1
|
Li H, Tang X, Yang T, Liao T, Debowski AW, Yang T, Shen Y, Nilsson HO, Haslam SM, Mulloy B, Dell A, Stubbs KA, Fischer W, Haas R, Tang H, Marshall BJ, Benghezal M. Reinvestigation into the role of lipopolysaccharide Glycosyltransferases in Helicobacter pylori protein glycosylation. Gut Microbes 2025; 17:2455513. [PMID: 39834051 DOI: 10.1080/19490976.2025.2455513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Protein glycosylation has been considered as a fundamental phenomenon shared by all domains of life. In Helicobacter pylori, glycosylation of flagellins A and B with pseudaminic acid have been rigorously confirmed and shown to be essential for flagella assembly and bacterial colonization. In addition to flagellins, several other proteins including RecA, AlpA/B, and BabA/B in H. pylori have also been reported to be glycosylated and to be dependent on the lipopolysaccharide (LPS) biosynthetic pathway. However, these proteins have not been purified for sugar-specific staining or structural analysis to confirm the existence of carbohydrate motifs. Here, using a combined approach of genetics, protein purification, and sugar-specific staining, we demonstrate that RecA is not a glycoprotein. Moreover, using LPS-protein reconstitution experiments, we demonstrate that the presence of O-antigen containing full-length LPS interferes with the electrophoretic mobility of H. pylori RecA and many other proteins including AlpA/B on SDS-PAGE. Finally, we demonstrate that full-length LPS extracted from E. coli affects electrophoretic migration of H. pylori proteins, while full-length LPS extracted from H. pylori similarly influences the electrophoretic migration of E. coli proteins. The impact is more subtle with E. coli LPS compared to H. pylori LPS, indicating that the magnitude of effect of LPS effects on protein mobility is dependent on bacterial source of the LPS. These findings suggest that the effects of full-length LPS on protein electrophoresis may represent a more general phenomenon. As LPS is a unique component of virtually all Gram-negative bacteria, our data suggest that when observing protein electrophoretic mobility shifts between wild-type and LPS mutant strains or between subcellular fractionation samples, the influence of LPS on protein electrophoretic migration should be considered first, rather than interpreting it as potential protein glycosylation that is dependent upon LPS biosynthetic pathway.
Collapse
Affiliation(s)
- Hong Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Xiaoqiong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Tiandi Yang
- Department of Life Sciences, Imperial College London, London, UK
| | - Tingting Liao
- Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Aleksandra W Debowski
- Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, Australia
| | - Tiankuo Yang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yalin Shen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hans-Olof Nilsson
- Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Barbara Mulloy
- Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, Australia
| | - Wolfgang Fischer
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, and German Center for Infection Research (DZIF), LMU Munich, Munich, Germany
| | - Rainer Haas
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, and German Center for Infection Research (DZIF), LMU Munich, Munich, Germany
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Barry J Marshall
- Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Mohammed Benghezal
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| |
Collapse
|
2
|
Mintz KP, Danforth DR, Ruiz T. The Trimeric Autotransporter Adhesin EmaA and Infective Endocarditis. Pathogens 2024; 13:99. [PMID: 38392837 PMCID: PMC10892112 DOI: 10.3390/pathogens13020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Infective endocarditis (IE), a disease of the endocardial surface of the heart, is usually of bacterial origin and disproportionally affects individuals with underlying structural heart disease. Although IE is typically associated with Gram-positive bacteria, a minority of cases are caused by a group of Gram-negative species referred to as the HACEK group. These species, classically associated with the oral cavity, consist of bacteria from the genera Haemophilus (excluding Haemophilus influenzae), Aggregatibacter, Cardiobacterium, Eikenella, and Kingella. Aggregatibacter actinomycetemcomitans, a bacterium of the Pasteurellaceae family, is classically associated with Aggressive Periodontitis and is also concomitant with the chronic form of the disease. Bacterial colonization of the oral cavity serves as a reservoir for infection at distal body sites via hematological spreading. A. actinomycetemcomitans adheres to and causes disease at multiple physiologic niches using a diverse array of bacterial cell surface structures, which include both fimbrial and nonfimbrial adhesins. The nonfimbrial adhesin EmaA (extracellular matrix binding protein adhesin A), which displays sequence heterogeneity dependent on the serotype of the bacterium, has been identified as a virulence determinant in the initiation of IE. In this chapter, we will discuss the known biochemical, molecular, and structural aspects of this protein, including its interactions with extracellular matrix components and how this multifunctional adhesin may contribute to the pathogenicity of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Keith P. Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA;
| | - David R. Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA;
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA;
| |
Collapse
|
3
|
Tang-Siegel GG. Human Serum Mediated Bacteriophage Life Cycle Switch in Aggregatibacter actinomycetemcomitans Is Linked to Pyruvate Dehydrogenase Complex. Life (Basel) 2023; 13:436. [PMID: 36836793 PMCID: PMC9959103 DOI: 10.3390/life13020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Antimicrobial resistance is rising as a major global public health threat and antibiotic resistance genes are widely spread among species, including human oral pathogens, e.g., Aggregatibacter actinomycetemcomitans. This Gram-negative, capnophilic, facultative anaerobe is well recognized as a causative agent leading to periodontal diseases, as well as seriously systemic infections including endocarditis. A. actinomycetemcomitans has also evolved mechanisms against complement-mediated phagocytosis and resiliently survives in serum-rich in vivo environments, i.e., inflamed periodontal pockets and blood circulations. This bacterium, however, demonstrated increasing sensitivity to human serum, when being infected by a pseudolysogenic bacteriophage S1249, which switched to the lytic state as a response to human serum. Concomitantly, the pyruvate dehydrogenase complex (PDHc), which is composed of multiple copies of three enzymes (E1, E2, and E3) and oxidatively decarboxylates pyruvate to acetyl-CoA available for tricarboxylic acid (TCA) cycle, was found up-regulated 10-fold in the bacterial lysogen after human serum exposure. The data clearly indicated that certain human serum components induced phage virion replication and egress, resulting in bacterial lysis. Phage manipulation of bacterial ATP production through regulation of PDHc, a gatekeeper linking glycolysis to TCA cycle through aerobic respiration, suggests that a more efficient energy production and delivery system is required for phage progeny replication and release in this in vivo environment. Insights into bacteriophage regulation of bacterial fitness in a mimic in vivo condition will provide alternative strategies to control bacterial infection, in addition to antibiotics.
