1
|
Liu Y, Zhu S, Wei L, Feng Y, Cai L, Dunn S, McNally A, Zong Z. Arm race among closely-related carbapenem-resistant Klebsiella pneumoniae clones. ISME COMMUNICATIONS 2022; 2:76. [PMID: 37938732 PMCID: PMC9723571 DOI: 10.1038/s43705-022-00163-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2023]
Abstract
Multiple carbapenem-resistant Klebsiella pneumoniae (CRKP) clones typically co-exist in hospital wards, but often certain clones will dominate. The factors driving this dominance are largely unclear. This study began from a genomic epidemiology analysis and followed by multiple approaches to identify the potential mechanisms driving the successful spread of a dominant clone. 638 patients in a 50-bed ICU were screened. 171 (26.8%) and 21 had CRKP from swabs and clinical specimens, respectively. Many (39.8% of those with ≥7-day ICU stay) acquired CRKP. After removing 18 unable to recover, 174 CRKP isolates were genome sequenced and belonged to six sequence types, with ST11 being the most prevalent (n = 154, 88.5%) and most (n = 169, 97.1%) carrying blaKPC-2. The 154 ST11 isolates belonged to 7 clones, with one (clone 1, KL64 capsular type) being dominant (n = 130, 84.4%). Clone 1 and the second-most common clone (clone 2, KL64, n = 15, 9.7%) emerged simultaneously, which was also detected by genome-based dating. Clone 1 exhibited decreased biofilm formation, shorter environment survival, and attenuated virulence. In murine gut, clone 1 outcompeted clone 2. Transcriptomic analysis showed significant upregulation of the ethanolamine operon in clone 1 when competing with clone 2. Clone 1 exhibited increased utilization of ethanolamine as a nitrogen source. This highlights that reduced virulence and enhanced ability to utilize ethanolamine may promote the success of nosocomial multidrug-resistant clones.
Collapse
Affiliation(s)
- Ying Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Shichao Zhu
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Cai
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Steven Dunn
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Fernández-Fernández R, Hernández SB, Puerta-Fernández E, Sánchez-Romero MA, Urdaneta V, Casadesús J. Evidence for Involvement of the Salmonella enterica Z-Ring Assembly Factors ZapA and ZapB in Resistance to Bile. Front Microbiol 2021; 12:647305. [PMID: 33717045 PMCID: PMC7947894 DOI: 10.3389/fmicb.2021.647305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Genes annotated as ygfE and yiiU in the genome of Salmonella enterica serovar Typhimurium encode proteins homologous to Escherichia coli cell division factors ZapA and ZapB, respectively. ZapA- and ZapB- mutants of S. enterica are bile-sensitive. The amount of zapB mRNA increases in the presence of a sublethal concentration of sodium deoxycholate (DOC) while zapA mRNA remains unaffected. Increased zapB mRNA level in the presence of DOC is not caused by upregulation of zapB transcription but by increased stability of zapB mRNA. This increase is suppressed by an hfq mutation, suggesting the involvement of a small regulatory RNA. We provide evidence that such sRNA is MicA. The ZapB protein is degraded in the presence of DOC, and degradation appears to involve the Lon protease. We propose that increased stability of zapB mRNA in the presence of DOC may counter degradation of bile-damaged ZapB, thereby providing sufficient level of functional ZapB protein to permit Z-ring assembly in the presence of bile.
Collapse
Affiliation(s)
| | - Sara B Hernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | - Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
3
|
Allen MD, Christie M, Jones P, Porebski BT, Roome B, Freund SMV, Buckle AM, Bycroft M, Christ D. Solution structure of a soluble fragment derived from a membrane protein by shotgun proteolysis. Protein Eng Des Sel 2015; 28:445-50. [PMID: 25877662 PMCID: PMC4661788 DOI: 10.1093/protein/gzv021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 11/14/2022] Open
Abstract
We have previously reported a phage display method for the identification of protein domains on a genome-wide scale (shotgun proteolysis). Here we present the solution structure of a fragment of the Escherichia coli membrane protein yrfF, as identified by shotgun proteolysis, and determined by NMR spectroscopy. Despite the absence of computational predictions, the fragment formed a well-defined beta-barrel structure, distantly falling within the OB-fold classification. Our results highlight the potential of high-throughput experimental approaches for the identification of protein domains for structural studies.
