstream of carA, did not result in arginine or pyrimidine auxotrophy. The expression of carA was influenced by the concentrations of both arginine and uracil in the medium. When tested for pathogenicity, ΔcarA showed reduced fitness in tomato as well as Arabidopsis when compared to the wild-type strain. In contrast, mutation of the region encoding P32 had minimal effect in planta. ΔcarA also exhibited reduced motility and increased biofilm formation, whereas disruption of P32 had no impact on motility or biofilm formation. Conclusions Our data show that carA plays an important role in providing arginine and uracil for growth of the bacteria and also influences other factors that are potentially important for growth and survival during infection. Although we find that the small RNA P32 and carA are co-transcribed, P32 does not play a role in the phenotypes that carA is required for, such as motility, cell attachment, and virulence. Additionally, our data suggests that pyrimidines may be limited in the apoplastic space of the plant host tomato. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0819-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bronwyn G Butcher
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA.,Present Address: Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, USA
| | - Suma Chakravarthy
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Katherine D'Amico
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA
| | - Kari Brossard Stoos
- Department of Health Promotion and Physical Education, School of Health Sciences and Human Performance, Ithaca College, Ithaca, NY, USA
| | - Melanie J Filiatrault
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA. .,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA.
| |
Collapse
|
25
|
AlgU Controls Expression of Virulence Genes in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 2016; 198:2330-44. [PMID: 27325679 DOI: 10.1128/jb.00276-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Plant-pathogenic bacteria are able to integrate information about their environment and adjust gene expression to provide adaptive functions. AlgU, an extracytoplasmic function (ECF) sigma factor encoded by Pseudomonas syringae, controls expression of genes for alginate biosynthesis and genes involved with resisting osmotic and oxidative stress. AlgU is active while these bacteria are associated with plants, where its presence supports bacterial growth and disease symptoms. We found that AlgU is an important virulence factor for P. syringae pv. tomato DC3000 but that alginate production is dispensable for disease in host plants. This implies that AlgU regulates additional genes that facilitate bacterial pathogenesis. We used transcriptome sequencing (RNA-seq) to characterize the AlgU regulon and chromatin immunoprecipitation sequencing (ChIP-seq) to identify AlgU-regulated promoters associated with genes directly controlled by this sigma factor. We found that in addition to genes involved with alginate and osmotic and oxidative stress responses, AlgU regulates genes with known virulence functions, including components of the Hrp type III secretion system, virulence effectors, and the hrpL and hrpRS transcription regulators. These data suggest that P. syringae pv. tomato DC3000 has adapted to use signals that activate AlgU to induce expression of important virulence functions that facilitate survival and disease in plants. IMPORTANCE Plant immune systems produce antimicrobial and bacteriostatic conditions in response to bacterial infection. Plant-pathogenic bacteria are adapted to suppress and/or tolerate these conditions; however, the mechanisms controlling these bacterial systems are largely uncharacterized. The work presented here provides a mechanistic explanation for how P. syringae pv. tomato DC3000 coordinates expression of multiple genetic systems, including those dedicated to pathogenicity, in response to environmental conditions. This work demonstrates the scope of AlgU regulation in P. syringae pv. tomato DC3000 and characterizes the promoter sequence regulated by AlgU in these bacteria.
Collapse
|
26
|
D'Arrigo I, Bojanovič K, Yang X, Holm Rau M, Long KS. Genome-wide mapping of transcription start sites yields novel insights into the primary transcriptome ofPseudomonas putida. Environ Microbiol 2016; 18:3466-3481. [DOI: 10.1111/1462-2920.13326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Isotta D'Arrigo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kogle Allé 6 DK-2970 Hørsholm Denmark
| | - Klara Bojanovič
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kogle Allé 6 DK-2970 Hørsholm Denmark
| | - Xiaochen Yang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kogle Allé 6 DK-2970 Hørsholm Denmark
| | - Martin Holm Rau
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kogle Allé 6 DK-2970 Hørsholm Denmark
| | - Katherine S. Long
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kogle Allé 6 DK-2970 Hørsholm Denmark
| |
Collapse
|
27
|
Scott RA, Lindow SE. Transcriptional control of quorum sensing and associated metabolic interactions inPseudomonas syringaestrain B728a. Mol Microbiol 2016; 99:1080-98. [DOI: 10.1111/mmi.13289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/02/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Russell A. Scott
- Department of Plant and Microbial Biology; University of California; 111 Koshland Hall Berkeley CA 94720-3102 USA
| | - Steven E. Lindow
- Department of Plant and Microbial Biology; University of California; 111 Koshland Hall Berkeley CA 94720-3102 USA
| |
Collapse
|
28
|
Abstract
A surprise that has emerged from transcriptomics is the prevalence of genomic antisense transcription, which occurs counter to gene orientation. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in Escherichia coli to study how antisense transcription can change the expression of a gene and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that this part represses gene expression proportionally to the antisense promoter strength. Chip‐based oligo synthesis was applied to build a large library of 5,668 terminator–promoter combinations that was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new mode to control gene expression that has been previously overlooked in genetic engineering.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
29
|
Heera R, Sivachandran P, Chinni SV, Mason J, Croft L, Ravichandran M, Yin LS. Efficient extraction of small and large RNAs in bacteria for excellent total RNA sequencing and comprehensive transcriptome analysis. BMC Res Notes 2015; 8:754. [PMID: 26645211 PMCID: PMC4673735 DOI: 10.1186/s13104-015-1726-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/20/2015] [Indexed: 11/13/2022] Open
Abstract