Collapse
Affiliation(s)
- Gaoyan Grace Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont and State Agricultural College, Burlington, VT 05405, USA
| |
Collapse
|
4
|
Serotype-Specific Sugars Impact Structure but Not Functions of the Trimeric Autotransporter Adhesin EmaA of Aggregatibacter actinomycetemcomitans. J Bacteriol 2022; 204:e0021522. [PMID: 36448790 PMCID: PMC9764965 DOI: 10.1128/jb.00215-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The human oral pathobiont Aggregatibacter actinomycetemcomitans expresses multiple virulence factors, including the trimeric, extracellular matrix protein adhesin A (EmaA). The posttranslational modification of EmaA is proposed to be dependent on the sugars and enzymes associated with O-polysaccharide (O-PS) synthesis of the lipopolysaccharide (LPS). This modification is important for the structure and function of this adhesin. To determine if the composition of the sugars alters structure and/or function, the prototypic 202-kDa protein was expressed in a non-serotype b, emaA mutant strain. The transformed strain displayed EmaA adhesins similar in appearance to the prototypic adhesin as observed by two-dimensional (2D) electron microscopy of whole-mount negatively stained bacterial preparations. Biochemical analysis indicated that the protein monomers were posttranslationally modified. 3D electron tomographic reconstruction and structure analyses of the functional domain revealed three well-defined subdomains (SI, SII, and SIII) with a linker region between SII and SIII. Structural changes were observed in all three subdomains and the linker region of the adhesins synthesized compared with the known structure. These changes, however, did not affect the ability of the strain to bind collagen or form biofilms. The data suggest that changes in the composition of the glycan moiety alter the 3D structure of the molecule without negatively affecting the function(s) associated with this adhesin. IMPORTANCE The human oral pathogen A. actinomycetemcomitans is a causative agent of periodontal and several systemic diseases. EmaA is a trimeric autotransporter protein adhesin important for colonization by this pathobiont in vivo. This adhesin is modified with sugars associated with the O-polysaccharide (O-PS), and the modification is mediated using the enzymes involved in lipopolysaccharide (LPS) biosynthesis. The interaction with collagen is not mediated by the specific binding between the glycans and collagen but is attributed to changes in the final quaternary structure necessary to maintain an active adhesin. In this study, we have determined that the composition of the sugars utilized in the posttranslational modification of this adhesin is exchangeable without compromising functional activities.
Collapse
|
5
|
Molecular characterization and antibiotic resistance of Clostridioides difficile in patients with inflammatory bowel disease from two hospitals in China. J Glob Antimicrob Resist 2022; 30:252-258. [PMID: 35764214 DOI: 10.1016/j.jgar.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Patients with inflammatory bowel disease (IBD) are susceptible to Clostridioides difficile infection (CDI), resulting in poor outcomes and recurrence; therefore, the molecular characterization of C. difficle in IBD patients in China needs further investigation. METHODS C. difficile strains were isolated and identified from fecal samples of adult and pediatric IBD patients. Toxigenic strains were typed using multilocus sequence typing (MLST) and whole genomic sequencing (WGS) to construct the phylogenetic tree. Susceptibility to 10 antimicrobials was evaluated using the E-test. RESULTS Among the 838 IBD patients, 82 toxigenic C. difficile were identified, which comprised 46 from adults and 36 children. 90.2% (74/82) of the isolates were positive for both toxin A and toxin B genes (A+B+), while the remaining 9.8% were negative for toxin A gene, but positive for toxin B gene (A-B+). These toxigenic strains were susceptible to metronidazole and vancomycin, but highly resistant to clindamycin, erythromycin, and fluoroquinolones. All moxifloxacin-resistant isolates had mutations resulting in an amino acid substitution in gryA (T82I). The dominant types were ST-35 (20.7%), ST-2 (17.1%), ST-54 (13.4%), and ST-3 (13.4%) in all patients. CONCLUSION The incidence and molecular epidemiology of C. difficile infection in adult IBD patients resembled CDI in the general inpatient population. A higher antibiotic resistance rate was identified among the C. difficile isolates obtained from pediatric IBD patients than adult patients, and few STs accounted for most multidrug-resistant strains. However, the molecular genetic features of the same ST-type between these two groups remains highly correlated.
Collapse
|
6
|
Tang-Siegel GG, Danforth DR, Tristano J, Ruiz T, Mintz KP. The serotype a-EmaA adhesin of Aggregatibacter actinomycetemcomitans does not require O-PS synthesis for collagen binding activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35551696 DOI: 10.1099/mic.0.001191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aggregatibacter actinomycetemcomitans, a causative agent of periodontitis and non-oral diseases, synthesizes a trimeric extracellular matrix protein adhesin A (EmaA) that mediates collagen binding and biofilm formation. EmaA is found as two molecular forms, which correlate with the serotype of the bacterium. The canonical protein (b-EmaA), associated with serotypes b and c, has a monomeric molecular mass of 202 kDa. The collagen binding activity of b-EmaA is dependent on the presence of O-polysaccharide (O-PS), whereas biofilm activity is independent of O-PS synthesis. The EmaA associated with serotype a strains (a-EmaA) has a monomeric molecular mass of 173 kDa and differs in the amino acid sequence of the functional domain of the protein. In this study, a-emaA was confirmed to encode a protein that forms antenna-like appendages on the surface of the bacterium, which were found to be important for both collagen binding and biofilm formation. In an O-PS-deficient talose biosynthetic (tld) mutant strain, the electrophoretic mobility of the a-EmaA monomers was altered and the amount of membrane-associated EmaA was decreased when compared to the parent strain. The mass of biofilm formed remained unchanged. Interestingly, the collagen binding activity of the mutant strain was similar to the activity associated with the parent strain, which differs from that observed with the canonical b-EmaA isoform. These data suggest that the properties of the a-EmaA isoform are like those of b-EmaA, with the exception that collagen binding activity is independent of the presence or absence of the O-PS.
