1
|
Xie O, Davies MR, Tong SYC. Streptococcus dysgalactiae subsp. equisimilis infection and its intersection with Streptococcus pyogenes. Clin Microbiol Rev 2024; 37:e0017523. [PMID: 38856686 PMCID: PMC11392527 DOI: 10.1128/cmr.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYStreptococcus dysgalactiae subsp. equisimilis (SDSE) is an increasingly recognized cause of disease in humans. Disease manifestations range from non-invasive superficial skin and soft tissue infections to life-threatening streptococcal toxic shock syndrome and necrotizing fasciitis. Invasive disease is usually associated with co-morbidities, immunosuppression, and advancing age. The crude incidence of invasive disease approaches that of the closely related pathogen, Streptococcus pyogenes. Genomic epidemiology using whole-genome sequencing has revealed important insights into global SDSE population dynamics including emerging lineages and spread of anti-microbial resistance. It has also complemented observations of overlapping pathobiology between SDSE and S. pyogenes, including shared virulence factors and mobile gene content, potentially underlying shared pathogen phenotypes. This review provides an overview of the clinical and genomic epidemiology, disease manifestations, treatment, and virulence determinants of human infections with SDSE with a particular focus on its overlap with S. pyogenes. In doing so, we highlight the importance of understanding the overlap of SDSE and S. pyogenes to inform surveillance and disease control strategies.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
2
|
Lamichhane J, Choi BI, Stegman N, Fontes Noronha M, Wolfe AJ. Macrolide Resistance in the Aerococcus urinae Complex: Implications for Integrative and Conjugative Elements. Antibiotics (Basel) 2024; 13:433. [PMID: 38786161 PMCID: PMC11117264 DOI: 10.3390/antibiotics13050433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The recognition of the Aerococcus urinae complex (AUC) as an emerging uropathogen has led to growing concerns due to a limited understanding of its disease spectrum and antibiotic resistance profiles. Here, we investigated the prevalence of macrolide resistance within urinary AUC isolates, shedding light on potential genetic mechanisms. Phenotypic testing revealed a high rate of macrolide resistance: 45%, among a total of 189 urinary AUC isolates. Genomic analysis identified integrative and conjugative elements (ICEs) as carriers of the macrolide resistance gene ermA, suggesting horizontal gene transfer as a mechanism of resistance. Furthermore, comparison with publicly available genomes of related pathogens revealed high ICE sequence homogeneity, highlighting the potential for cross-species dissemination of resistance determinants. Understanding mechanisms of resistance is crucial for developing effective surveillance strategies and improving antibiotic use. Furthermore, the findings underscore the importance of considering the broader ecological context of resistance dissemination, emphasizing the need for community-level surveillance to combat the spread of antibiotic resistance within the urinary microbiome.
Collapse
Affiliation(s)
- Jyoti Lamichhane
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA (M.F.N.)
| | - Brian I. Choi
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA (M.F.N.)
| | - Natalie Stegman
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Melline Fontes Noronha
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA (M.F.N.)
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA (M.F.N.)
| |
Collapse
|
3
|
Xie O, Morris JM, Hayes AJ, Towers RJ, Jespersen MG, Lees JA, Ben Zakour NL, Berking O, Baines SL, Carter GP, Tonkin-Hill G, Schrieber L, McIntyre L, Lacey JA, James TB, Sriprakash KS, Beatson SA, Hasegawa T, Giffard P, Steer AC, Batzloff MR, Beall BW, Pinho MD, Ramirez M, Bessen DE, Dougan G, Bentley SD, Walker MJ, Currie BJ, Tong SYC, McMillan DJ, Davies MR. Inter-species gene flow drives ongoing evolution of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis. Nat Commun 2024; 15:2286. [PMID: 38480728 PMCID: PMC10937727 DOI: 10.1038/s41467-024-46530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging cause of human infection with invasive disease incidence and clinical manifestations comparable to the closely related species, Streptococcus pyogenes. Through systematic genomic analyses of 501 disseminated SDSE strains, we demonstrate extensive overlap between the genomes of SDSE and S. pyogenes. More than 75% of core genes are shared between the two species with one third demonstrating evidence of cross-species recombination. Twenty-five percent of mobile genetic element (MGE) clusters and 16 of 55 SDSE MGE insertion regions were shared across species. Assessing potential cross-protection from leading S. pyogenes vaccine candidates on SDSE, 12/34 preclinical vaccine antigen genes were shown to be present in >99% of isolates of both species. Relevant to possible vaccine evasion, six vaccine candidate genes demonstrated evidence of inter-species recombination. These findings demonstrate previously unappreciated levels of genomic overlap between these closely related pathogens with implications for streptococcal pathobiology, disease surveillance and prevention.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Jacqueline M Morris
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Rebecca J Towers
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - John A Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton, Cambridgeshire, UK
| | - Nouri L Ben Zakour
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Olga Berking
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Sarah L Baines
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Glen P Carter
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Layla Schrieber
- Faculty of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jake A Lacey
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Taylah B James
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kadaba S Sriprakash
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Science & Technology, University of New England, Armidale, Australia
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Phil Giffard
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Andrew C Steer
- Tropical Diseases, Murdoch Children's Research Institute, Parkville, Australia
| | - Michael R Batzloff
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Bernard W Beall
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marcos D Pinho
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mario Ramirez
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Debra E Bessen
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Gordon Dougan
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David J McMillan
- School of Science, Technology and Engineering, and Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
4
|
Ott LC, Mellata M. Models for Gut-Mediated Horizontal Gene Transfer by Bacterial Plasmid Conjugation. Front Microbiol 2022; 13:891548. [PMID: 35847067 PMCID: PMC9280185 DOI: 10.3389/fmicb.2022.891548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of new antimicrobial resistant and virulent bacterial strains may pose a threat to human and animal health. Bacterial plasmid conjugation is a significant contributor to rapid microbial evolutions that results in the emergence and spread of antimicrobial resistance (AR). The gut of animals is believed to be a potent reservoir for the spread of AR and virulence genes through the horizontal exchange of mobile genetic elements such as plasmids. The study of the plasmid transfer process in the complex gut environment is limited due to the confounding factors that affect colonization, persistence, and plasmid conjugation. Furthermore, study of plasmid transfer in the gut of humans is limited to observational studies, leading to the need to identify alternate models that provide insight into the factors regulating conjugation in the gut. This review discusses key studies on the current models for in silico, in vitro, and in vivo modeling of bacterial conjugation, and their ability to reflect the gut of animals. We particularly emphasize the use of computational and in vitro models that may approximate aspects of the gut, as well as animal models that represent in vivo conditions to a greater extent. Directions on future research studies in the field are provided.
Collapse
Affiliation(s)
- Logan C. Ott
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Chen L, Huang J, Huang X, He Y, Sun J, Dai X, Wang X, Shafiq M, Wang L. Horizontal Transfer of Different erm(B)-Carrying Mobile Elements Among Streptococcus suis Strains With Different Serotypes. Front Microbiol 2021; 12:628740. [PMID: 33841355 PMCID: PMC8032901 DOI: 10.3389/fmicb.2021.628740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
Macrolide-resistant Streptococcus suis is highly prevalent worldwide. The acquisition of the erm(B) gene mediated by mobile genetic elements (MGEs) in particular integrative and conjugative elements (ICEs) is recognized as the main reason for the rapid spread of macrolide-resistant streptococcal strains. However, knowledge about different erm(B)-carrying elements responsible for the widespread of macrolide resistance and their transferability in S. suis remains poorly understood. In the present study, two erm(B)- and tet(O)-harboring putative ICEs, designated as ICESsuYSB17_rplL and ICESsuYSJ15_rplL, and a novel erm(B)- and aadE-spw-like-carrying genomic island (GI), named GISsuJHJ17_rpsI, were identified to be excised from the chromosome and transferred among S. suis strains with different serotypes. ICESsuYSB17_rplL and ICESsuYSJ15_rplL were integrated downstream the rplL gene, a conserve locus of the ICESa2603 family. GISsuJHJ17_rpsI, with no genes belonging to the conjugation module, was integrated into the site of rpsI. All transconjugants did not exhibit obvious fitness cost by growth curve and competition assays when compared with the recipient. The results demonstrate that different erm(B)-carrying elements were presented and highlight the role of these elements in the dissemination of macrolide resistance in S. suis.