Background Next-generation transcriptome sequencing (RNA-Seq) has become the standard practice for studying gene splicing, mutations and changes in gene expression to obtain valuable, accurate biological conclusions. However, obtaining good sequencing coverage and depth to study these is impeded by the difficulties of obtaining high quality total RNA with minimal genomic DNA contamination. With this in mind, we evaluated the performance of Phenol-free total RNA purification kit (Amresco) in comparison with TRI Reagent (MRC) and RNeasy Mini (Qiagen) for the extraction of total RNA of Pseudomonas aeruginosa which was grown in glucose-supplemented (control) and polyethylene-supplemented (growth-limiting condition) minimal medium. All three extraction methods were coupled with an in-house DNase I treatment before the yield, integrity and size distribution of the purified RNA were assessed. RNA samples extracted with the best extraction kit were then sequenced using the Illumina HiSeq 2000 platform. Results TRI Reagent gave the lowest yield enriched with small RNAs (sRNAs), while RNeasy gave moderate yield of good quality RNA with trace amounts of sRNAs. The Phenol-free kit, on the other hand, gave the highest yield and the best quality RNA (RIN value of 9.85 ± 0.3) with good amounts of sRNAs. Subsequent bioinformatic analysis of the sequencing data revealed that 5435 coding genes, 452 sRNAs and 7 potential novel intergenic sRNAs were detected, indicating excellent sequencing coverage across RNA size ranges. In addition, detection of low abundance transcripts and consistency of their expression profiles across replicates from the same conditions demonstrated the reproducibility of the RNA extraction technique. Conclusions Amresco’s Phenol-free Total RNA purification kit coupled with DNase I treatment yielded the highest quality RNAs containing good ratios of high and low molecular weight transcripts with minimal genomic DNA. These RNA extracts gave excellent non-biased sequencing coverage useful for comprehensive total transcriptome sequencing and analysis. Furthermore, our findings would be useful for those interested in studying both coding and non-coding RNAs from precious bacterial samples cultivated in growth-limiting condition, in a single sequencing run. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1726-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rajandas Heera
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling, 08100, Bedong, Kedah, Malaysia. .,Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, 08100, Bedong, Kedah, Malaysia.
| | - Parimannan Sivachandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling, 08100, Bedong, Kedah, Malaysia.
| | - Suresh V Chinni
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling, 08100, Bedong, Kedah, Malaysia.
| | - Joanne Mason
- Malaysian Genomics Resource Centre, 27-9, Level 9 Boulevard Signature Offices, 59200, Mid Valley City, Malaysia. .,Oxford Biomedical Research Centre, Old Road Headington Oxford, Oxfordshire, OX3 7LE, UK.
| | - Larry Croft
- Malaysian Genomics Resource Centre, 27-9, Level 9 Boulevard Signature Offices, 59200, Mid Valley City, Malaysia.
| | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling, 08100, Bedong, Kedah, Malaysia.
| | - Lee Su Yin
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling, 08100, Bedong, Kedah, Malaysia.
| |
Collapse
|
30
|
FleQ coordinates flagellum-dependent and -independent motilities in Pseudomonas syringae pv. tomato DC3000. Appl Environ Microbiol 2015; 81:7533-45. [PMID: 26296726 DOI: 10.1128/aem.01798-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/14/2015] [Indexed: 12/29/2022] Open
Abstract
Motility plays an essential role in bacterial fitness and colonization in the plant environment, since it favors nutrient acquisition and avoidance of toxic substances, successful competition with other microorganisms, the ability to locate the preferred hosts, access to optimal sites within them, and dispersal in the environment during the course of transmission. In this work, we have observed that the mutation of the flagellar master regulatory gene, fleQ, alters bacterial surface motility and biosurfactant production, uncovering a new type of motility for Pseudomonas syringae pv. tomato DC3000 on semisolid surfaces. We present evidence that P. syringae pv. tomato DC3000 moves over semisolid surfaces by using at least two different types of motility, namely, swarming, which depends on the presence of flagella and syringafactin, a biosurfactant produced by this strain, and a flagellum-independent surface spreading or sliding, which also requires syringafactin. We also show that FleQ activates flagellum synthesis and negatively regulates syringafactin production in P. syringae pv. tomato DC3000. Finally, it was surprising to observe that mutants lacking flagella or syringafactin were as virulent as the wild type, and only the simultaneous loss of both flagella and syringafactin impairs the ability of P. syringae pv. tomato DC3000 to colonize tomato host plants and cause disease.
Collapse
|
31
|
Castillo-Lizardo MG, Aragón IM, Carvajal V, Matas IM, Pérez-Bueno ML, Gallegos MT, Barón M, Ramos C. Contribution of the non-effector members of the HrpL regulon, iaaL and matE, to the virulence of Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Microbiol 2015; 15:165. [PMID: 26285820 PMCID: PMC4544800 DOI: 10.1186/s12866-015-0503-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phytohormone indole-3-acetic acid (IAA) is widely distributed among plant-associated bacteria. Certain strains of the Pseudomonas syringae complex can further metabolize IAA into a less biologically active amino acid conjugate, 3-indole-acetyl-ε-L-lysine, through the action of the iaaL gene. In P. syringae and Pseudomonas savastanoi strains, the iaaL gene is found in synteny with an upstream gene, here called matE, encoding a putative MATE family transporter. In P. syringae pv. tomato (Pto) DC3000, a pathogen of tomato and Arabidopsis plants, the HrpL sigma factor controls the expression of a suite of virulence-associated genes via binding to hrp box promoters, including that of the iaaL gene. However, the significance of HrpL activation of the iaaL gene in the virulence of Pto DC3000 is still unclear. RESULTS A conserved hrp box motif is found upstream of the iaaL gene in the genomes of P. syringae strains. However, although the promoter region of matE is only conserved in genomospecies 3 of this bacterial group, we showed that this gene also belongs to the Pto DC3000 HrpL regulon. We also demonstrated that the iaaL gene is transcribed both independently and as part of an operon with matE in this pathogen. Deletion of either the iaaL or the matE gene resulted in reduced fitness and virulence of Pto DC3000 in tomato plants. In addition, we used multicolor fluorescence imaging to visualize the responses of tomato plants to wild-type Pto DC3000 and to its ΔmatE and ΔiaaL mutants. Activation of secondary metabolism prior to the development of visual symptoms was observed in tomato leaves after bacterial challenges with all strains. However, the observed changes were strongest in plants challenged by the wild-type strain, indicating lower activation of secondary metabolism in plants infected with the ΔmatE or ΔiaaL mutants. CONCLUSIONS Our results provide new evidence for the roles of non-type III effector genes belonging to the Pto DC3000 HrpL regulon in virulence.