Collapse
Affiliation(s)
- Gaoyan G Tang-Siegel
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - David R Danforth
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Jake Tristano
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Teresa Ruiz
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Keith P Mintz
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
7
|
Danforth DR, Melloni M, Tristano J, Mintz KP. Contribution of adhesion proteins to Aggregatibacter actinomycetemcomitans biofilm formation. Mol Oral Microbiol 2021; 36:243-253. [PMID: 34085776 DOI: 10.1111/omi.12346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium associated with periodontal disease and multiple disseminated extra-oral infections. Colonization of these distinct physiological niches is contingent on the expression of specific surface proteins during the initiation of developing biofilms. In this investigation, we studied fimbriae and three well-characterized nonfimbrial surface proteins (EmaA, Aae, and ApiA/Omp100) for their contribution to biofilm formation. Mutations of these proteins in multiple strains covering four different serotypes demonstrated variance in biofilm development that was strain dependent but independent of serotype. In a fimbriated background, only inactivation of emaA impacted biofilm mass. In contrast, inactivation of emaA and/or aae affected biofilm formation in nonfimbriated A. actinomycetemcomitans strains, whereas inactivation of apiA/omp100 had little effect on biofilm formation. When these genes were expressed individually in Escherichia coli, all transformed strains demonstrated an increase in biofilm mass compared to the parent strain. The strain expressing emaA generated the greatest mass of biofilm, whereas the strains expressing either aae or apiA/omp100 were greatly reduced and similar in mass. These data suggest a redundancy in function of these nonfimbrial adhesins, which is dependent on the genetic background of the strain investigated.
Collapse
Affiliation(s)
- David R Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Marcella Melloni
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Jake Tristano
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Keith P Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
8
|
Dautin N. Folding Control in the Path of Type 5 Secretion. Toxins (Basel) 2021; 13:341. [PMID: 34064645 PMCID: PMC8151025 DOI: 10.3390/toxins13050341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.
Collapse
Affiliation(s)
- Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005 Paris, France
| |
Collapse
|
9
|
Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000 2021; 86:32-56. [PMID: 33690911 PMCID: PMC9413593 DOI: 10.1111/prd.12361] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Graham P Stafford
- Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Fujita A, Oogai Y, Kawada-Matsuo M, Nakata M, Noguchi K, Komatsuzawa H. Expression of virulence factors under different environmental conditions in Aggregatibacter actinomycetemcomitans. Microbiol Immunol 2021; 65:101-114. [PMID: 33591576 DOI: 10.1111/1348-0421.12864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 11/28/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a facultative anaerobic Gram-negative bacterium associated with periodontal diseases, especially aggressive periodontitis. The virulence factors of this pathogen, including adhesins, exotoxins, and endotoxin, have been extensively studied. However, little is known about their gene expression mode in the host. Herein, we investigated whether culture conditions reflecting in vivo environments, including serum and saliva, alter expression levels of virulence genes in the strain HK1651, a JP2 clone. Under aerobic conditions, addition of calf serum (CS) into a general medium induced high expression of two outer membrane proteins (omp100 and omp64). The high expression of omp100 and omp64 was also induced by an iron-limited medium. RNA-seq analysis showed that the gene expressions of several factors involved in iron acquisition were increased in the CS-containing medium. When HK1651 was grown on agar plates, genes encoding many virulence factors, including the Omps, cytolethal distending toxin, and leukotoxin, were differentially expressed. Then, we investigated their expression in five other A. actinomycetemcomitans strains grown in general and CS-containing media. The expression pattern of virulence factors varied among strains. Compared with the other five strains, HK1561 showed high expression of omp29 regardless of the CS addition, while the gene expression of leukotoxin in HK1651 was higher only in the medium without CS. HK1651 showed reduced biofilm in both CS- and saliva-containing media. Coaggregation with Fusobacterium nucleatum was remarkably enhanced using HK1651 grown in the CS-containing medium. Our results indicate that the expression of virulence factors is altered by adaptation to different conditions during infection.
Collapse
Affiliation(s)
- Ayumi Fujita
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
11
|
Monasterio G, Castillo F, Astorga J, Hoare A, Terraza-Aguirre C, Cafferata EA, Villablanca EJ, Vernal R. O-Polysaccharide Plays a Major Role on the Virulence and Immunostimulatory Potential of Aggregatibacter actinomycetemcomitans During Periodontal Infection. Front Immunol 2020; 11:591240. [PMID: 33193431 PMCID: PMC7662473 DOI: 10.3389/fimmu.2020.591240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/06/2020] [Indexed: 01/09/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative oral bacterium with high immunostimulatory and pathogenic potential involved in the onset and progression of periodontitis, a chronic disease characterized by aberrant immune responses followed by tooth-supporting bone resorption, which eventually leads to tooth loss. While several studies have provided evidence related to the virulence factors of A. actinomycetemcomitans involved in the host cell death and immune evasion, such as its most studied primate-specific virulence factor, leukotoxin, the role of specific lipopolysaccharide (LPS) domains remain poorly understood. Here, we analyzed the role of the immunodominant domain of the LPS of A. actinomycetemcomitans termed O-polysaccharide (O-PS), which differentiates the distinct bacterial serotypes based on its antigenicity. To determine the role of the O-PS in the immunogenicity and virulence of A. actinomycetemcomitans during periodontitis, we analyzed the in vivo and in vitro effect of an O-PS-defective transposon mutant serotype b strain, characterized by the deletion of the rmlC gene encoding the α-L-rhamnose sugar biosynthetic enzyme. Induction of experimental periodontitis using the O-PS-defective rmlC mutant strain resulted in lower tooth-supporting bone resorption, infiltration of Th1, Th17, and Th22 lymphocytes, and expression of Ahr, Il1b, Il17, Il23, Tlr4, and RANKL (Tnfsf11) in the periodontal lesions as compared with the wild-type A. actinomycetemcomitans strain. In addition, the O-PS-defective rmlC mutant strain led to impaired activation of antigen-presenting cells, with less expression of the co-stimulatory molecules CD40 and CD80 in B lymphocytes and dendritic cells, and downregulated expression of Tnfa and Il1b in splenocytes. In conclusion, these data demonstrate that the O-PS from the serotype b of A. actinomycetemcomitans plays a key role in the capacity of the bacterium to prime oral innate and adaptive immune responses, by triggering the Th1 and Th17-driven tooth-supporting bone resorption during periodontitis.