Collapse
Affiliation(s)
- Li Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinhu Huang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Huang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Yuping He
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Junjie Sun
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingyang Dai
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Wang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Shafiq
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Yi S, Huang J, Hu X, Chen L, Dai X, Sun J, Liu P, Wang X, Wen J, Wang L. Nonconservative integration and diversity of a new family of integrative and conjugative elements associated with antibiotic resistance in zoonotic pathogen Streptococcus suis. Vet Microbiol 2021; 254:109009. [PMID: 33640677 DOI: 10.1016/j.vetmic.2021.109009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022]
Abstract
Macrolide and tetracycline resistance in streptococci is mainly caused by acquisition of integrative and conjugative elements (ICEs) of the ICESa2603 family carrying erm(B) and tet(O). But the characteristics about the transferability and physiological consequences of ICEs with triplet serine integrases are still rare. This study tested the transferability of ICESsuYZDH1_SSU0877, a novel erm(B)- and tet(O)-carrying ICESa2603 family-like ICE with triplet serine integrases, and evaluated the physiological consequences after ICE transferred and integrated into recipient. The prevalence of ICESsuYZDH1-like ICEs in S. suis was analyzed based on 1334 genomic sequences available in GenBank and examined in 330 clinical isolates in China. Nonconservative transfer was observed by integrating of ICESsuYZDH1 into SSU1797 gene besides the primary SSU0877 site. Imperfect direct repeats of 2-/4-nt (5'-TC-3'/5'-TCCC-3') and (5'-GC-3'/5'-TCCC-3') were observed at SSU0877 and SSU1797 sites, respectively. The transconjugant suffered a weak fitness cost with stunted growth and less competition with recipient strain. Successive passages indicate the ICESsuYZDH1 could be persist and endued stable resistant phenotype. Comprehensive analysis of the ICESsuYZDH1-like ICEs from both public genome database and our clinical isolates revealed the widespread and diversity of the ICEs by integration at the sites of SSU0877, SSU0468, SSU1262, and SSU1797. The ICESsuYZDH1-like ICEs could stably co-exist within the host chromosome at more than one attachment sites, which is probably mediated by the triplet serine integrases. Nonconservative integration and diversity of the ICESsuYZDH1 family of ICEs might have contributed to the evolution of ICEs and the dissemination of macrolide and tetracycline resistance in S. suis.
Collapse
Affiliation(s)
- Sida Yi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Hu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Li Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingyang Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Junjie Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiyu Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Gao K, Gao C, Huang L, Guan X, Ji W, Chang CY, McIver DJ, Deng Q, Zhong H, Xie Y, Deng L, Gao F, Zeng L, Liu H. Predominance of III/ST19 and Ib/ST10 Lineages With High Multidrug Resistance in Fluoroquinolone-Resistant Group B Streptococci Isolates in Which a New Integrative and Conjugative Element Was Identified. Front Microbiol 2021; 11:609526. [PMID: 33569045 PMCID: PMC7868321 DOI: 10.3389/fmicb.2020.609526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
Fluoroquinolone (FQ)-resistant Group B Streptococcus (GBS) has been reported with considerable cross-resistance, worsening the crisis of multidrug-resistant (MDR) GBS in clinical settings. However, national epidemiological data on FQ-resistant GBS in mainland China have not been well-characterized. This study aimed to determine the prevalence of FQ resistance among GBS from neonatal invasive infections and maternal colonization in northern and southern China, to investigate the serotyping, multilocus sequence typing, and antibiotic cross-resistance, and to characterize the mutations in gyrA and parC genes in quinolone resistance-determining region (QRDR). In order to provide a comprehensive view of the location and structure of resistance genes, whole-genome sequencing on III/ST19 MDR isolates were performed. Among 426 GBS, 138 (32.4%) were FQ resistant, with higher prevalence in northern China than in southern China in both neonates (57.8%, 37/64 vs. 21.7%, 39/180) and pregnant women (50.9%, 29/57 vs. 26.4%, 33/125). Serotypes were distributed as III (48.5%), Ib (39.9%), V (6.5%), and Ia (5.1%). Sequence types were mainly ST19 (53.6%) and ST10 (39.1%), followed by ST12 (1.4%), ST17 (1.4%), ST23 (1.4%), and 0.7% each of ST27, ST188, ST197, and ST597. ST19 isolates were more prevalent in southern China than in northern China in both neonates (64.1%, 25/39 vs. 27.0%, 10/37) and pregnant women (81.8%, 27/33 vs. 41.4%, 12/29), whereas ST10 isolates were more common in northern China than in southern China in both neonates (64.9%, 24/37 vs. 20.5%, 8/39) and pregnant women (58.6%, 17/29 vs. 15.2%, 5/33). Serotype III isolates were mainly ST19 (89.6%, 60/67), while Ib isolates were largely ST10 (94.5%, 52/55). Sequencing data revealed several mutations in QRDR, including Ser81Leu in gyrA (99.2%, 130/131), Ser79Phe or Tyr in parC (76.2%, 48/63), and a previously unreported Ile218Thr and Ile219Phe double mutation pattern (49.2%, 31/63) in parC. ST10 isolates were associated with Ser79Phe (84%, 21/25), while ST19 isolates were limited to Ser79Tyr (95.7%, 22/23). A new integrative and conjugative element (ICE) harboring tetM and gyrA genes was identified in a III/ST19 isolate. This study investigates the molecular characteristics of FQ-resistant GBS in northern and southern China, emphasizing the need for continuous surveillance geographically and further research to characterize the mechanisms of ICE transfer.
Collapse
Affiliation(s)
- Kankan Gao
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chunyan Gao
- Clinical Laboratory, Tangshan Municipal Women and Children's Hospital, Tangshan, China
| | - Lianfen Huang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoshan Guan
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenjing Ji
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, China
| | - Chien-Yi Chang
- School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - David J McIver
- Global Health Group, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Qiulian Deng
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huamin Zhong
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongqiang Xie
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Deng
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Gao
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Zeng
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Haiying Liu
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Järvå MA, Hirt H, Dunny GM, Berntsson RPA. Polymer Adhesin Domains in Gram-Positive Cell Surface Proteins. Front Microbiol 2020; 11:599899. [PMID: 33324381 PMCID: PMC7726212 DOI: 10.3389/fmicb.2020.599899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023] Open
Abstract
Surface proteins in Gram-positive bacteria are often involved in biofilm formation, host-cell interactions, and surface attachment. Here we review a protein module found in surface proteins that are often encoded on various mobile genetic elements like conjugative plasmids. This module binds to different types of polymers like DNA, lipoteichoic acid and glucans, and is here termed polymer adhesin domain. We analyze all proteins that contain a polymer adhesin domain and classify the proteins into distinct classes based on phylogenetic and protein domain analysis. Protein function and ligand binding show class specificity, information that will be useful in determining the function of the large number of so far uncharacterized proteins containing a polymer adhesin domain.
Collapse
Affiliation(s)
- Michael A Järvå
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Helmut Hirt
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Palma E, Tilocca B, Roncada P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int J Mol Sci 2020; 21:E1914. [PMID: 32168903 PMCID: PMC7139321 DOI: 10.3390/ijms21061914] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance (AMR) represents one of the most important human- and animal health-threatening issues worldwide. Bacterial capability to face antimicrobial compounds is an ancient feature, enabling bacterial survival over time and the dynamic surrounding. Moreover, bacteria make use of their evolutionary machinery to adapt to the selective pressure exerted by antibiotic treatments, resulting in reduced efficacy of the therapeutic intervention against human and animal infections. The mechanisms responsible for both innate and acquired AMR are thoroughly investigated. Commonly, AMR traits are included in mobilizable genetic elements enabling the homogeneous diffusion of the AMR traits pool between the ecosystems of diverse sectors, such as human medicine, veterinary medicine, and the environment. Thus, a coordinated multisectoral approach, such as One-Health, provides a detailed comprehensive picture of the AMR onset and diffusion. Following a general revision of the molecular mechanisms responsible for both innate and acquired AMR, the present manuscript focuses on reviewing the contribution of veterinary medicine to the overall issue of AMR. The main sources of AMR amenable to veterinary medicine are described, driving the attention towards the indissoluble cross-talk existing between the diverse ecosystems and sectors and their cumulative cooperation to this warning phenomenon.