Collapse
Affiliation(s)
- Melissa G Castillo-Lizardo
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Campus de Teatinos, 29071, Málaga, Spain.,German Center for Neurodegenerative Diseases, DZNE, Otfried-Müller-Straße, 27, 72076, Tübingen, Germany
| | - Isabel M Aragón
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Campus de Teatinos, 29071, Málaga, Spain
| | - Vivian Carvajal
- Estación Experimental del Zaidín, CSIC (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Isabel M Matas
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Campus de Teatinos, 29071, Málaga, Spain.,Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | - María Luisa Pérez-Bueno
- Estación Experimental del Zaidín, CSIC (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - María-Trinidad Gallegos
- Estación Experimental del Zaidín, CSIC (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Matilde Barón
- Estación Experimental del Zaidín, CSIC (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Cayo Ramos
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Campus de Teatinos, 29071, Málaga, Spain.
| |
Collapse
|
32
|
Weiberg A, Jin H. Small RNAs--the secret agents in the plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:87-94. [PMID: 26123395 PMCID: PMC4573252 DOI: 10.1016/j.pbi.2015.05.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 05/15/2023]
Abstract
Eukaryotic regulatory small RNAs (sRNAs) that induce RNA interference (RNAi) are involved in a plethora of biological processes, including host immunity and pathogen virulence. In plants, diverse classes of sRNAs contribute to the regulation of host innate immunity. These immune-regulatory sRNAs operate through distinct RNAi pathways that trigger transcriptional or post-transcriptional gene silencing. Similarly, many pathogen-derived sRNAs also regulate pathogen virulence. Remarkably, the influence of regulatory sRNAs is not limited to the individual organism in which they are generated. It can sometimes extend to interacting species from even different kingdoms. There they trigger gene silencing in the interacting organism, a phenomenon called cross-kingdom RNAi. This is exhibited in advanced pathogens and parasites that produce sRNAs to suppress host immunity. Conversely, in host-induced gene silencing (HIGS), diverse plants are engineered to trigger RNAi against pathogens and pests to confer host resistance. Cross-kingdom RNAi opens up a vastly unexplored area of research on mobile sRNAs in the battlefield between hosts and pathogens.
Collapse
Affiliation(s)
- Arne Weiberg
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
33
|
Guo J, Cheng G, Gou XY, Xing F, Li S, Han YC, Wang L, Song JM, Shu CC, Chen SW, Chen LL. Comprehensive transcriptome and improved genome annotation ofBacillus licheniformisWX-02. FEBS Lett 2015; 589:2372-81. [DOI: 10.1016/j.febslet.2015.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/11/2015] [Accepted: 07/20/2015] [Indexed: 01/10/2023]
|
34
|
Arrebola E, Carrión VJ, Gutiérrez-Barranquero JA, Pérez-García A, Rodríguez-Palenzuela P, Cazorla FM, de Vicente A. Cellulose production inPseudomonas syringaepv.syringae: a compromise between epiphytic and pathogenic lifestyles. FEMS Microbiol Ecol 2015; 91:fiv071. [DOI: 10.1093/femsec/fiv071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2015] [Indexed: 01/11/2023] Open
|
35
|
Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C, Wong YC, Rozali N, Koh SF, Hoh CC, Puthucheary SD, Nathan S. Global transcriptional analysis of Burkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence. BMC Genomics 2015; 16:471. [PMID: 26092034 PMCID: PMC4474458 DOI: 10.1186/s12864-015-1692-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023] Open
Abstract
Background Chronic bacterial infections occur as a result of the infecting pathogen’s ability to live within a biofilm, hence escaping the detrimental effects of antibiotics and the immune defense system. Burkholderia pseudomallei, a gram-negative facultative pathogen, is distinctive in its ability to survive within phagocytic and non-phagocytic cells, to persist in vivo for many years and subsequently leading to relapse as well as the development of chronic disease. The capacity to persist has been attributed to the pathogen’s ability to form biofilm. However, the underlying biology of B. pseudomallei biofilm development remains unresolved. Results We utilised RNA-Sequencing to identify genes that contribute to B. pseudomallei biofilm phenotype. Transcriptome analysis of a high and low biofilm producer identified 563 differentially regulated genes, implying that expression of ~9.5 % of the total B. pseudomallei gene content was altered during biofilm formation. Genes involved in surface-associated motility, surface composition and cell wall biogenesis were over-expressed and probably play a role in the initial attachment of biofilms. Up-regulation of genes related to two component signal transduction systems and a denitrification enzyme pathway suggest that the B. pseudomallei high biofilm producer is able to sense the surrounding environmental conditions and regulate the production of extracellular polymeric substance matrix, a hallmark of microbial biofilm formation. Conclusions The transcriptome profile described here provides the first comprehensive view of genes that contribute to the biofilm phenotype in B. pseudomallei. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1692-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chui-Yoke Chin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.,Present address: Emory Vaccine Centre, Emory University, Atlanta, Georgia, USA
| | - Yuka Hara
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.,Malaysia Genome Institute, Jalan Bangi, Kajang, Selangor D.E., Malaysia.,Present address: Centre for Traditional Chinese Medicine, INTI International University, Nilai, Selangor, Malaysia
| | | | - Soon-Joo Yap
- Codon Genomics SB, Seri Kembangan, Selangor D.E., Malaysia
| | - Cin Kong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Yee-Chin Wong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Naufal Rozali
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Seng-Fook Koh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Savithri D Puthucheary
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Present address: Medical Education, Research and Evaluation Department, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia. .,Malaysia Genome Institute, Jalan Bangi, Kajang, Selangor D.E., Malaysia.