Collapse
Affiliation(s)
- Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Stockholm, Sweden
| | - Francisca Castillo
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jessica Astorga
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Anilei Hoare
- Oral Microbiology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Claudia Terraza-Aguirre
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Institute for Regenerative Medicine and Biotherapies (IRMB), Université de Montpellier, Montpellier, France
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Stockholm, Sweden
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Interactions between the Trimeric Autotransporter Adhesin EmaA and Collagen Revealed by Three-Dimensional Electron Tomography. J Bacteriol 2019; 201:JB.00297-19. [PMID: 31160398 DOI: 10.1128/jb.00297-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial adhesion to host tissues is considered the first and critical step of microbial infection. The extracellular matrix protein adhesin A (EmaA) is a collagen-binding adhesin of the periodontal pathogen Aggregatibacter actinomycetemcomitans Three 202-kDa EmaA monomers form antenna-like structures on the bacterial surface with the functional domain located at the apical end. The structure of the 30-nm functional domain has been determined by three-dimensional (3D) electron tomography and subvolume averaging. The region exhibits a complex architecture composed of three subdomains (SI to SIII) and a linker between subdomains SII and SIII. However, the molecular interaction between the adhesin receptor complexes has yet to be revealed. This study provides the first detailed 3D structure of reconstituted EmaA/collagen complexes obtained using 3D electron tomography and image processing techniques. The observed interactions of EmaA with collagen were not to whole, intact fibrils, but rather to individual collagen triple helices dissociated from the fibrils. The majority of the contacts with the EmaA functional domain encompassed subdomains SII and SIII and in some cases the tip of the apical domain, involving SI. These data suggest a multipronged mechanism for the interaction of Gram-negative bacteria with collagen.IMPORTANCE Bacterial adhesion is a crucial step for bacterial colonization and infection. In recent years, the number of antibiotic-resistant strains has dramatically increased; therefore, there is a need to search for novel antimicrobial agents. Thus, great efforts are being devoted to develop a clear understanding of the bacterial adhesion mechanism for preventing infections. In host/pathogen interactions, once repulsive forces are overcome, adhesins recognize and tightly bind to specific receptors on the host cell or tissue components. Here, we present the first 3D structure of the interaction between the collagen-binding adhesin EmaA and collagen, which is critical for the development of endocarditis in humans.
Collapse
|
13
|
Danforth DR, Tang-Siegel G, Ruiz T, Mintz KP. A Nonfimbrial Adhesin of Aggregatibacter actinomycetemcomitans Mediates Biofilm Biogenesis. Infect Immun 2019; 87:e00704-18. [PMID: 30297525 PMCID: PMC6300624 DOI: 10.1128/iai.00704-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is an inflammatory disease caused by polymicrobial biofilms. The periodontal pathogen Aggregatibacter actinomycetemcomitans displays two proteinaceous surface structures, the fimbriae and the nonfimbrial extracellular matrix binding protein A (EmaA), as observed by electron microscopy. Fimbriae participate in biofilm biogenesis and the EmaA adhesins mediate collagen binding. However, in the absence of fimbriae, A. actinomycetemcomitans still retains the potential to form robust biofilms, suggesting that other surface macromolecules participate in biofilm development. Here, isogenic mutant strains lacking EmaA structures, but still expressing fimbriae, were observed to have reduced biofilm potential. In strains lacking both EmaA and fimbriae, biofilm mass was reduced by 80%. EmaA enhanced biofilm formation in different strains, independent of the fimbriation state or serotype. Confocal microscopy revealed differences in cell density within microcolonies between the EmaA positive and mutant strains. EmaA-mediated biofilm formation was found to be independent of the glycosylation state and the precise three-dimensional conformation of the protein, and thus this function is uncorrelated with collagen binding activity. The data suggest that EmaA is a multifunctional adhesin that utilizes different mechanisms to enhance bacterial binding to collagen and to enhance biofilm formation, both of which are important for A. actinomycetemcomitans colonization and subsequent infection.
Collapse
Affiliation(s)
- David R Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Gaoyan Tang-Siegel
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Keith P Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
14
|
Eichler J, Koomey M. Sweet New Roles for Protein Glycosylation in Prokaryotes. Trends Microbiol 2017; 25:662-672. [PMID: 28341406 DOI: 10.1016/j.tim.2017.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/19/2017] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
Long-held to be a post-translational modification unique to Eukarya, it is now clear that both Bacteria and Archaea also perform protein glycosylation, namely the covalent attachment of mono- to polysaccharides to specific protein targets. At the same time, many of the roles assigned to this protein-processing event in eukaryotes, such as guiding protein folding/quality control, intracellular trafficking, dictating cellular recognition events and others, do not apply or are even irrelevant to prokaryotes. As such, protein glycosylation must serve novel functions in Bacteria and Archaea. Recent efforts have begun to elucidate some of these prokaryote-specific roles, which are addressed in this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | - Michael Koomey
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
15
|
Abstract
Type V secretion denotes a variety of secretion systems that cross the outer membrane in Gram-negative bacteria but that depend on the Sec machinery for transport through the inner membrane. They are possibly the simplest bacterial secretion systems, because they consist only of a single polypeptide chain (or two chains in the case of two-partner secretion). Their seemingly autonomous transport through the outer membrane has led to the term "autotransporters" for various subclasses of type V secretion. In this chapter, we review the structure and function of these transporters and review recent findings on additional factors involved in the secretion process, which have put the term "autotransporter" to debate.
Collapse
|
16
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
17
|
Tang-Siegel G, Bumgarner R, Ruiz T, Kittichotirat W, Chen W, Chen C. Human Serum-Specific Activation of Alternative Sigma Factors, the Stress Responders in Aggregatibacter actinomycetemcomitans. PLoS One 2016; 11:e0160018. [PMID: 27490177 PMCID: PMC4973924 DOI: 10.1371/journal.pone.0160018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/12/2016] [Indexed: 01/08/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans, a known pathogen causing periodontal disease and infective endocarditis, is a survivor in the periodontal pocket and blood stream; both environments contain serum as a nutrient source. To screen for unknown virulence factors associated with this microorganism, A. actinomycetemcomitans was grown in serum-based media to simulate its in vivo environment. Different strains of A. actinomycetemcomitans showed distinct growth phenotypes only in the presence of human serum, and they were grouped into high- and low-responder groups. High-responders comprised mainly serotype c strains, and showed an unusual growth phenomenon, featuring a second, rapid increase in turbidity after 9-h incubation that reached a final optical density 2- to 7-fold higher than low-responders. Upon further investigation, the second increase in turbidity was not caused by cell multiplication, but by cell death. Whole transcriptomic analysis via RNA-seq identified 35 genes that were up-regulated by human serum, but not horse serum, in high-responders but not in low-responders, including prominently an alternative sigma factor rpoE (σE). A lacZ reporter construct driven by the 132-bp rpoE promoter sequence of A. actinomycetemcomitans responded dramatically to human serum within 90 min of incubation only when the construct was carried by a high responder strain. The rpoE promoter is 100% identical among high- and low-responder strains. Proteomic investigation showed potential interactions between human serum protein, e.g. apolipoprotein A1 (ApoA1) and A. actinomycetemcomitans. The data clearly indicated a different activation process for rpoE in high- versus low-responder strains. This differential human serum-specific activation of rpoE, a putative extra-cytoplasmic stress responder and global regulator, suggests distinct in vivo adaptations among different strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Gaoyan Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Roger Bumgarner