Collapse
Affiliation(s)
| | | | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (E.P.); (B.T.)
| |
Collapse
|
10
|
Ryan MP, Slattery S, Pembroke JT. A Novel Arsenate-Resistant Determinant Associated with ICEpMERPH, a Member of the SXT/R391 Group of Mobile Genetic Elements. Genes (Basel) 2019; 10:genes10121048. [PMID: 31888308 PMCID: PMC6947025 DOI: 10.3390/genes10121048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
ICEpMERPH, the first integrative conjugative element (ICE) of the SXT/R391 family isolated in the United Kingdom and Europe, was analyzed to determine the nature of its adaptive functions, its genetic structure, and its homology to related elements normally found in pathogenic Vibrio or Proteus species. Whole genome sequencing of Escherichia coli (E. coli) isolate K802 (which contains the ICEpMERPH) was carried out using Illumina sequencing technology. ICEpMERPH has a size of 110 Kb and 112 putative open reading frames (ORFs). The “hotspot regions” of the element were found to contain putative restriction digestion systems, insertion sequences, and heavy metal resistance genes that encoded resistance to mercury, as previously reported, but also surprisingly to arsenate. A novel arsenate resistance system was identified in hotspot 4 of the element, unrelated to other SXT/R391 elements. This arsenate resistance system was potentially linked to two genes: orf69, encoding an organoarsenical efflux major facilitator superfamily (MFS) transporter-like protein related to ArsJ, and orf70, encoding nicotinamide adenine dinucleotide (NAD)-dependent glyceraldehyde-3-phosphate dehydrogenase. Phenotypic analysis using isogenic strains of Escherichia coli strain AB1157 with and without the ICEpMERPH revealed resistance to low levels of arsenate in the range of 1–5 mM. This novel, low-level resistance may have an important adaptive function in polluted environments, which often contain low levels of arsenate contamination. A bioinformatic analysis on the novel determinant and the phylogeny of ICEpMERPH was presented.
Collapse
|
11
|
Du F, Lv X, Duan D, Wang L, Huang J. Characterization of a Linezolid- and Vancomycin-Resistant Streptococcus suis Isolate That Harbors optrA and vanG Operons. Front Microbiol 2019; 10:2026. [PMID: 31551963 PMCID: PMC6746840 DOI: 10.3389/fmicb.2019.02026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Linezolid and vancomycin are among the last-resort antimicrobial agents in the treatment of multidrug-resistant Gram-positive bacterial infections. Linezolid- and vancomycin-resistant (LVR) Gram-positive bacteria may pose severe threats to public health. In this study, three optrA- and vanG-positive Streptococcus suis strains were isolated from two farms of different cities. There were only 1 and 343 single-nucleotide polymorphisms in coding region (cSNPs) of HCB4 and YSJ7 to YSJ17, respectively. Mobilome analysis revealed the presence of vanG, erm(B), tet(O/W/32/O), and aadE-apt-sat4-aphA3 cluster on an integrative and conjugative element, ICESsuYSJ17, and erm(B), aphA3, aac(6')-aph(2″), catpC194, and optrA on a prophage, ΦSsuYSJ17-3. ICESsuYSJ17 exhibited a mosaic structure and belongs to a highly prevalent and transferable ICESa2603 family of Streptococcus species. ΦSsuYSJ17-3 shared conserved backbone to a transferable prophage Φm46.1. A novel composite transposon, IS1216E-araC-optrA-hp-catpC194-IS1216E, which can be circulated as translocatable unit (TU) by IS1216E, was integrated on ΦSsuYSJ17-3. Vancomycin resistance phenotype and vanG transcription assays revealed that the vanG operon was inducible. The LVR strain YSJ17 exhibited moderate virulence in a zebrafish infection model. To our knowledge, this is the first report of LVR isolate, which is mediated by acquired resistance genes optrA and vanG operons in Gram-positive bacteria. Since S. suis has been recognized as an antimicrobial resistance reservoir in the spread of resistance genes to major streptococcal pathogens, the potential risks of disseminating of optrA and vanG from S. suis to other Streptococcus spp. are worrisome and routine surveillance should be strengthened.
Collapse
Affiliation(s)
- Fanshu Du
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xi Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Duan Duan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol 2018; 9:2066. [PMID: 30298054 PMCID: PMC6160567 DOI: 10.3389/fmicb.2018.02066] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
History of mankind is regarded as struggle against infectious diseases. Rather than observing the withering away of bacterial diseases, antibiotic resistance has emerged as a serious global health concern. Medium of antibiotic resistance in bacteria varies greatly and comprises of target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Further aggravation to prevailing situation arose on observing bacteria gradually becoming resistant to different classes of antibiotics through acquisition of resistance genes from same and different genera of bacteria. Attributing bacteria with feature of better adaptability, dispersal of antibiotic resistance genes to minimize effects of antibiotics by various means including horizontal gene transfer (conjugation, transformation, and transduction), Mobile genetic elements (plasmids, transposons, insertion sequences, integrons, and integrative-conjugative elements) and bacterial toxin-antitoxin system led to speedy bloom of antibiotic resistance amongst bacteria. Proficiency of bacteria to obtain resistance genes generated an unpleasant situation; a grave, but a lot unacknowledged, feature of resistance gene transfer.
Collapse
Affiliation(s)
- Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | | | | |
Collapse
|
13
|
Huang J, Chen L, Li D, Wang M, Du F, Gao Y, Wu Z, Wang L. Emergence of a vanG-carrying and multidrug resistant ICE in zoonotic pathogen Streptococccus suis. Vet Microbiol 2018; 222:109-113. [PMID: 30080664 DOI: 10.1016/j.vetmic.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/03/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
Abstract
Vancomycin resistance occurs frequently in Enterococcus species, but has not yet been reported in Streptococcus suis, a previously neglected, newly emergent zoonotic pathogen. In this study, we tested the vancomycin susceptibility of 256 human and swine S. suis isolates from 2005 to 2016 and analyzed the mechanism of vancomycin resistance. We found that one isolate BSB6 was resistant to vancomycin with the MIC value of 4 mg/L and to another eleven kinds of tested antimicrobial agents. Whole genome sequencing showed that chromosomal gene mutations, and acquired genes in ICESsuBSB6 accounted for the resistance phenotypes. ICESsuBSB6 was ∼83-kb in size and encoded two resistance gene regions, ARGR1 and ARGR2. ARGR1 harbored six resistance genes, namely erm(B), aadE-apt-sat4-aphA3 cluster and tet(O/W/32/O), and showed highes similarity with corresponding sequences of S. suis ICESsu32457 and Enterococcus faecalis plasmid pEF418. ARGR2 encoded a vanG-type resistance operon. The resistance region showed highest similarity to that of E. faecalis BM4518 vanG1, but the regulatory region was more similar to that of S. agalactiae GBS-NM vanG2. Vancomycin resistance in isolate BSB6 was inducible. The study is the first report of vanG-type resistance in zoonotic pathogen S. suis and highlights importance of its surveillance.
Collapse
Affiliation(s)
- Jinhu Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Daiwei Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Mengli Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanshu Du
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Liping Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Huang J, Ma J, Shang K, Hu X, Liang Y, Li D, Wu Z, Dai L, Chen L, Wang L. Evolution and Diversity of the Antimicrobial Resistance Associated Mobilome in Streptococcus suis: A Probable Mobile Genetic Elements Reservoir for Other Streptococci. Front Cell Infect Microbiol 2016; 6:118. [PMID: 27774436 PMCID: PMC5053989 DOI: 10.3389/fcimb.2016.00118] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/21/2016] [Indexed: 02/04/2023] Open
Abstract
Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis. Integrative conjugative elements (ICEs), prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species (Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and S. suis) revealed the existence of different groups of MGEs, including Tn5252, ICESp1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICESa2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs' expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICESa2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs.