| |
Collapse
|
36
|
Wei HL, Chakravarthy S, Mathieu J, Helmann TC, Stodghill P, Swingle B, Martin GB, Collmer A. Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Polymutants Reveal an Interplay between HopAD1 and AvrPtoB. Cell Host Microbe 2015; 17:752-62. [PMID: 26067603 PMCID: PMC4471848 DOI: 10.1016/j.chom.2015.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/05/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022]
Abstract
The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered plant innate immune system by injecting a complex repertoire of type III secretion effector (T3E) proteins. Beyond redundancy and interplay, individual T3Es may interact with multiple immunity-associated proteins, rendering their analysis challenging. We constructed a Pst DC3000 polymutant lacking all 36 T3Es and restored individual T3Es or their mutants to explore the interplay among T3Es. The weakly expressed T3E HopAD1 was sufficient to elicit immunity-associated cell death in Nicotiana benthamiana. HopAD1-induced cell death was suppressed partially by native AvrPtoB and completely by AvrPtoBM3, which has mutations disrupting its E3 ubiquitin ligase domain and two known domains for interacting with immunity-associated kinases. AvrPtoBM3 also gained the ability to interact with the immunity-kinase MKK2, which is required for HopAD1-dependent cell death. Thus, AvrPtoB has alternative, competing mechanisms for suppressing effector-triggered plant immunity. This approach allows the deconvolution of individual T3E activities.
Collapse
Affiliation(s)
- Hai-Lei Wei
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Suma Chakravarthy
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Johannes Mathieu
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Tyler C Helmann
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Paul Stodghill
- United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, USA
| | - Bryan Swingle
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, USA
| | - Gregory B Martin
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| | - Alan Collmer
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
37
|
Gómez-Lozano M, Marvig RL, Molina-Santiago C, Tribelli PM, Ramos JL, Molin S. Diversity of small RNAs expressed in Pseudomonas species. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:227-236. [PMID: 25394275 DOI: 10.1111/1758-2229.12233] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/18/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
RNA sequencing (RNA-seq) has revealed several hundreds of previously undetected small RNAs (sRNAs) in all bacterial species investigated, including strains of Pseudomonas aeruginosa, Pseudomonas putida and Pseudomonas syringae. Nonetheless, only little is known about the extent of conservation of expressed sRNAs across strains and species. In this study, we have used RNA-seq to identify sRNAs in P. putida DOT-T1E and Pseudomonas extremaustralis 14-3b. This is the first strain of P. extremaustralis and the second strain of P. putida to have their transcriptomes analysed for sRNAs, and we identify the presence of around 150 novel sRNAs in each strain. Furthermore, we provide a comparison based on sequence conservation of all the sRNAs detected by RNA-seq in the Pseudomonas species investigated so far. Our results show that the extent of sRNA conservation across different species is very limited. In addition, when comparing the sRNAs expressed in different strains of the same species, we observe that numerous sRNAs exhibit a strain-specific expression pattern. These results support the idea that the evolution of most bacterial sRNAs is rapid, which limits the extent of both interspecies and intraspecies conservation.
Collapse
Affiliation(s)
- María Gómez-Lozano
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, DK-2970, Denmark
| | | | | | | | | | | |
Collapse
|
38
|
Coutinho BG, Licastro D, Mendonça-Previato L, Cámara M, Venturi V. Plant-Influenced Gene Expression in the Rice Endophyte Burkholderia kururiensis M130. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:10-21. [PMID: 25494355 DOI: 10.1094/mpmi-07-14-0225-r] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Burkholderia kururiensis M130 is one of the few rice endophytic diazotrophic bacteria identified thus far which is able to enhance growth of rice. To date, very little is known of how strain M130 and other endophytes enter and colonize plants. Here, we identified genes of strain M130 that are differentially regulated in the presence of rice plant extract. A genetic screening of a promoter probe transposon mutant genome bank and RNAseq analysis were performed. The screening of 10,100 insertions of the genomic transposon reporter library resulted in the isolation of 61 insertions displaying differential expression in response to rice macerate. The RNAseq results validated this screen and indicated that this endophytic bacterium undergoes major changes in the presence of plant extract regulating 27.7% of its open reading frames. A large number of differentially expressed genes encode membrane transporters and secretion systems, indicating that the exchange of molecules is an important aspect of bacterial endophytic growth. Genes related to motility, chemotaxis, and adhesion were also overrepresented, further suggesting plant–bacteria interaction. This work highlights the potential close signaling taking place between plants and bacteria and helps us to begin to understand the adaptation of an endophyte in planta.