Collapse
Affiliation(s)
- Mark D Allen
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Mary Christie
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia Faculty of Medicine, St Vincent's Clinical School, The University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Peter Jones
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Benjamin T Porebski
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Brendan Roome
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia Faculty of Medicine, St Vincent's Clinical School, The University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Mark Bycroft
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Daniel Christ
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia Faculty of Medicine, St Vincent's Clinical School, The University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
4
|
Miskinyte M, Sousa A, Ramiro RS, de Sousa JAM, Kotlinowski J, Caramalho I, Magalhães S, Soares MP, Gordo I. The genetic basis of Escherichia coli pathoadaptation to macrophages. PLoS Pathog 2013; 9:e1003802. [PMID: 24348252 PMCID: PMC3861542 DOI: 10.1371/journal.ppat.1003802] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/14/2013] [Indexed: 12/25/2022] Open
Abstract
Antagonistic interactions are likely important driving forces of the evolutionary process underlying bacterial genome complexity and diversity. We hypothesized that the ability of evolved bacteria to escape specific components of host innate immunity, such as phagocytosis and killing by macrophages (MΦ), is a critical trait relevant in the acquisition of bacterial virulence. Here, we used a combination of experimental evolution, phenotypic characterization, genome sequencing and mathematical modeling to address how fast, and through how many adaptive steps, a commensal Escherichia coli (E. coli) acquire this virulence trait. We show that when maintained in vitro under the selective pressure of host MΦ commensal E. coli can evolve, in less than 500 generations, virulent clones that escape phagocytosis and MΦ killing in vitro, while increasing their pathogenicity in vivo, as assessed in mice. This pathoadaptive process is driven by a mechanism involving the insertion of a single transposable element into the promoter region of the E. coli yrfF gene. Moreover, transposition of the IS186 element into the promoter of Lon gene, encoding an ATP-dependent serine protease, is likely to accelerate this pathoadaptive process. Competition between clones carrying distinct beneficial mutations dominates the dynamics of the pathoadaptive process, as suggested from a mathematical model, which reproduces the observed experimental dynamics of E. coli evolution towards virulence. In conclusion, we reveal a molecular mechanism explaining how a specific component of host innate immunity can modulate microbial evolution towards pathogenicity.
Collapse
Affiliation(s)
| | - Ana Sousa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | - Iris Caramalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sara Magalhães
- Centro Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | | | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
5
|
Das C, Dutta A, Rajasingh H, Mande SS. Understanding the sequential activation of Type III and Type VI Secretion Systems in Salmonella typhimurium using Boolean modeling. Gut Pathog 2013; 5:28. [PMID: 24079299 PMCID: PMC3849742 DOI: 10.1186/1757-4749-5-28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/14/2013] [Indexed: 01/13/2023] Open
Abstract
Background Three pathogenicity islands, viz. SPI-1 (Salmonella pathogenicity island 1), SPI-2 (Salmonella pathogenicity island 2) and T6SS (Type VI Secretion System), present in the genome of Salmonella typhimurium have been implicated in the virulence of the pathogen. While the regulation of SPI-1 and SPI-2 (both encoding components of the Type III Secretion System - T3SS) are well understood, T6SS regulation is comparatively less studied. Interestingly, inter-connections among the regulatory elements of these three virulence determinants have also been suggested to be essential for successful infection. However, till date, an integrated view of gene regulation involving the regulators of these three secretion systems and their cross-talk is not available. Results In the current study, relevant regulatory information available from literature have been integrated into a single Boolean network, which portrays the dynamics of T3SS (SPI-1 and SPI-2) and T6SS mediated virulence. Some additional regulatory interactions involving a two-component system response regulator YfhA have also been predicted and included in the Boolean network. These predictions are aimed at deciphering the effects of osmolarity on T6SS regulation, an aspect that has been suggested in earlier studies, but the mechanism of which was hitherto unknown. Simulation of the regulatory network was able to recreate in silico the experimentally observed sequential activation of SPI-1, SPI-2 and T6SS. Conclusions The present study integrates relevant gene regulatory data (from literature and our prediction) into a single network, representing the cross-communication between T3SS (SPI-1 and SPI-2) and T6SS. This holistic view of regulatory interactions is expected to improve the current understanding of pathogenesis of S. typhimurium.