Collapse
Affiliation(s)
- Jinhu Huang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Jiale Ma
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Kexin Shang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Xiao Hu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University Ames, IA, USA
| | - Yuan Liang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Daiwei Li
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State UniversityAmes, IA, USA; Department of Pharmacy, The Second Hospital of Dalian Medical UniversityDalian, China
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University Ames, IA, USA
| | - Lei Dai
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University Ames, IA, USA
| | - Li Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Liping Wang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
15
|
Characterization of Spectinomycin Resistance in Streptococcus suis Leads to Two Novel Insights into Drug Resistance Formation and Dissemination Mechanism. Antimicrob Agents Chemother 2016; 60:6390-2. [PMID: 27458226 DOI: 10.1128/aac.01157-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
Spectinomycin is an aminocyclitol antibiotic used clinically to treat a variety of infections in animals. Here, we characterized drug resistance prevalence in clinical Streptococcus suis isolates and discovered a novel resistance mechanism in which the s5 mutation (Gly26Asp) results in high spectinomycin resistance. Additionally, a novel integrative and conjugative element encompassing a multidrug resistance spw_like-aadE-lnu(B)-lsa(E) cluster and a cadmium resistance operon were identified, suggesting a possible cause for the wide dissemination of spectinomycin resistance in S. suis.
Collapse
|
16
|
ICESpy009, a Conjugative Genetic Element Carrying mef(E) in Streptococcus pyogenes. Antimicrob Agents Chemother 2016; 60:3906-12. [PMID: 27067338 DOI: 10.1128/aac.03082-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/01/2016] [Indexed: 01/19/2023] Open
Abstract
Efflux-mediated macrolide resistance due to mef(E) and mel, carried by the mega element, is common in Streptococcus pneumoniae, for which it was originally characterized, but it is rare in Streptococcus pyogenes In S. pyogenes, mega was previously found to be enclosed in Tn2009, a composite genetic element of the Tn916 family containing tet(M) and conferring erythromycin and tetracycline resistance. In this study, S. pyogenes isolates containing mef(E), apparently not associated with other resistance determinants, were examined to characterize the genetic context of mega. By whole-genome sequencing of one isolate, MB56Spyo009, we identified a novel composite integrative and conjugative element (ICE) carrying mega, designated ICESpy009, belonging to the ICESa2603 family. ICESpy009 was 55 kb long, contained 61 putative open reading frames (ORFs), and was found to be integrated into hylA, a novel integration site for the ICESa2603 family. The modular organization of the ICE was similar to that of members of the ICESa2603 family carried by different streptococcal species. In addition, a novel cluster of accessory resistance genes was found inside a region that encloses mega. PCR mapping targeting ICESpy009 revealed the presence of a similar ICE in five other isolates under study. While in three isolates the integration site was the same as that of ICESpy009, in two isolates the ICE was integrated into rplL, the typical integration site of the ICESa2603 family. ICESpy009 was able to transfer macrolide resistance by conjugation to both S. pyogenes and S. pneumoniae, showing the first evidence of the transferability of mega from S. pyogenes.
Collapse
|
17
|
Huang J, Liang Y, Guo D, Shang K, Ge L, Kashif J, Wang L. Comparative Genomic Analysis of the ICESa2603 Family ICEs and Spread of erm(B)- and tet(O)-Carrying Transferable 89K-Subtype ICEs in Swine and Bovine Isolates in China. Front Microbiol 2016; 7:55. [PMID: 26870017 PMCID: PMC4735348 DOI: 10.3389/fmicb.2016.00055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/13/2016] [Indexed: 11/13/2022] Open
Abstract
Integrative and conjugative elements (ICEs) of the ICESa2603 family have been isolated from several species of Streptococcus spp.; however, the comparative genomic and evolutionary analyses of these particular ICEs are currently only at their initial stages. By investigating 13 ICEs of the ICESa2603 family and two ICESa2603 family-like ICEs derived from diverse hosts and locations, we have determined that ICEs comprised a backbone of 30 identical syntenic core genes and accessory genes that were restricted to the intergenic sites or the 3′-end of the non-conserved domain of core genes to maintain its function. ICESa2603 family integrase IntICESa2603 specifically recognized a 15-bp att sequence (TTATTTAAGAGTAAC) at the 3′-end of rplL, which was highly conserved in genus Streptococcus. Phylogenetic analyses suggest that extensive recombination/insertion and the occurrence of a hybrid/mosaic in the ICESa2603 family were responsible for the significant increase in ICE diversity, thereby broadening its host range. Approximately 42.5 and 38.1% of the tested Streptococcus suis and Streptococcus agalactiae clinical isolates respectively contained ICESa2603 family Type IV secretion system (T4SS) genes, and 80.5 and 62.5% of which also respectively carried intICESa2603, indicating that ICESa2603 family is widely distributed across these bacteria. Sequencing and conjugation transfer of a novel sequence type ST303 clinical S. suis isolate HB1011 demonstrated that the 89K-subtype ICESsuHB1011 retained its transferrable function, thereby conferring tetracycline and macrolide resistance.
Collapse
Affiliation(s)
- Jinhu Huang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Yuan Liang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Dawei Guo
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Kexin Shang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Lin Ge
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Jam Kashif
- Department of Veterinary Pharmacology, Sindh Agricultural University Tandojam, Pakistan
| | - Liping Wang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
18
|
He Y, Tang Y, Sun F, Chen L. Detection and characterization of integrative and conjugative elements (ICEs)-positive Vibrio cholerae isolates from aquacultured shrimp and the environment in Shanghai, China. MARINE POLLUTION BULLETIN 2015; 101:526-532. [PMID: 26522159 DOI: 10.1016/j.marpolbul.2015.10.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
Increasing industrialization and use of antimicrobial agents in aquaculture production, have led to heavy metals and multidrug resistant (MDR) pathogens becoming serious problems. These resistances are conferred in two ways: intrinsic and transfer via conjugation, or transformation by the major transmission mediators. Integrative and conjugative elements (ICEs) are one of the major mediators; however, few studies on ICEs of environmental origin have been reported in Asia. Herein, we determined the prevalence, antimicrobial susceptibility, heavy metal resistance and genotypes of 126 strains of Vibrio cholerae isolated from aquatic products and the environment in Shanghai, China. 92.3% of isolates were ICEs-positive from aquaculture water and 89.3% of isolates from shrimp showed MDR. Tracing the V. cholerae genotypes, showed no significant relevance of genotype among the antimicrobial resistance strains bearing the ICEs or not. Thus, in aquaculture, ICEs are not the major transmission mediators of resistance to antibiotics or heavy metals.
Collapse
Affiliation(s)
- Yu He
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China.
| | - Yuyi Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Fengjiao Sun
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China.
| |
Collapse
|
19
|
Mingoia M, Morici E, Marini E, Brenciani A, Giovanetti E, Varaldo PE. Macrolide resistance gene erm(TR) and erm(TR)-carrying genetic elements in Streptococcus agalactiae: characterization of ICESagTR7, a new composite element containing IMESp2907. J Antimicrob Chemother 2015; 71:593-600. [PMID: 26679245 DOI: 10.1093/jac/dkv408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The objective of this study was to investigate macrolide-resistant Streptococcus agalactiae isolates harbouring erm(TR), an erm(A) gene subclass, with emphasis on their erm(TR)-carrying genetic elements. Four erm(TR)-carrying elements have been described to date: three closely related (ICE10750-RD.2, Tn1806 and ICESp1108) in Streptococcus pyogenes, Streptococcus pneumoniae and S. pyogenes, respectively; and one completely different (IMESp2907, embedded in ICESp2906 to form ICESp2905) in S. pyogenes. METHODS Seventeen macrolide-resistant erm(TR)-positive S. agalactiae isolates were phenotypically and genotypically characterized. Their erm(TR)-carrying elements were explored by analysing the distinctive recombination genes of known erm(TR)-carrying integrative and conjugative elements (ICEs) and by PCR mapping. The new genetic context and organization of IMESp2907 in S. agalactiae were explored using several experimental procedures and in silico analyses. RESULTS Five isolates harboured ICE10750-RD.2/Tn1806, five isolates harboured ICESp1108 and five isolates bore unknown erm(TR)-carrying elements. The remaining two isolates, exhibiting identical serotypes and pulsotypes, harboured IMESp2907 in a new genetic environment, which was further investigated in one of the two isolates, SagTR7. IMESp2907 was circularizable in S. agalactiae, as described in S. pyogenes. The new IMESp2907 junctions were identified based on its site-specific integration; the att sites were almost identical to those in S. pyogenes. In strain SagTR7, erm(TR)-carrying IMESp2907 was embedded in an erm(TR)-less internal element related to ICE10750-RD.2/Tn1806, which, in turn, was embedded in an ICESde3396-like element. The resulting whole ICE, ICESagTR7 (∼129 kb), was integrated into the chromosome downstream of the rplL gene, and was excisable in circular form and transferable by conjugation. CONCLUSIONS This is the first study exploring erm(TR)-carrying genetic elements in S. agalactiae.