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Weerayuth Kittichotirat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Weizhen Chen
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States of America
| | - Casey Chen
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Sugar and Spice Make Bacteria Not Nice: Protein Glycosylation and Its Influence in Pathogenesis. J Mol Biol 2016; 428:3206-3220. [DOI: 10.1016/j.jmb.2016.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
|
19
|
Ahlstrand T, Tuominen H, Beklen A, Torittu A, Oscarsson J, Sormunen R, Pöllänen MT, Permi P, Ihalin R. A novel intrinsically disordered outer membrane lipoprotein of Aggregatibacter actinomycetemcomitans binds various cytokines and plays a role in biofilm response to interleukin-1β and interleukin-8. Virulence 2016; 8:115-134. [PMID: 27459270 PMCID: PMC5383217 DOI: 10.1080/21505594.2016.1216294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) do not have a well-defined and stable 3-dimensional fold. Some IDPs can function as either transient or permanent binders of other proteins and may interact with an array of ligands by adopting different conformations. A novel outer membrane lipoprotein, bacterial interleukin receptor I (BilRI) of the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans binds a key gatekeeper proinflammatory cytokine interleukin (IL)-1β. Because the amino acid sequence of the novel lipoprotein resembles that of fibrinogen binder A of Haemophilus ducreyi, BilRI could have the potential to bind other proteins, such as host matrix proteins. However, from the tested host matrix proteins, BilRI interacted with neither collagen nor fibrinogen. Instead, the recombinant non-lipidated BilRI, which was intrinsically disordered, bound various pro/anti-inflammatory cytokines, such as IL-8, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-10. Moreover, BilRI played a role in the in vitro sensing of IL-1β and IL-8 because low concentrations of cytokines did not decrease the amount of extracellular DNA in the matrix of bilRI− mutant biofilm as they did in the matrix of wild-type biofilm when the biofilms were exposed to recombinant cytokines for 22 hours. BilRI played a role in the internalization of IL-1β in the gingival model system but did not affect either IL-8 or IL-6 uptake. However, bilRI deletion did not entirely prevent IL-1β internalization, and the binding of cytokines to BilRI was relatively weak. Thus, BilRI might sequester cytokines on the surface of A. actinomycetemcomitans to facilitate the internalization process in low local cytokine concentrations.
Collapse
Affiliation(s)
- Tuuli Ahlstrand
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Heidi Tuominen
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Arzu Beklen
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Annamari Torittu
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Jan Oscarsson
- b Oral Microbiology , Department of Odontology, Umeå University , Umeå , Sweden
| | - Raija Sormunen
- c Biocenter Oulu and Department of Pathology , University of Oulu , Oulu Finland
| | | | - Perttu Permi
- e Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki , Helsinki , Finland.,f Department of Biological and Environmental Sciences , Nanoscience Center, University of Jyväskylä , Jyväskylä , Finland.,g Department of Chemistry , Nanoscience Center, University of Jyväskylä , Jyväskylä , Finland
| | - Riikka Ihalin
- a Department of Biochemistry , University of Turku , Turku , Finland
| |
Collapse
|
20
|
Abstract
There is an ongoing race between bacterial evolution and medical advances. Pathogens have the advantages of short generation times and horizontal gene transfer that enable rapid adaptation to new host environments and therapeutics that currently outpaces clinical research. Antibiotic resistance, the growing impact of nosocomial infections, cancer-causing bacteria, the risk of zoonosis, and the possibility of biowarfare all emphasize the increasingly urgent need for medical research focussed on bacterial pathogens. Bacterial glycoproteins are promising targets for alternative therapeutic intervention since they are often surface exposed, involved in host-pathogen interactions, required for virulence, and contain distinctive glycan structures. The potential exists to exploit these unique structures to improve clinical prevention, diagnosis, and treatment strategies. Translation of the potential in this field to actual clinical impact is an exciting prospect for fighting infectious diseases.
Collapse
Affiliation(s)
- Kelly M Fulton
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Jeffrey C Smith
- b Department of Chemistry and Institute of Biochemistry , Carleton University , Ottawa , Canada
| | - Susan M Twine
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| |
Collapse
|
21
|
Smith KP, Ruiz T, Mintz KP. Inner-membrane protein MorC is involved in fimbriae production and biofilm formation in Aggregatibacter actinomycetemcomitans. MICROBIOLOGY-SGM 2016; 162:513-525. [PMID: 26796329 DOI: 10.1099/mic.0.000246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fimbrial subunit synthesis, secretion and assembly on the surface of the periodontal pathogen Aggregatibacter actinomycetemcomitans are essential for biofilm formation. A recent quantitative proteomics study employing an afimbriated strain and a developed mutant isogenic for the inner-membrane protein morphogenesis protein C (MorC) revealed that the abundance of the proteins of the fimbrial secretion apparatus in the membrane is dependent on MorC. To investigate further the relationship between MorC and fimbriation, we identified and complemented the defect in fimbriae production in the afimbriated laboratory strain. The transformed strain expressing a plasmid containing genes encoding the WT fimbrial subunit and the prepilin peptidase displayed all of the hallmarks of a fimbriated bacterium including the distinct star-like colony morphology, robust biofilm formation, biofilm architecture composed of discrete microcolonies and the presence of fimbriae. When the identical plasmid was transformed into a morC mutant strain, the bacterium did not display any of the phenotypes of fimbriated strains. Extension of these studies to a naturally fimbriated clinical strain showed that the resulting morC mutant maintained the characteristic colony morphology of fimbriated strains. There was, however, a reduction in the secretion of fimbrial subunits, and fewer fimbriae were observed on the surface of the mutant strain. Furthermore, the morC mutant of the fimbriated strain displayed a significantly altered biofilm microcolony architecture, while maintaining a similar biofilm mass to the parent strain. These results suggest that MorC influences fimbrial secretion and microcolony formation in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Kenneth P Smith
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Keith P Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
22
|
Zhu F, Wu H. Insights into bacterial protein glycosylation in human microbiota. SCIENCE CHINA. LIFE SCIENCES 2016; 59:11-8. [PMID: 26712033 PMCID: PMC5298937 DOI: 10.1007/s11427-015-4980-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/05/2015] [Indexed: 01/14/2023]
Abstract
The study of human microbiota is an emerging research topic. The past efforts have mainly centered on studying the composition and genomic landscape of bacterial species within the targeted communities. The interaction between bacteria and hosts is the pivotal event in the initiation and progression of infectious diseases. There is a great need to identify and characterize the molecules that mediate the bacteria-host interaction. Bacterial surface exposed proteins play an important role in the bacteria- host interaction. Numerous surface proteins are glycosylated, and the glycosylation is crucial for their function in mediating the bacterial interaction with hosts. Here we present an overview of surface glycoproteins from bacteria that inhabit three major mucosal environments across human body: oral, gut and skin. We describe the important enzymes involved in the process of protein glycosylation, and discuss how the process impacts the bacteria-host interaction. Emerging molecular details underlying glycosylation of bacterial surface proteins may lead to new opportunities for designing anti-infective small molecules, and developing novel vaccines in order to treat or prevent bacterial infection.