Collapse
|
39
|
Calderón CE, Carrión VJ, de Vicente A, Cazorla FM. darR and darS are regulatory genes that modulate 2-hexyl, 5-propyl resorcinol transcription in Pseudomonas chlororaphis PCL1606. MICROBIOLOGY-SGM 2014; 160:2670-2680. [PMID: 25234473 DOI: 10.1099/mic.0.082677-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas chlororaphis PCL1606 synthesizes the antifungal antibiotic 2-hexyl, 5-propyl resorcinol (HPR), which is crucial for the biocontrol of fungal soil-borne pathogens. The genetic basis for HPR production lies in the dar genes, which are directly involved in the biosynthesis of HPR. In the present study, we elucidated the genetic features of the dar genes. Reverse transcription PCR experiments revealed an independent organization of the dar genes, except for darBC, which was transcribed as a polycistronic mRNA. In silico analysis of each gene revealed putative promoters and terminator sequences, validating the proposed gene arrangement. Moreover, experiments utilizing 5' rapid amplification of cDNA ends were used to determine the transcriptional initiation sites for the darA, darBC, darS and darR gene promoters, and subsequently to confirm the functionality of these regions. The results of quantitative real-time PCR experiments indicated that biosynthetic dar genes were not only modulated through the global regulator gacS, but also through darS and darR. The interplay between darS and darR revealed transcriptional cross-inhibition. However, these results also showed that other regulatory parameters play a role in HPR production, such as the environmental conditions and additional regulatory genes.
Collapse
Affiliation(s)
- Claudia E Calderón
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas. Departamento de Microbiología, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Víctor J Carrión
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas. Departamento de Microbiología, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas. Departamento de Microbiología, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas. Departamento de Microbiología, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain
| |
Collapse
|
40
|
Gómez-Lozano M, Marvig RL, Tulstrup MVL, Molin S. Expression of antisense small RNAs in response to stress in Pseudomonas aeruginosa. BMC Genomics 2014; 15:783. [PMID: 25213728 PMCID: PMC4180829 DOI: 10.1186/1471-2164-15-783] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/03/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND RNA sequencing technologies reveal that bacteria express RNA molecules other than mRNA, rRNA or tRNA. During the last years genome-wide bacterial transcriptomes have been shown to comprise intergenic RNA, antisense RNA, and untranslated regions, all capable of performing diverse regulatory functions. RESULTS In this study we used RNA-seq to identify 232 antisense RNAs (asRNAs) in the opportunistic pathogen Pseudomonas aeruginosa grown under 13 different conditions. The conditions studied include exponential and stationary growth as well as osmotic, oxidative and antibiotic stress. We found a significant overrepresentation of asRNAs that are transcribed opposite to genes involved in cell division and in cell wall, lipopolysaccharide (LPS), and capsule biosynthesis, most likely reflecting the conditions used in this study. A substantial number of asRNAs significantly changed their expression under osmotic, oxidative and antibiotic stress, suggesting that asRNAs may play regulatory roles during these conditions. We also made a comparison between the asRNAs detected in this study in P. aeruginosa PAO1 with the asRNAs detected in two previous studies in P. aeruginosa PA14, and found that the extent of overlap between the studies is very limited. CONCLUSIONS RNA-seq experiments are revealing hundreds of novel transcripts in all bacterial genomes investigated. The comparison between independent studies that used RNA-seq to detect novel asRNAs in P. aeruginosa shows that the overlap between the results reported is very narrow. It is necessary to address how reproducibility of these kind of studies should be reported in order to avoid misleading conclusions when comparing data generated by non-identical methods.
Collapse
Affiliation(s)
- María Gómez-Lozano
- />Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- />Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Rasmus L Marvig
- />Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Monica VL Tulstrup
- />Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Søren Molin
- />Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- />Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
41
|
Transcriptional analysis of the global regulatory networks active in Pseudomonas syringae during leaf colonization. mBio 2014; 5:e01683-14. [PMID: 25182327 PMCID: PMC4173789 DOI: 10.1128/mbio.01683-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The plant pathogen Pseudomonas syringae pv. syringae B728a grows and survives on leaf surfaces and in the leaf apoplast of its host, bean (Phaseolus vulgaris). To understand the contribution of distinct regulators to B728a fitness and pathogenicity, we performed a transcriptome analysis of strain B728a and nine regulatory mutants recovered from the surfaces and interior of leaves and exposed to environmental stresses in culture. The quorum-sensing regulators AhlR and AefR influenced few genes in planta or in vitro. In contrast, GacS and a downstream regulator, SalA, formed a large regulatory network that included a branch that regulated diverse traits and was independent of plant-specific environmental signals and a plant signal-dependent branch that positively regulated secondary metabolite genes and negatively regulated the type III secretion system. SalA functioned as a central regulator of iron status based on its reciprocal regulation of pyoverdine and achromobactin genes and also sulfur uptake, suggesting a role in the iron-sulfur balance. RetS functioned almost exclusively to repress secondary metabolite genes when the cells were not on leaves. Among the sigma factors examined, AlgU influenced many more genes than RpoS, and most AlgU-regulated genes depended on RpoN. RpoN differentially impacted many AlgU- and GacS-activated genes in cells recovered from apoplastic versus epiphytic sites, suggesting differences in environmental signals or bacterial stress status in these two habitats. Collectively, our findings illustrate a central role for GacS, SalA, RpoN, and AlgU in global regulation in B728a in planta and a high level of plasticity in these regulators’ responses to distinct environmental signals. Leaves harbor abundant microorganisms, all of which must withstand challenges such as active plant defenses and a highly dynamic environment. Some of these microbes can influence plant health. Despite knowledge of individual regulators that affect the fitness or pathogenicity of foliar pathogens, our understanding of the relative importance of various global regulators to leaf colonization is limited. Pseudomonas syringae strain B728a is a plant pathogen and a good colonist of both the surfaces and interior of leaves. This study used global transcript profiles of strain B728a to investigate the complex regulatory network of putative quorum-sensing regulators, two-component regulators, and sigma factors in cells colonizing the leaf surface and leaf interior under stressful in vitro conditions. The results highlighted the value of evaluating these networks in planta due to the impact of leaf-specific environmental signals and suggested signal differences that may enable cells to differentiate surface versus interior leaf habitats.