Collapse
Affiliation(s)
- Marina Mingoia
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Morici
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Emanuela Marini
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Pietro E Varaldo
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
20
|
Marini E, Palmieri C, Magi G, Facinelli B. Recombination between Streptococcus suis ICESsu32457 and Streptococcus agalactiae ICESa2603 yields a hybrid ICE transferable to Streptococcus pyogenes. Vet Microbiol 2015; 178:99-104. [DOI: 10.1016/j.vetmic.2015.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
|
21
|
Bergmann R, Nitsche-Schmitz DP. Small plasmids in Streptococcus dysgalactiae subsp. equisimilis isolated from human infections in southern India and sequence analysis of two novel plasmids. Int J Med Microbiol 2015; 305:365-9. [PMID: 25769407 DOI: 10.1016/j.ijmm.2015.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/06/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022] Open
Abstract
Small plasmids are frequently found in S. pyogenes isolates from human infections in India. Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a streptococcal subspecies that is genetically similar to S. pyogenes and has a similar ecology. Therefore, we determined the distribution of small plasmids in a collection of 254 SDSE isolates, comprising 44 different emm-types and emm non-typable strains, from southern India, utilizing an established PCR based method. Briefly, 1.2% (n=3) of the isolates were positive for repA (encoding the replication initiation protein A) and 1.6% (n=4) were repB positive (encoding the replication initiation protein B). One isolate (G315) showed a co-detection of repB and dysA (encoding the bacteriocin dysgalacticin) which is characteristic for previously described pDN281/pW2580-like plasmids, observed in SDSE and S. pyogenes. The remaining plasmid bearing isolates showed no characteristic co-detection of known plasmid-associated genes. Thus, plasmids pG271 and pG279, representatives for repB and repA harboring plasmids, respectively, were analyzed. The plasmids pG271 and pG279 could be assigned to the pMV158 and the pC194/pUB110 family of rolling-circle plasmids, respectively. Like the characterized small native plasmids of S. pyogenes from India, the SDSE plasmids discovered and described in this study did not carry any of the known antibiotic resistance genes. SDSE bore less of the investigated small native plasmids that were distinct from the small native plasmids of S. pyogenes of the same geographic region. This indicates a low rate of lateral transfer of these genetic elements between these two related streptococcal species.
Collapse
Affiliation(s)
- René Bergmann
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.
| | - D Patric Nitsche-Schmitz
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| |
Collapse
|
22
|
McNeilly CL, McMillan DJ. Horizontal gene transfer and recombination in Streptococcus dysgalactiae subsp. equisimilis. Front Microbiol 2014; 5:676. [PMID: 25566202 PMCID: PMC4266089 DOI: 10.3389/fmicb.2014.00676] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/19/2014] [Indexed: 11/13/2022] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a human pathogen that colonizes the skin or throat, and causes a range of diseases from relatively benign pharyngitis to potentially fatal invasive diseases. While not as virulent as the close relative Streptococcus pyogenes the two share a number of virulence factors and are known to coexist in a human host. Both pre- and post-genomic studies have revealed that horizontal gene transfer (HGT) and recombination occurs between these two organisms and plays a major role in shaping the population structure of SDSE. This review summarizes our current knowledge of HGT and recombination in the evolution of SDSE.
Collapse
Affiliation(s)
- Celia L McNeilly
- Bacterial Pathogenesis Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD, Australia
| | - David J McMillan
- Inflammation and Healing Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast , Maroochydore, QLD, Australia
| |
Collapse
|
23
|
Hilty M, Wüthrich D, Salter SJ, Engel H, Campbell S, Sá-Leão R, de Lencastre H, Hermans P, Sadowy E, Turner P, Chewapreecha C, Diggle M, Pluschke G, McGee L, Eser ÖK, Low DE, Smith-Vaughan H, Endimiani A, Küffer M, Dupasquier M, Beaudoing E, Weber J, Bruggmann R, Hanage WP, Parkhill J, Hathaway LJ, Mühlemann K, Bentley SD. Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages. Genome Biol Evol 2014; 6:3281-94. [PMID: 25480686 PMCID: PMC4986459 DOI: 10.1093/gbe/evu263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 01/08/2023] Open
Abstract
The surrounding capsule of Streptococcus pneumoniae has been identified as a major virulence factor and is targeted by pneumococcal conjugate vaccines (PCV). However, nonencapsulated S. pneumoniae (non-Ec-Sp) have also been isolated globally, mainly in carriage studies. It is unknown if non-Ec-Sp evolve sporadically, if they have high antibiotic nonsusceptiblity rates and a unique, specific gene content. Here, whole-genome sequencing of 131 non-Ec-Sp isolates sourced from 17 different locations around the world was performed. Results revealed a deep-branching classic lineage that is distinct from multiple sporadic lineages. The sporadic lineages clustered with a previously sequenced, global collection of encapsulated S. pneumoniae (Ec-Sp) isolates while the classic lineage is comprised mainly of the frequently identified multilocus sequences types (STs) ST344 (n = 39) and ST448 (n = 40). All ST344 and nine ST448 isolates had high nonsusceptiblity rates to β-lactams and other antimicrobials. Analysis of the accessory genome reveals that the classic non-Ec-Sp contained an increased number of mobile elements, than Ec-Sp and sporadic non-Ec-Sp. Performing adherence assays to human epithelial cells for selected classic and sporadic non-Ec-Sp revealed that the presence of a integrative conjugative element (ICE) results in increased adherence to human epithelial cells (P = 0.005). In contrast, sporadic non-Ec-Sp lacking the ICE had greater growth in vitro possibly resulting in improved fitness. In conclusion, non-Ec-Sp isolates from the classic lineage have evolved separately. They have spread globally, are well adapted to nasopharyngeal carriage and are able to coexist with Ec-Sp. Due to continued use of PCV, non-Ec-Sp may become more prevalent.