Collapse
Affiliation(s)
- Fan Zhu
- Departments of Microbiology and Pediatric Dentistry, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hui Wu
- Departments of Microbiology and Pediatric Dentistry, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
23
|
Unconventional N-Linked Glycosylation Promotes Trimeric Autotransporter Function in Kingella kingae and Aggregatibacter aphrophilus. mBio 2015; 6:mBio.01206-15. [PMID: 26307167 PMCID: PMC4550697 DOI: 10.1128/mbio.01206-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Glycosylation is a widespread mechanism employed by both eukaryotes and bacteria to increase the functional diversity of their proteomes. The nontypeable Haemophilus influenzae glycosyltransferase HMW1C mediates unconventional N-linked glycosylation of the adhesive protein HMW1, which is encoded in a two-partner secretion system gene cluster that also encodes HMW1C. In this system, HMW1 is modified in the cytoplasm by sequential transfer of hexose residues. In the present study, we examined Kingella kingae and Aggregatibacter aphrophilus homologues of HMW1C that are not encoded near a gene encoding an obvious acceptor protein. We found both homologues to be functional glycosyltransferases and identified their substrates as the K. kingae Knh and the A. aphrophilus EmaA trimeric autotransporter proteins. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed multiple sites of N-linked glycosylation on Knh and EmaA. Without glycosylation, Knh and EmaA failed to facilitate wild-type levels of bacterial autoaggregation or adherence to human epithelial cells, establishing that glycosylation is essential for proper protein function. IMPORTANCE This work emphasizes the importance of glycosylation for proper function of bacterial proteins. Here we show that the Kingella kingae Knh and the Aggregatibacter aphrophilus EmaA trimeric autotransporter proteins are N-glycosylated by novel homologues of the Haemophilus influenzae HMW1C glycosyltransferase, highlighting the first examples of trimeric autotransporters that are modified by HMW1C-like enzymes. In the absence of glycosylation, Knh and EmaA lack adhesive activity. This work has relevance to our understanding of bacterial pathogenicity and expression of potential vaccine antigens.
Collapse
|
24
|
Harding CM, Nasr MA, Kinsella RL, Scott NE, Foster LJ, Weber BS, Fiester SE, Actis LA, Tracy EN, Munson RS, Feldman MF. Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin, and the other one dedicated to O-glycosylation of multiple proteins. Mol Microbiol 2015; 96:1023-41. [PMID: 25727908 DOI: 10.1111/mmi.12986] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2015] [Indexed: 12/18/2022]
Abstract
Multiple species within the Acinetobacter genus are nosocomial opportunistic pathogens of increasing relevance worldwide. Among the virulence factors utilized by these bacteria are the type IV pili and a protein O-glycosylation system. Glycosylation is mediated by O-oligosaccharyltransferases (O-OTases), enzymes that transfer the glycan from a lipid carrier to target proteins. O-oligosaccharyltransferases are difficult to identify due to similarities with the WaaL ligases that catalyze the last step in lipopolysaccharide synthesis. A bioinformatics analysis revealed the presence of two genes encoding putative O-OTases or WaaL ligases in most of the strains within the genus Acinetobacter. Employing A. nosocomialis M2 and A. baylyi ADP1 as model systems, we show that these genes encode two O-OTases, one devoted uniquely to type IV pilin, and the other one responsible for glycosylation of multiple proteins. With the exception of ADP1, the pilin-specific OTases in Acinetobacter resemble the TfpO/PilO O-OTase from Pseudomonas aeruginosa. In ADP1 instead, the two O-OTases are closely related to PglL, the general O-OTase first discovered in Neisseria. However, one of them is exclusively dedicated to the glycosylation of the pilin-like protein ComP. Our data reveal an intricate and remarkable evolutionary pathway for bacterial O-OTases and provide novel tools for glycoengineering.
Collapse
Affiliation(s)
- Christian M Harding
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.,Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Mohamed A Nasr
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Rachel L Kinsella
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Nichollas E Scott
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Brent S Weber
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Steve E Fiester
- Department of Microbiology, Miami University, Oxford, OH, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, OH, USA
| | - Erin N Tracy
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Robert S Munson
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mario F Feldman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| |
Collapse
|
25
|
The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol Mol Biol Rev 2015; 78:372-417. [PMID: 25184559 DOI: 10.1128/mmbr.00007-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed.
Collapse
|
26
|
Abstract
Oral colonising bacteria are highly adapted to the various environmental niches harboured within the mouth, whether that means while contributing to one of the major oral diseases of caries, pulp infections, or gingival/periodontal disease or as part of a commensal lifestyle. Key to these infections is the ability to adhere to surfaces via a range of specialised adhesins targeted at both salivary and epithelial proteins, their glycans and to form biofilm. They must also resist the various physical stressors they are subjected to, including pH and oxidative stress. Possibly most strikingly, they have developed the ability to harvest both nutrient sources provided by the diet and those derived from the host, such as protein and surface glycans. We have attempted to review recent developments that have revealed much about the molecular mechanisms at work in shaping the physiology of oral bacteria and how we might use this information to design and implement new treatment strategies.
Collapse
|
27
|
Protective effects of human lactoferrin during Aggregatibacter actinomycetemcomitans-induced bacteremia in lactoferrin-deficient mice. Antimicrob Agents Chemother 2013; 58:397-404. [PMID: 24189260 DOI: 10.1128/aac.00020-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans, a periodontopathogen, has been associated with several systemic diseases. Herein, we report the protective effect of human lactoferrin (hLF) during A. actinomycetemcomitans bacteremia in lactoferrin knockout (LFKO(-/-)) mice. The prophylactic, concurrent, and therapeutic intravenous (i.v.) administrations of hLF significantly cleared the bacteria from blood and organs. Nevertheless, all modes of hLF administration significantly decreased the concentrations of serum proinflammatory cytokines, such as interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, and IL-12p70. Additionally, hLF administration significantly decreased hepatic and splenic proinflammatory cytokine expression levels compared to those in the non-hLF-treated group. Furthermore, administration of hLF decreased the serum C-reactive protein level, inducible nitric oxide synthase (iNOS) and myeloperoxidase (MPO) gene expression levels in liver and spleen. hLF treatment has also resulted in a 6-fold decrease in spleen weight with the migration of typical inflammatory cells in infected mice as a result of decreased inflammatory response. These results reveal that hLF protects against A. actinomycetemcomitans bacteremia, as indicated by rapid bacterial clearance and decreased host proinflammatory mediators.