Collapse
|
42
|
Lam HN, Chakravarthy S, Wei HL, BuiNguyen H, Stodghill PV, Collmer A, Swingle BM, Cartinhour SW. Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions. PLoS One 2014; 9:e106115. [PMID: 25170934 PMCID: PMC4149516 DOI: 10.1371/journal.pone.0106115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
The type III secretion system (T3SS) is required for virulence in the gram-negative plant pathogen Pseudomonas syringae pv. tomato DC3000. The alternative sigma factor HrpL directly regulates expression of T3SS genes via a promoter sequence, often designated as the "hrp promoter." Although the HrpL regulon has been extensively investigated in DC3000, it is not known whether additional regulon members remain to be found. To systematically search for HrpL-regulated genes, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) and bulk mRNA sequencing (RNA-Seq) to identify HrpL-binding sites and likely hrp promoters. The analysis recovered 73 sites of interest, including 20 sites that represent new hrp promoters. The new promoters lie upstream of a diverse set of genes encoding potential regulators, enzymes and hypothetical proteins. PSPTO_5633 is the only new HrpL regulon member that is potentially an effector and is now designated HopBM1. Deletions in several other new regulon members, including PSPTO_5633, PSPTO_0371, PSPTO_2130, PSPTO_2691, PSPTO_2696, PSPTO_3331, and PSPTO_5240, in either DC3000 or ΔhopQ1-1 backgrounds, do not affect the hypersensitive response or in planta growth of the resulting strains. Many new HrpL regulon members appear to be unrelated to the T3SS, and orthologs for some of these can be identified in numerous non-pathogenic bacteria. With the identification of 20 new hrp promoters, the list of HrpL regulon members is approaching saturation and most likely includes all DC3000 effectors.
Collapse
Affiliation(s)
- Hanh N. Lam
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Suma Chakravarthy
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Hai-Lei Wei
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - HoangChuong BuiNguyen
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Paul V. Stodghill
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Alan Collmer
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Bryan M. Swingle
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Samuel W. Cartinhour
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| |
Collapse
|
43
|
Zeng Q, Sundin GW. Genome-wide identification of Hfq-regulated small RNAs in the fire blight pathogen Erwinia amylovora discovered small RNAs with virulence regulatory function. BMC Genomics 2014; 15:414. [PMID: 24885615 PMCID: PMC4070566 DOI: 10.1186/1471-2164-15-414] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/09/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Erwinia amylovora is a phytopathogenic bacterium and causal agent of fire blight disease in apples and pears. Although many virulence factors have been characterized, the coordination of expression of these virulence factors in E. amylovora is still not clear. Regulatory small RNAs (sRNAs) are important post-transcriptional regulatory components in bacteria. A large number of sRNAs require the RNA chaperone Hfq for both stability and functional activation. In E. amylovora, Hfq was identified as a major regulator of virulence and various virulence traits. However, information is still lacking about Hfq-dependent sRNAs on a genome scale, including the virulence regulatory functions of these sRNAs in E. amylovora. RESULTS Using both an RNA-seq analysis and a Rho-independent terminator search, 40 candidate Hfq-dependent sRNAs were identified in E. amylovora. The expression and sizes of 12 sRNAs and the sequence boundaries of seven sRNAs were confirmed by Northern blot and 5' RACE assay respectively. Sequence conservation analysis identified sRNAs conserved only in the Erwinia genus as well as E. amylovora species-specific sRNAs. In addition, a dynamic re-patterning of expression of Hfq-dependent sRNAs was observed at 6 and 12 hours after induction in Hrp-inducing minimal medium. Furthermore, sRNAs that control virulence traits were characterized, among which ArcZ positively controls the type III secretion system (T3SS), amylovoran exopolysaccahride production, biofilm formation, and motility, and negatively modulates attachment while RmaA (Hrs6) and OmrAB both negatively regulate amylovoran production and positively regulate motility. CONCLUSIONS This study has significantly enhanced our understanding of the Hfq-dependent sRNAs in E. amylovora at the genome level. The identification of multiple virulence-regulating sRNAs also suggests that post-transcriptional regulation by sRNAs may play a role in the deployment of virulence factors needed during varying stages of pathogenesis during host invasion by E. amylovora.