Collapse
Affiliation(s)
- Markus Hilty
- Institute for Infectious Diseases, University of Bern, Switzerland Department of Infectious Diseases, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Daniel Wüthrich
- Interfaculty Bioinformatics Unit, University of Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Hansjürg Engel
- Institute for Infectious Diseases, University of Bern, Switzerland
| | - Samuel Campbell
- Institute for Infectious Diseases, University of Bern, Switzerland
| | - Raquel Sá-Leão
- Instituto de Tecnologia Química e Biológica, University of Lisbon, Portugal
| | - Hermínia de Lencastre
- Instituto de Tecnologia Química e Biológica, University of Lisbon, Portugal Laboratory of Microbiology and Infectious Diseases, The Rockefeller University
| | - Peter Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ewa Sadowy
- National Medicines Institute, Warsaw, Poland
| | - Paul Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Claire Chewapreecha
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mathew Diggle
- Clinical Microbiology Department, Queens Medical Centre, Nottingham, United Kingdom
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, University of Basel, Switzerland
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Georgia, Atlanta
| | - Özgen Köseoğlu Eser
- Department of Microbiology, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Donald E Low
- Mt Sinai Hospital & Public Health Laboratories, Toronto, Ontario, Canada
| | | | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Switzerland
| | - Marianne Küffer
- Institute for Infectious Diseases, University of Bern, Switzerland
| | | | | | - Johann Weber
- Centre for Integrative Genomics, University of Lausanne, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - William P Hanage
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard School of Public Health
| | | | - Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Switzerland
| | - Kathrin Mühlemann
- Institute for Infectious Diseases, University of Bern, Switzerland Department of Infectious Diseases, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Stephen D Bentley
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom Department of Medicine, Addenbrookes Hospital, University of Cambridge, United Kingdom
| |
Collapse
|
24
|
Lo HH, Cheng WS. Distribution of virulence factors and association with emm polymorphism or isolation site among beta-hemolytic group G Streptococcus dysgalactiae subspecies equisimilis. APMIS 2014; 123:45-52. [PMID: 25244428 DOI: 10.1111/apm.12305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/23/2014] [Indexed: 11/29/2022]
Abstract
Distribution of virulence factors and association with emm polymorphism or isolation site among beta-hemolytic group G Streptococcus dysgalactiae subspecies equisimilis. Streptococcus dysgalactiae subspecies equisimilis (SDSE), the dominant human pathogenic species among group G streptococci, is the causative agent of several invasive and non-invasive diseases worldwide. However, limited information is available about the distribution of virulence factors among SDSE isolates, or their association with emm types and the isolation sites. In this study, 246 beta-hemolytic group G SDSE isolates collected in central Taiwan between February 2007 and August 2011 were under investigation. Of these, 66 isolates were obtained from normally sterile sites and 180 from non-sterile sites. emm typing revealed 32 types, with the most prevalent one being stG10.0 (39.8%), followed by stG245.0 (15.4%), stG840.0 (12.2%), stG6.1 (7.7%), and stG652.0 (4.1%). The virulence genes lmb (encoding laminin-binding protein), gapC (glyceraldehyde 3-phosphate dehydrogenase), sagA (streptolysin S), and hylB (hyaluronidase) existed in all isolates. Also, 99.2% of the isolates possessed slo (streptolysin O) and scpA (C5a peptidase) genes. In addition, 72.8%, 14.6%, 9.4%, and 2.4% of the isolates possessed the genes ska (streptokinase), cbp (putative collagen-binding protein, SDEG_1781), fbp (putative fibronectin-binding protein, SDEG_0161), and sicG (streptococcal inhibitor of complement), respectively. The only superantigen gene detected was spegg (streptococcus pyrogenic exotoxin G(dys) ), which was possessed by 74.4% of the isolates; these isolates correlated with non-sterile sites. Positive correlations were observed between the following emm types and virulence genes: stG10.0 and stG840.0 with spegg, stG6.1 and stG652.0 with ska, and stG840.0 with cbp. On the other hand, negative correlations were observed between the following: stG245.0, stG6.1, and stG652.0 types with spegg, stG10.0 with ska, and stG10.0, stG245.0, and stG6.1 types with cbp. The prevalence of emm types of SDSE in central Taiwan was investigated for the first time. Moreover, the distribution of virulence factors among beta-hemolytic group G SDSE isolates, as well as their association with emm types or isolation sites were also examined.
Collapse
Affiliation(s)
- Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | | |
Collapse
|
25
|
Conjugative transfer of ICESde3396 between three β-hemolytic streptococcal species. BMC Res Notes 2014; 7:521. [PMID: 25115242 PMCID: PMC4266954 DOI: 10.1186/1756-0500-7-521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/31/2014] [Indexed: 12/02/2022] Open
Abstract
Background Integrative conjugative elements (ICEs) are mobile genetic elements (MGEs) that possess all genes necessary for excision, transfer and integration into recipient genome. They also carry accessory genes that impart new phenotypic features to recipient strains. ICEs therefore play an important role in genomic plasticity and population structure. We previously characterised ICESde3396, the first ICE identified in the β-hemolytic Streptococcus dysgalactiae subsp equisimilis (SDSE) and demonstrated its transfer to single isolates of Streptococcus pyogenes (group A streptococcus, GAS) and Streptococcus agalactiae (group B streptococcus, GBS). While molecular studies found the ICE in multiple SDSE and GBS isolates, it was absent in all GAS isolates examined. Results Here we demonstrate that ICESde3396:km is transferable from SDSE to multiple SDSE, GAS and GBS isolates. However not all strains of these species were successful recipients under the same growth conditions. To address the role that host factors may have in conjugation we also undertook conjugation experiments in the presence of A549 epithelial cells and DMEM. While Horizontal Gene Transfer (HGT) occurred, conjugation efficiencies were no greater than when similar experiments were conducted in DMEM. Additionally transfer to GAS NS235 was successful in the presence of DMEM but not in Todd Hewitt Broth suggesting that nutritional factors may also influence HGT. The GAS and GBS transconjugants produced in this study are also able to act as donors of the ICE. Conclusion We conclude that ICEs are major sources of interspecies HGT between β-hemolytic streptococci, and by introducing accessory genes imparting novel phenotypic characteristics, have the potential to alter the population structure of these species.
Collapse
|
26
|
Fléchard M, Gilot P. Physiological impact of transposable elements encoding DDE transposases in the environmental adaptation of Streptococcus agalactiae. Microbiology (Reading) 2014; 160:1298-1315. [DOI: 10.1099/mic.0.077628-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have referenced and described Streptococcus agalactiae transposable elements encoding DDE transposases. These elements belonged to nine families of insertion sequences (ISs) and to a family of conjugative transposons (TnGBSs). An overview of the physiological impact of the insertion of all these elements is provided. DDE-transposable elements affect S. agalactiae in a number of aspects of its capability to adapt to various environments and modulate the expression of several virulence genes, the scpB–lmB genomic region and the genes involved in capsule expression and haemolysin transport being the targets of several different mobile elements. The referenced mobile elements modify S. agalactiae behaviour by transferring new gene(s) to its genome, by modifying the expression of neighbouring genes at the integration site or by promoting genomic rearrangements. Transposition of some of these elements occurs in vivo, suggesting that by dynamically regulating some adaptation and/or virulence genes, they improve the ability of S. agalactiae to reach different niches within its host and ensure the ‘success’ of the infectious process.
Collapse
Affiliation(s)
- Maud Fléchard
- Biochimie et Génétique Moléculaire Bactérienne, Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Gilot
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
- Université de Tours, UMR1282 Infectiologie et Santé Publique, Bactéries et Risque Materno-Foetal, F-37032 Tours, France
| |
Collapse
|
27
|
DrsG from Streptococcus dysgalactiae subsp. equisimilis inhibits the antimicrobial peptide LL-37. Infect Immun 2014; 82:2337-44. [PMID: 24664506 DOI: 10.1128/iai.01411-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SIC and DRS are related proteins present in only 4 of the >200 Streptococcus pyogenes emm types. These proteins inhibit complement-mediated lysis and/or the activity of certain antimicrobial peptides (AMPs). A gene encoding a homologue of these proteins, herein called DrsG, has been identified in the related bacterium Streptococcus dysgalactiae subsp. equisimilis. Here we show that geographically dispersed isolates representing 14 of 50 emm types examined possess variants of drsG. However, not all isolates within the drsG-positive emm types possess the gene. Sequence comparisons also revealed a high degree of conservation in different S. dysgalactiae subsp. equisimilis emm types. To examine the biological activity of DrsG, recombinant versions of two major DrsG variants, DrsGS and DrsGL, were expressed and purified. Western blot analysis using antisera raised to these proteins demonstrated both variants to be expressed and secreted into culture supernatants. Unlike SIC, but similar to DRS, DrsG does not inhibit complement-mediated lysis. However, like both SIC and DRS, DrsG is a ligand of the cathelicidin LL-37 and is inhibitory to its bactericidal activity in in vitro assays. Conservation of prolines in the C-terminal region also suggests that these residues are important in the biology of this family of proteins. This is the first report demonstrating the activity of an AMP-inhibitory protein in S. dysgalactiae subsp. equisimilis and suggests that inhibition of AMP activity is the primary function of this family of proteins. The acquisition of the complement-inhibitory activity of SIC may reflect its continuing evolution.