Collapse
Affiliation(s)
- Chandrani Das
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., 54-B, Hadapsar Industrial Estate, Pune 411013, Maharashtra, India
| | - Anirban Dutta
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., 54-B, Hadapsar Industrial Estate, Pune 411013, Maharashtra, India
| | - Hannah Rajasingh
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., 54-B, Hadapsar Industrial Estate, Pune 411013, Maharashtra, India.,Present address: Novartis Healthcare Pvt. Ltd., #6 Raheja Mindspace, Hitec-city, Hyderabad 500081, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., 54-B, Hadapsar Industrial Estate, Pune 411013, Maharashtra, India
| |
Collapse
|
6
|
Abstract
The disA gene encodes a putative amino acid decarboxylase that inhibits swarming in Proteus mirabilis. 5' rapid amplification of cDNA ends (RACE) and deletion analysis were used to identify the disA promoter. The use of a disA-lacZ fusion indicated that FlhD(4)C(2), the class I flagellar master regulator, did not have a role in disA regulation. The putative product of DisA, phenethylamine, was able to inhibit disA expression, indicating that a negative regulatory feedback loop was present. Transposon mutagenesis was used to identify regulators of disA and revealed that umoB (igaA) was a negative regulator of disA. Our data demonstrate that the regulation of disA by UmoB is mediated through the Rcs phosphorelay.
Collapse
|
7
|
Canals R, Xia XQ, Fronick C, Clifton SW, Ahmer BMM, Andrews-Polymenis HL, Porwollik S, McClelland M. High-throughput comparison of gene fitness among related bacteria. BMC Genomics 2012; 13:212. [PMID: 22646920 PMCID: PMC3487940 DOI: 10.1186/1471-2164-13-212] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
Background The contribution of a gene to the fitness of a bacterium can be assayed by whether and to what degree the bacterium tolerates transposon insertions in that gene. We use this fact to compare the fitness of syntenic homologous genes among related Salmonella strains and thereby reveal differences not apparent at the gene sequence level. Results A transposon Tn5 derivative was used to construct mutants in Salmonella Typhimurium ATCC14028 (STM1) and Salmonella Typhi Ty2 (STY1), which were then grown in rich media. The locations of 234,152 and 53,556 integration sites, respectively, were mapped by sequencing. These data were compared to similar data available for a different Ty2 isolate (STY2) and essential genes identified in E. coli K-12 (ECO). Of 277 genes considered essential in ECO, all had syntenic homologs in STM1, STY1, and STY2, and all but nine genes were either devoid of transposon insertions or had very few. For three of these nine genes, part of the annotated gene lacked transposon integrations (yejM, ftsN and murB). At least one of the other six genes, trpS, had a potentially functionally redundant gene encoded elsewhere in Salmonella but not in ECO. An additional 165 genes were almost entirely devoid of transposon integrations in all three Salmonella strains examined, including many genes associated with protein and DNA synthesis. Four of these genes (STM14_1498, STM14_2872, STM14_3360, and STM14_5442) are not found in E. coli. Notable differences in the extent of gene selection were also observed among the three different Salmonella isolates. Mutations in hns, for example, were selected against in STM1 but not in the two STY strains, which have a defect in rpoS rendering hns nonessential. Conclusions Comparisons among transposon integration profiles from different members of a species and among related species, all grown in similar conditions, identify differences in gene contributions to fitness among syntenic homologs. Further differences in fitness profiles among shared genes can be expected in other selective environments, with potential relevance for comparative systems biology.
Collapse
|
8
|
Role of the Umo proteins and the Rcs phosphorelay in the swarming motility of the wild type and an O-antigen (waaL) mutant of Proteus mirabilis. J Bacteriol 2011; 194:669-76. [PMID: 22139504 DOI: 10.1128/jb.06047-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis is a Gram-negative bacterium that exists as a short rod when grown in liquid medium, but during growth on surfaces it undergoes a distinct physical and biochemical change that culminates in the formation of a swarmer cell. How P. mirabilis senses a surface is not fully understood; however, the inhibition of flagellar rotation and accumulation of putrescine have been proposed to be sensory mechanisms. Our lab recently isolated a transposon insertion in waaL, encoding O-antigen ligase, that resulted in a loss of swarming but not swimming motility. The waaL mutant failed to activate flhDC, the class 1 activator of the flagellar gene cascade, when grown on solid surfaces. Swarming in the waaL mutant was restored by overexpression of flhDC in trans or by a mutation in the response regulator rcsB. To further investigate the role of the Rcs signal transduction pathway and its possible relationship with O-antigen surface sensing, mutations were made in the rcsC, rcsB, rcsF, umoB (igaA), and umoD genes in wild-type and waaL backgrounds. Comparison of the swarming phenotypes of the single and double mutants and of strains overexpressing combinations of the UmoB, UmoD, and RcsF proteins demonstrated the following: (i) there is a differential effect of RcsF and UmoB on swarming in wild-type and waaL backgrounds, (ii) RcsF inhibits UmoB activity but not UmoD activity in a wild-type background, and (iii) UmoD is able to modulate activity of the Rcs system.
Collapse
|