Collapse
Affiliation(s)
- Quan Zeng
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
44
|
Landstorfer R, Simon S, Schober S, Keim D, Scherer S, Neuhaus K. Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces. BMC Genomics 2014; 15:353. [PMID: 24885796 PMCID: PMC4048457 DOI: 10.1186/1471-2164-15-353] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/31/2014] [Indexed: 12/26/2022] Open
Abstract
Background Multiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems. Results Transcriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates. Conclusions Since only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-353) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany.
| |
Collapse
|
45
|
Liebens V, Defraine V, Van der Leyden A, De Groote VN, Fierro C, Beullens S, Verstraeten N, Kint C, Jans A, Frangipani E, Visca P, Marchal K, Versées W, Fauvart M, Michiels J. A putative de-N-acetylase of the PIG-L superfamily affects fluoroquinolone tolerance in Pseudomonas aeruginosa. Pathog Dis 2014; 71:39-54. [PMID: 24692291 DOI: 10.1111/2049-632x.12174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/13/2014] [Accepted: 03/21/2014] [Indexed: 11/29/2022] Open
Abstract
A major cause of treatment failure of infections caused by Pseudomonas aeruginosa is the presence of antibiotic-insensitive persister cells. The mechanism of persister formation in P. aeruginosa is largely unknown, and so far, only few genetic determinants have been linked to P. aeruginosa persistence. Based on a previous high-throughput screening, we here present dnpA (de-N-acetylase involved in persistence; gene locus PA14_66140/PA5002) as a new gene involved in noninherited fluoroquinolone tolerance in P. aeruginosa. Fluoroquinolone tolerance of a dnpA mutant is strongly reduced both in planktonic culture and in a biofilm model, whereas overexpression of dnpA in the wild-type strain increases the persister fraction. In addition, the susceptibility of the dnpA mutant to different classes of antibiotics is not affected. dnpA is part of the conserved LPS core oligosaccharide biosynthesis gene cluster. Based on primary sequence analysis, we predict that DnpA is a de-N-acetylase, acting on an unidentified substrate. Site-directed mutagenesis suggests that this enzymatic activity is essential for DnpA-mediated persistence. A transcriptome analysis indicates that DnpA primarily affects the expression of genes involved in surface-associated processes. We discuss the implications of these findings for future antipersister therapies targeted at chronic P. aeruginosa infections.
Collapse
Affiliation(s)
- Veerle Liebens
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Soto W, Rivera FM, Nishiguchi MK. Ecological diversification of Vibrio fischeri serially passaged for 500 generations in novel squid host Euprymna tasmanica. MICROBIAL ECOLOGY 2014; 67:700-721. [PMID: 24402368 PMCID: PMC3965629 DOI: 10.1007/s00248-013-0356-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Vibrio fischeri isolated from Euprymna scolopes (Cephalopoda: Sepiolidae) was used to create 24 lines that were serially passaged through the non-native host Euprymna tasmanica for 500 generations. These derived lines were characterized for biofilm formation, swarming motility, carbon source utilization, and in vitro bioluminescence. Phenotypic assays were compared between "ES" (E. scolopes) and "ET" (E. tasmanica) V. fischeri wild isolates to determine if convergent evolution was apparent between E. tasmanica evolved lines and ET V. fischeri. Ecological diversification was observed in utilization of most carbon sources examined. Convergent evolution was evident in motility, biofilm formation, and select carbon sources displaying hyperpolymorphic usage in V. fischeri. Convergence in bioluminescence (a 2.5-fold increase in brightness) was collectively evident in the derived lines relative to the ancestor. However, dramatic changes in other properties--time points and cell densities of first light emission and maximal light output and emergence of a lag phase in growth curves of derived lines--suggest that increased light intensity per se was not the only important factor. Convergent evolution implies that gnotobiotic squid light organs subject colonizing V. fischeri to similar selection pressures. Adaptation to novel hosts appears to involve flexible microbial metabolism, establishment of biofilm and swarmer V. fischeri ecotypes, and complex changes in bioluminescence. Our data demonstrate that numerous alternate fitness optima or peaks are available to V. fischeri in host adaptive landscapes, where novel host squids serve as habitat islands. Thus, V. fischeri founder flushes occur during the initiation of light organ colonization that ultimately trigger founder effect diversification.
Collapse
Affiliation(s)
- William Soto
- University of Minnesota-Twin Cities, Department of Ecology, Evolution, & Behavior, 100 Ecology Building, 1987 Upper Buford Circle, Saint Paul, MN 55108, (612) 626-6200
| | - Ferdinand M. Rivera
- New Mexico State University, Department of Biology, Box 30001, MSC 3AF, Las Cruces, NM 88003, (575) 646-3721 FAX (575) 646-5665
| | - Michele K. Nishiguchi
- New Mexico State University, Department of Biology, Box 30001, MSC 3AF, Las Cruces, NM 88003, (575) 646-3721 FAX (575) 646-5665
| |
Collapse
|
47
|
Park SH, Bao Z, Butcher BG, D'Amico K, Xu Y, Stodghill P, Schneider DJ, Cartinhour S, Filiatrault MJ. Analysis of the small RNA spf in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000. MICROBIOLOGY-SGM 2014; 160:941-953. [PMID: 24600027 DOI: 10.1099/mic.0.076497-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacteria contain small non-coding RNAs (ncRNAs) that are typically responsible for altering transcription, translation or mRNA stability. ncRNAs are important because they often regulate virulence factors and susceptibility to various stresses. Here, the regulation of a recently described ncRNA of Pseudomonas syringae DC3000, spot 42 (now referred to as spf), was investigated. A putative RpoE binding site was identified upstream of spf in strain DC3000. RpoE is shown to regulate the expression of spf. Also, deletion of spf results in increased sensitivity to hydrogen peroxide compared with the wild-type strain, suggesting that spf plays a role in susceptibility to oxidative stress. Furthermore, expression of alg8 is shown to be influenced by spf, suggesting that this ncRNA plays a role in alginate biosynthesis. Structural and comparative genomic analyses show this ncRNA is well conserved among the pseudomonads. The findings provide new information on the regulation and role of this ncRNA in P. syringae.