Collapse
|
28
|
Guglielmini J, Néron B, Abby SS, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res 2014; 42:5715-27. [PMID: 24623814 PMCID: PMC4027160 DOI: 10.1093/nar/gku194] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Conjugation of DNA through a type IV secretion system (T4SS) drives horizontal gene transfer. Yet little is known on the diversity of these nanomachines. We previously found that T4SS can be divided in eight classes based on the phylogeny of the only ubiquitous protein of T4SS (VirB4). Here, we use an ab initio approach to identify protein families systematically and specifically associated with VirB4 in each class. We built profiles for these proteins and used them to scan 2262 genomes for the presence of T4SS. Our analysis led to the identification of thousands of occurrences of 116 protein families for a total of 1623 T4SS. Importantly, we could identify almost always in our profiles the essential genes of well-studied T4SS. This allowed us to build a database with the largest number of T4SS described to date. Using profile–profile alignments, we reveal many new cases of homology between components of distant classes of T4SS. We mapped these similarities on the T4SS phylogenetic tree and thus obtained the patterns of acquisition and loss of these protein families in the history of T4SS. The identification of the key VirB4-associated proteins paves the way toward experimental analysis of poorly characterized T4SS classes.
Collapse
Affiliation(s)
- Julien Guglielmini
- Microbial Evolutionary Genomics, Institut Pasteur, Paris 75015, France UMR3525, CNRS, Paris 75015, France
| | - Bertrand Néron
- Centre d'Informatique pour les Biologistes, Institut Pasteur, Paris 75015, France
| | - Sophie S Abby
- Microbial Evolutionary Genomics, Institut Pasteur, Paris 75015, France UMR3525, CNRS, Paris 75015, France
| | - María Pilar Garcillán-Barcia
- Institute of Biomedicine and Biotechnology of Cantabria (CSIC-Sodercan-University of Cantabria), Santander 39011, Spain
| | - Fernando de la Cruz
- Institute of Biomedicine and Biotechnology of Cantabria (CSIC-Sodercan-University of Cantabria), Santander 39011, Spain
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris 75015, France UMR3525, CNRS, Paris 75015, France
| |
Collapse
|
29
|
White AG, Watts GS, Lu Z, Meza-Montenegro MM, Lutz EA, Harber P, Burgess JL. Environmental arsenic exposure and microbiota in induced sputum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:2299-313. [PMID: 24566055 PMCID: PMC3945600 DOI: 10.3390/ijerph110202299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 01/06/2023]
Abstract
Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb) and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb). To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%), Proteobacteria (17%) and Bacteriodetes (12%) were the main phyla in all samples, with Neisseriaceae (15%), Prevotellaceae (12%) and Veillonellacea (7%) being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.
Collapse
Affiliation(s)
- Allison G White
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson 85724, USA.
| | - George S Watts
- Department of Pharmacology and University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Zhenqiang Lu
- Statistical Consulting Laboratory, University of Arizona, Tucson, AZ 85712, USA.
| | - Maria M Meza-Montenegro
- Department of Biotechnology and Food Sciences, Instituto Technologico de Sonora, Sonora 85000, Mexico.
| | - Eric A Lutz
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson 85724, USA.
| | - Philip Harber
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson 85724, USA.
| | - Jefferey L Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson 85724, USA.
| |
Collapse
|
30
|
Bergmann R, Nerlich A, Chhatwal GS, Nitsche-Schmitz DP. Distribution of small native plasmids in Streptococcus pyogenes in India. Int J Med Microbiol 2013; 304:370-8. [PMID: 24444719 DOI: 10.1016/j.ijmm.2013.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/22/2013] [Accepted: 12/08/2013] [Indexed: 02/05/2023] Open
Abstract
Complete characterization of a Streptococcus pyogenes population from a defined geographic region comprises information on the plasmids that circulate in these bacteria. Therefore, we determined the distribution of small plasmids (<5kb) in a collection of 279 S. pyogenes isolates from India, where diversity of strains and incidence rates of S. pyogenes infections are high. The collection comprised 77 emm-types. For plasmid detection and discrimination, we developed PCRs for different plasmid replication initiation protein genes, the putative repressor gene copG and bacteriocin genes dysA and scnM57. Plasmid distribution was limited to 13 emm-types. Co-detection analysis using aforementioned PCRs revealed four distinct plasmid sub-types, two of which were previously unknown. Representative plasmids pA852 and pA996 of the two uncharacterized plasmid sub-types were sequenced. These two plasmids could be assigned to the pMV158 and the pC194/pUB110 family of rolling-circle plasmids, respectively. The majority of small plasmids found in India belonged to the two newly characterized sub-types, with pA852- and pA996-like plasmids amounting to 42% and 22% of all detected plasmids, respectively. None of the detected plasmids coded for a known antibiotic resistance gene. Instead, all of the four plasmid sub-types carried known or potential bacteriocin genes. These genes may have influence on the evolutionary success of certain S. pyogenes genotypes. Notably, pA852-like plasmids were found in all isolates of the most prevalent emm-type 11.0. Together, a priori fitness of this genotype and increased fitness due to the acquired plasmids may have rendered type emm11.0 successful and caused the prevalence of pA852-like plasmids in India.
Collapse
Affiliation(s)
- René Bergmann
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Andreas Nerlich
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Gursharan S Chhatwal
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - D Patric Nitsche-Schmitz
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.
| |
Collapse
|
31
|
ICESluvan, a 94-kilobase mosaic integrative conjugative element conferring interspecies transfer of VanB-type glycopeptide resistance, a novel bacitracin resistance locus, and a toxin-antitoxin stabilization system. J Bacteriol 2013; 195:5381-90. [PMID: 24078615 DOI: 10.1128/jb.02165-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 94-kb integrative conjugative element (ICESluvan) transferable to Enterococcus faecium and Enterococcus faecalis from an animal isolate of Streptococcus lutetiensis consists of a mosaic of genetic fragments from different Gram-positive bacteria. A variant of ICESluvan was confirmed in S. lutetiensis from a patient. A complete Tn5382/Tn1549 with a vanB2 operon is integrated into a streptococcal ICESde3396-like region harboring a putative bacteriophage exclusion system, a putative agglutinin receptor precursor, and key components of a type IV secretion system. Moreover, ICESluvan encodes a putative MobC family mobilization protein and a relaxase and, thus, in total has all genetic components essential for conjugative transfer. A 9-kb element within Tn5382/Tn1549 encodes, among others, putative proteins similar to the TnpX site-specific recombinase in Faecalibacterium and VanZ in Paenibacillus, which may contribute to the detected low-level teicoplanin resistance. Furthermore, ICESluvan encodes a novel bacitracin resistance locus that is associated with reduced susceptibility to bacitracin when transferred to E. faecium. The expression of a streptococcal pezAT toxin-antitoxin-encoding operon of ICESluvan in S. lutetiensis, E. faecium, and E. faecalis was confirmed by reverse transcription (RT)-PCR, indicating an active toxin-antitoxin system which may contribute to stabilizing ICESluvan within new hosts. Junction PCR and DNA sequencing confirmed that ICESluvan excised to form a circular intermediate in S. lutetiensis, E. faecalis, and E. faecium. Transfer between E. faecalis cells was observed in the presence of helper plasmid pIP964. Sequence analysis of the original S. lutetiensis donor and enterococcal transconjugants showed that ICESluvan integrates in a site-specific manner into the C-terminal end of the chromosomal tRNA methyltransferase gene rumA.