Collapse
|
28
|
Haemophilus parainfluenzae expresses diverse lipopolysaccharide O-antigens using ABC transporter and Wzy polymerase-dependent mechanisms. Int J Med Microbiol 2013; 303:603-17. [PMID: 24035104 PMCID: PMC3989065 DOI: 10.1016/j.ijmm.2013.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/09/2013] [Accepted: 08/18/2013] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide O-antigens are the basis of serotyping schemes for Gram negative bacteria and help to determine the nature of host–bacterial interactions. Haemophilus parainfluenzae is a normal commensal of humans but is also an occasional pathogen. The prevalence, diversity and biosynthesis of O-antigens were investigated in this species for the first time. 18/18 commensal H. parainfluenzae isolates contain a O-antigen biosynthesis gene cluster flanked by glnA and pepB, the same position as the hmg locus for tetrasaccharide biosynthesis in Haemophilus influenzae. The O-antigen loci show diverse restriction digest patterns but fall into two main groups: (1) those encoding enzymes for the synthesis and transfer of FucNAc4N in addition to the Wzy-dependent mechanism of O-antigen synthesis and transport and (2) those encoding galactofuranose synthesis/transfer enzymes and an ABC transporter. The other glycosyltransferase genes differ between isolates. Three H. parainfluenzae isolates fell outside these groups and are predicted to synthesise O-antigens containing ribitol phosphate or deoxytalose. Isolates using the ABC transporter system encode a putative O-antigen ligase, required for the synthesis of O-antigen-containing LPS glycoforms, at a separate genomic location. The presence of an O-antigen contributes significantly to H. parainfluenzae resistance to the killing effect of human serum in vitro. The discovery of O-antigens in H. parainfluenzae is striking, as its close relative H. influenzae lacks this cell surface component.
Collapse
|
29
|
Iwashkiw JA, Vozza NF, Kinsella RL, Feldman MF. Pour some sugar on it: the expanding world of bacterial proteinO-linked glycosylation. Mol Microbiol 2013; 89:14-28. [DOI: 10.1111/mmi.12265] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Jeremy A. Iwashkiw
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Nicolas F. Vozza
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Rachel L. Kinsella
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Mario F. Feldman
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| |
Collapse
|
30
|
O-polysaccharide glycosylation is required for stability and function of the collagen adhesin EmaA of Aggregatibacter actinomycetemcomitans. Infect Immun 2012; 80:2868-77. [PMID: 22689812 DOI: 10.1128/iai.00372-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is hypothesized to colonize through the interaction with collagen and establish a reservoir for further dissemination. The trimeric adhesin EmaA of A. actinomycetemcomitans binds to collagen and is modified with sugars mediated by an O-antigen polysaccharide ligase (WaaL) that is associated with lipopolysaccharide (LPS) biosynthesis (G. Tang and K. Mintz, J. Bacteriol. 192:1395-1404, 2010). This investigation characterized the function and cellular localization of EmaA glycosylation. The interruption of LPS biogenesis by using genetic and pharmacological methods changed the amount and biophysical properties of EmaA molecules in the outer membrane. In rmlC and waaL mutant strains, the membrane-associated EmaA was reduced by 50% compared with the wild-type strain, without changes in mRNA levels. The membrane-associated EmaA protein levels were recovered by complementation with the corresponding O-polysaccharide (O-PS) biosynthetic genes. In contrast, another trimeric autotransporter, epithelial adhesin ApiA, was not affected in the same mutant background. The inhibition of undecaprenyl pyrophosphate recycling by bacitracin resulted in a similar decrease in the membrane-associated EmaA protein. This effect was reversed by removal of the compound. A significant decrease in collagen binding activity was observed in strains expressing the nonglycosylated form of EmaA. Furthermore, the electrophoretic mobility shifts of the EmaA monomers found in the O-PS mutant strains were associated only with the membrane-associated protein and not with the cytoplasmic pre-EmaA protein, suggesting that this modification does not occur in the cytoplasm. The glycan modification of EmaA appears to be required for collagen binding activity and protection of the protein against degradation by proteolytic enzymes.
Collapse
|
31
|
Charbonneau MÈ, Côté JP, Haurat MF, Reiz B, Crépin S, Berthiaume F, Dozois CM, Feldman MF, Mourez M. A structural motif is the recognition site for a new family of bacterial protein O-glycosyltransferases. Mol Microbiol 2012; 83:894-907. [DOI: 10.1111/j.1365-2958.2012.07973.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Otzen D. N for AsN - O for strOcture? A strand-loop-strand motif for prokaryotic O-glycosylation. Mol Microbiol 2012; 83:879-83. [PMID: 22221153 DOI: 10.1111/j.1365-2958.2012.07972.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
So far, it has not been possible to identify a general sequence motif for O-glycosylation in bacteria. In this issue, Charbonneau et al. (2012) demonstrate why O-glycosylation is mediated by a 13-residue strand-loop-strand motif which is part of a 19-residue imperfect repeat in the passenger domain of bacterial autotransporters. This motif provides a convenient 'glycosylation cassette' and raises intriguing questions about the structural regulation of the glycosylation pathway.