Collapse
Affiliation(s)
- So Hae Park
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Zhongmeng Bao
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bronwyn G Butcher
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Katherine D'Amico
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yun Xu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Paul Stodghill
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - David J Schneider
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Samuel Cartinhour
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - M J Filiatrault
- Plant-Microbe Interactions Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
48
|
Abendroth U, Schmidtke C, Bonas U. Small non-coding RNAs in plant-pathogenic Xanthomonas spp. RNA Biol 2014; 11:457-63. [PMID: 24667380 DOI: 10.4161/rna.28240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genus Xanthomonas comprises a large group of plant-pathogenic bacteria. The infection and bacterial multiplication in the plant tissue depends on the type III secretion system and other virulence determinants. Recent studies revealed that bacterial virulence is also controlled at the post-transcriptional level by small non-coding RNAs (sRNAs). In this review, we highlight our current knowledge about sRNAs and RNA-binding proteins in Xanthomonas species.
Collapse
Affiliation(s)
- Ulrike Abendroth
- Dept. of Genetics; Martin-Luther-Universität Halle-Wittenberg; Halle, Germany
| | - Cornelius Schmidtke
- Dept. of Genetics; Martin-Luther-Universität Halle-Wittenberg; Halle, Germany
| | - Ulla Bonas
- Dept. of Genetics; Martin-Luther-Universität Halle-Wittenberg; Halle, Germany
| |
Collapse
|
49
|
Bao Z, Stodghill PV, Myers CR, Lam H, Wei HL, Chakravarthy S, Kvitko BH, Collmer A, Cartinhour SW, Schweitzer P, Swingle B. Genomic plasticity enables phenotypic variation of Pseudomonas syringae pv. tomato DC3000. PLoS One 2014; 9:e86628. [PMID: 24516535 PMCID: PMC3916326 DOI: 10.1371/journal.pone.0086628] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022] Open
Abstract
Whole genome sequencing revealed the presence of a genomic anomaly in the region of 4.7 to 4.9 Mb of the Pseudomonas syringae pv. tomato (Pst) DC3000 genome. The average read depth coverage of Pst DC3000 whole genome sequencing results suggested that a 165 kb segment of the chromosome had doubled in copy number. Further analysis confirmed the 165 kb duplication and that the two copies were arranged as a direct tandem repeat. Examination of the corresponding locus in Pst NCPPB1106, the parent strain of Pst DC3000, suggested that the 165 kb duplication most likely formed after the two strains diverged via transposition of an ISPsy5 insertion sequence (IS) followed by unequal crossing over between ISPsy5 elements at each end of the duplicated region. Deletion of one copy of the 165 kb region demonstrated that the duplication facilitated enhanced growth in some culture conditions, but did not affect pathogenic growth in host tomato plants. These types of chromosomal structures are predicted to be unstable and we have observed resolution of the 165 kb duplication to single copy and its subsequent re-duplication. These data demonstrate the role of IS elements in recombination events that facilitate genomic reorganization in P. syringae.
Collapse
Affiliation(s)
- Zhongmeng Bao
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Paul V. Stodghill
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Christopher R. Myers
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York, United States of America
| | - Hanh Lam
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Hai-Lei Wei
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Suma Chakravarthy
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Brian H. Kvitko
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Alan Collmer
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Samuel W. Cartinhour
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Peter Schweitzer
- Biotechnology Resource Center, Cornell University, Ithaca, New York, United States of America
| | - Bryan Swingle
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
50
|
Nydam SD, Shah DH, Call DR. Transcriptome analysis of Vibrio parahaemolyticus in type III secretion system 1 inducing conditions. Front Cell Infect Microbiol 2014; 4:1. [PMID: 24478989 PMCID: PMC3895804 DOI: 10.3389/fcimb.2014.00001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/02/2014] [Indexed: 12/16/2022] Open
Abstract
Vibrio parahaemolyticus is an emerging bacterial pathogen capable of causing inflammatory gastroenteritis, wound infections, and septicemia. As a food-borne illness, infection is most frequently associated with the consumption of raw or undercooked seafood, particularly shellfish. It is the primary cause of Vibrio-associated food-borne illness in the United States and the leading cause of food-borne illness in Japan. The larger of its two chromosomes harbors a set of genes encoding type III section system 1 (T3SS1), a virulence factor present in all V. parahaemolyticus strains that is similar to the Yersinia ysc T3SS. T3SS1 translocates effector proteins into eukaryotic cells where they induce changes to cellular physiology and modulate host-pathogen interactions. T3SS1 is also responsible for cytotoxicity toward several different cultured cell lines as well as mortality in a mouse model. Herein we used RNA-seq to obtain global transcriptome patterns of V. parahaemolyticus under conditions that either induce [growth in Dulbecco's Modified Eagle Medium (DMEM) media, in trans expression of transcriptional regulator exsA] or repress T3SS1 expression (growth in LB-S media, in trans exsD expression) and during infection of HeLa cells over time. Comparative transcriptomic analysis demonstrated notable differences in the expression patterns under inducing conditions and was also used to generate an expression profile of V. parahaemolyticus during infection of HeLa cells. In addition, we identified several new genes that are associated with T3SS1 expression and may warrant further study.
Collapse
Affiliation(s)
- Seth D Nydam
- Department of Veterinary Microbiology and Pathology, Washington State University Pullman, WA, USA ; Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University Pullman, WA, USA ; Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| | - Douglas R Call
- Department of Veterinary Microbiology and Pathology, Washington State University Pullman, WA, USA ; Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| |
Collapse
|