Collapse
Affiliation(s)
- Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Center for insoluble Protein Structures, Department of Molecular Biology and Genetics, University of Aarhus, Gustav Wieds Vej 10C, Aarhus C, Denmark.
| |
Collapse
|
33
|
Tang G, Kawai T, Komatsuzawa H, Mintz KP. Lipopolysaccharides mediate leukotoxin secretion in Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2011; 27:70-82. [PMID: 22394466 DOI: 10.1111/j.2041-1014.2011.00632.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We previously reported that lipopolysaccharide (LPS) -related sugars are associated with the glycosylation of the collagen adhesin EmaA, a virulence determinant of Aggregatibacter actinomycetemcomitans. In this study, the role of LPS in the secretion of other virulence factors was investigated. The secretion of the epithelial adhesin Aae, the immunoglobulin Fc receptor Omp34 and leukotoxin were examined in a mutant strain with inactivated TDP-4-keto-6-deoxy-d-glucose 3,5-epimerase (rmlC), which resulted in altered O-antigen polysaccharides (O-PS) of LPS. The secretion of Aae and Omp34 was not affected. However, the leukotoxin secretion, which is mediated by the TolC-dependent type I secretion system, was altered in the rmlC mutant. The amount of secreted leukotoxin in the bacterial growth medium was reduced nine-fold, with a concurrent four-fold increase of the membrane-bound toxin in the mutant compared with the wild-type strain. The altered leukotoxin secretion pattern was restored to the wild-type by complementation of the rmlC gene in trans. Examination of the ltxA mRNA levels indicated that the leukotoxin secretion was post-transcriptionally regulated in the modified O-PS containing strain. The mutant strain also showed increased resistance to vancomycin, an antibiotic dependent on TolC for internalization, indicating that TolC was affected. Overexpression of TolC in the rmlC mutant resulted in an increased TolC level in the outer membrane but did not restore the leukotoxin secretion profile to the wild-type phenotype. The data suggest that O-PS mediate leukotoxin secretion in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- G Tang
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
34
|
The extended signal peptide of the trimeric autotransporter EmaA of Aggregatibacter actinomycetemcomitans modulates secretion. J Bacteriol 2011; 193:6983-94. [PMID: 22001514 DOI: 10.1128/jb.05813-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular matrix protein adhesin A (EmaA) of the Gram-negative bacterium Aggregatibacter actinomycetemcomitans is a fibrillar collagen adhesin belonging to the family of trimeric autotransporters. The protein forms antenna-like structures on the bacterial surface required for collagen adhesion. The 202-kDa protein monomers are proposed to be targeted and translocated across the inner membrane by a long signal peptide composed of 56 amino acids. The predicted signal peptide was functionally active in Escherichia coli and A. actinomycetemcomitans using truncated PhoA and Aae chimeric proteins, respectively. Mutations in the signal peptide were generated and characterized for PhoA activity in E. coli. A. actinomycetemcomitans strains expressing EmaA with the identical mutant signal peptides were assessed for cellular localization, surface expression, and collagen binding activity. All of the mutants impaired some aspect of EmaA structure or function. A signal peptide mutant that promoted alkaline phosphatase secretion did not allow any cell surface presentation of EmaA. A second mutant allowed for cell surface exposure but abolished protein function. A third mutant allowed for the normal localization and function of EmaA at 37°C but impaired localization at elevated temperatures. Likewise, replacement of the long EmaA signal peptide with a typical signal peptide also impaired localization above 37°C. The data suggest that the residues of the EmaA signal peptide are required for protein folding or assembly of this collagen adhesin.
Collapse
|
35
|
Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res 2011; 90:1271-8. [PMID: 21335541 DOI: 10.1177/0022034511399096] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies on the adherence properties of oral bacteria have been a major focus in microbiology research for several decades. The ability of bacteria to adhere to the variety of surfaces present in the oral cavity, and to become integrated within the resident microbial communities, confers growth and survival properties. Molecular analyses have revealed several families of Gram-positive bacterial surface proteins, including serine-rich repeat, antigen I/II, and pilus families, that mediate adherence to a variety of salivary and oral bacterial receptors. In Gram-negative bacteria, pili, auto-transporters, and extracellular matrix-binding proteins provide components for host tissue recognition and building of complex microbial communities. Future studies will reveal in greater detail the binding pockets for these adhesin families and their receptors. This information will be crucial for the development of new inhibitors or vaccines that target the functional regions of bacterial proteins that are involved in colonization and pathogenesis.
Collapse
Affiliation(s)
- A H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | | | |
Collapse
|
36
|
Abstract
Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles.
Collapse
|
37
|
Hitchen PG, Twigger K, Valiente E, Langdon RH, Wren BW, Dell A. Glycoproteomics: a powerful tool for characterizing the diverse glycoforms of bacterial pilins and flagellins. Biochem Soc Trans 2010; 38:1307-13. [PMID: 20863304 DOI: 10.1042/bst0381307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
With glycosylation now firmly established across both Archaeal and bacterial proteins, a wide array of glycan diversity has become evident from structural analysis and genomic data. These discoveries have been built in part on the development and application of mass spectrometric technologies to the bacterial glycoproteome. This review highlights recent findings using high sensitivity MS of the large variation of glycans that have been reported on flagellin and pilin proteins of bacteria, using both 'top down' and 'bottom up' approaches to the characterization of these glycoproteins. We summarize current knowledge of the sugar modifications that have been observed on flagellins and pilins, in terms of both the diverse repertoire of monosaccharides observed, and the assemblage of moieties that decorate many of these sugars.
Collapse
Affiliation(s)
- Paul G Hitchen
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
38
|
Hug I, Feldman MF. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. Glycobiology 2010; 21:138-51. [PMID: 20871101 DOI: 10.1093/glycob/cwq148] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bacteria generate and attach countless glycan structures to diverse macromolecules. Despite this diversity, the mechanisms of glycoconjugate biosynthesis are often surprisingly similar. The focus of this review is on the commonalities between lipopolysaccharide (LPS) and glycoprotein assembly pathways and their evolutionary relationship. Three steps that are essential for both pathways are completed by membrane proteins. These include the initiation of glycan assembly through the attachment of a first sugar residue onto the lipid carrier undecaprenyl pyrophosphate, the translocation across the plasma membrane and the final transfer onto proteins or lipid A-core. Two families of initiating enzymes have been described: the polyprenyl-P N-acetylhexosamine-1-P transferases and the polyprenyl-P hexosamine-1-P transferases, represented by Escherichia coli WecA and Salmonella enterica WbaP, respectively. Translocases are either Wzx-like flippases or adenosine triphosphate (ATP)-binding cassette transporters (ABC transporters). The latter can consist either of two polypeptides, Wzt and Wzm, or of a single polypeptide homolog to the Campylobacter jejuni PglK. Finally, there are two families of conjugating enzymes, the N-oligosaccharyltransferases (N-OTase), best represented by C. jejuni PglB, and the O-OTases, including Neisseria meningitidis PglL and the O antigen ligases involved in LPS biosynthesis. With the exception of the N-OTases, probably restricted to glycoprotein synthesis, members of all these transmembrane protein families can be involved in the synthesis of both glycoproteins and LPS. Because many translocation and conjugation enzymes display relaxed substrate specificity, these bacterial enzymes could be exploited in engineered living bacteria for customized glycoconjugate production, generating potential vaccines and therapeutics.
Collapse
Affiliation(s)
- Isabelle Hug
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|