Collapse
|
32
|
Identification, clinical aspects, susceptibility pattern, and molecular epidemiology of beta-haemolytic group G Streptococcus anginosus group isolates from central Taiwan. Diagn Microbiol Infect Dis 2013; 76:262-5. [DOI: 10.1016/j.diagmicrobio.2013.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 11/17/2022]
|
33
|
Chuzeville S, Puymège A, Madec JY, Haenni M, Payot S. Characterization of a new CAMP factor carried by an integrative and conjugative element in Streptococcus agalactiae and spreading in Streptococci. PLoS One 2012; 7:e48918. [PMID: 23152820 PMCID: PMC3494709 DOI: 10.1371/journal.pone.0048918] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/03/2012] [Indexed: 12/24/2022] Open
Abstract
Genetic exchanges between Streptococci occur frequently and contribute to their genome diversification. Most of sequenced streptococcal genomes carry multiple mobile genetic elements including Integrative and Conjugative Elements (ICEs) that play a major role in these horizontal gene transfers. In addition to genes involved in their mobility and regulation, ICEs also carry genes that can confer selective advantages to bacteria. Numerous elements have been described in S. agalactiae especially those integrated at the 3' end of a tRNA(Lys) encoding gene. In strain 515 of S. agalactiae, an invasive neonate human pathogen, the ICE (called 515_tRNA(Lys)) is functional and carries different putative virulence genes including one encoding a putative new CAMP factor in addition to the one previously described. This work demonstrated the functionality of this CAMP factor (CAMP factor II) in Lactococcus lactis but also in pathogenic strains of veterinary origin. The search for co-hemolytic factors in a collection of field strains revealed their presence in S. uberis, S. dysgalactiae, but also for the first time in S. equisimilis and S. bovis. Sequencing of these genes revealed the prevalence of a species-specific factor in S. uberis strains (Uberis factor) and the presence of a CAMP factor II encoding gene in S. bovis and S. equisimilis. Furthermore, most of the CAMP factor II positive strains also carried an element integrated in the tRNA(Lys) gene. This work thus describes a CAMP factor that is carried by a mobile genetic element and has spread to different streptococcal species.
Collapse
Affiliation(s)
- Sarah Chuzeville
- Unité Antibiorésistance et Virulence Bactériennes, Anses Lyon, Lyon, France
- INRA, UMR1128 Génétique et Microbiologie, Faculté des Sciences et Technologies, Bd des Aiguillettes BP70239, Vandœuvre-lès-Nancy, France
- Université de Lorraine, UMR1128 Génétique et Microbiologie, Faculté des Sciences et Technologies, Bd des Aiguillettes BP70239, Vandœuvre-lès-Nancy, France
| | - Aurore Puymège
- INRA, UMR1128 Génétique et Microbiologie, Faculté des Sciences et Technologies, Bd des Aiguillettes BP70239, Vandœuvre-lès-Nancy, France
- Université de Lorraine, UMR1128 Génétique et Microbiologie, Faculté des Sciences et Technologies, Bd des Aiguillettes BP70239, Vandœuvre-lès-Nancy, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Anses Lyon, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Anses Lyon, Lyon, France
| | - Sophie Payot
- INRA, UMR1128 Génétique et Microbiologie, Faculté des Sciences et Technologies, Bd des Aiguillettes BP70239, Vandœuvre-lès-Nancy, France
- Université de Lorraine, UMR1128 Génétique et Microbiologie, Faculté des Sciences et Technologies, Bd des Aiguillettes BP70239, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
34
|
Palmieri C, Magi G, Creti R, Baldassarri L, Imperi M, Gherardi G, Facinelli B. Interspecies mobilization of an ermT-carrying plasmid of Streptococcus dysgalactiae subsp. equisimilis by a coresident ICE of the ICESa2603 family. J Antimicrob Chemother 2012; 68:23-6. [PMID: 22949621 DOI: 10.1093/jac/dks352] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The recently documented presence of almost identical, small, non-self-transmissible, erm(T)-carrying plasmids in clonally unrelated erythromycin-resistant isolates of Streptococcus pyogenes and Streptococcus agalactiae suggests that these plasmids somehow circulate in the streptococcal population. The objective of this study was to characterize the erm(T)-carrying genetic element in a clinical isolate of Streptococcus dysgalactiae subsp. equisimilis (Sde5580) and to provide a possible explanation for the spread of erm(T)-carrying plasmids in streptococci. METHODS The erm(T)-carrying element of Sde5580 was investigated by plasmid analysis, PCR experiments and sequencing. Transfer and retransfer experiments were performed using S. pyogenes, S. agalactiae and Streptococcus suis strains as recipients and by selection in the presence of suitable drug concentrations. Transconjugants were analysed by SmaI-macrorestriction analysis. Genetic studies also included PCR-restriction fragment length polymorphism analysis using HindIII endonuclease. RESULTS Sde5580 contained two mobile genetic elements: a 4950 bp erm(T)-carrying plasmid (p5580) almost identical to the non-self-transmissible erm(T)-carrying plasmids of S. pyogenes and S. agalactiae mentioned above, and an ~63 kb cadC/cadA-carrying integrative and conjugative element (ICESde3396-like) of the ICESa2603 family. p5580 was transferable at high frequency to the recipients of all three species through in trans mobilization by the coresident ICESde3396-like element. p5580 and ICESde3396-like were able to be transferred either separately or together. CONCLUSIONS This is the first evidence of horizontal transfer of an erm(T)-carrying plasmid between streptococci. In trans mobilization by coresident ICEs may be one mechanism for the spread of erm(T)-carrying plasmids in the streptococcal population.
Collapse
Affiliation(s)
- Claudio Palmieri
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Sezione Microbiologia, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Erol E, Locke SJ, Donahoe JK, Mackin MA, Carter CN. Beta-hemolytic Streptococcus spp. from horses: a retrospective study (2000-2010). J Vet Diagn Invest 2012; 24:142-7. [PMID: 22362945 DOI: 10.1177/1040638711434138] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The goal of this retrospective study was to have a comprehensive picture of the β-hemolytic streptococci of horses including tissue/organ distributions and susceptibility patterns against specific antimicrobials between January 1, 2000 and December 31, 2010. A total of 2,497 β-hemolytic streptococci were isolated from 2,391 cases, of which Streptococcus equi subsp. zooepidemicus was the most frequent isolate (72.0%). Other species isolated were Streptococcus dysgalactia subsp. equisimilis (21.3%), Streptococcus equi subsp. equi (5.8%), and unidentified β-hemolytic streptococci (0.9%). As expected, S. equi was mostly isolated from lymph node abscesses and the respiratory tract in foals and adult horses. Streptococcus equi subsp. zooepidemicus and S. equisimilis were mostly isolated from placenta, fetal tissues, and genital tract of horses; S. zooepidemicus and S. equisimilis were also recovered in significant numbers from a number of other organs including lung, liver, brain, kidney, and joints, indicating a much broader tissue tropism than S. equi. In addition, more than 1 Streptococcus spp. was recovered in 106 cases, indicating the co-existence of these bacteria in some horses. This data also suggested that S. equisimilis is a major bacterial agent of horses, contrary to present knowledge. Based on Kirby-Bauer antimicrobial susceptibility data, streptococci were found to be generally susceptible to cephalothin, erythromycin, nitrofurantoin, penicillin, and ticarcillin and clavulanate. Resistance to antimicrobials has not developed over the years, except for gentamicin and tetracycline against S. equisimilis.
Collapse
Affiliation(s)
- Erdal Erol
- University of Kentucky, Veterinary Diagnostic Laboratory, PO Box 14125, Lexington, KY 40512-4125, USA.
| | | | | | | | | |
Collapse
|
36
|
Characterization of a Streptococcus suis tet(O/W/32/O)-carrying element transferable to major streptococcal pathogens. Antimicrob Agents Chemother 2012; 56:4697-702. [PMID: 22710115 DOI: 10.1128/aac.00629-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mosaic tetracycline resistance determinants are a recently discovered class of hybrids of ribosomal protection tet genes. They may show different patterns of mosaicism, but their final size has remained unaltered. Initially thought to be confined to a small group of anaerobic bacteria, mosaic tet genes were then found to be widespread. In the genus Streptococcus, a mosaic tet gene [tet(O/W/32/O)] was first discovered in Streptococcus suis, an emerging drug-resistant pig and human pathogen. In this study, we report the molecular characterization of a tet(O/W/32/O) gene-carrying mobile element from an S. suis isolate. tet(O/W/32/O) was detected, in tandem with tet(40), in a circular 14,741-bp genetic element (39.1% G+C; 17 open reading frames [ORFs] identified). The novel element, which we designated 15K, also carried the macrolide resistance determinant erm(B) and an aminoglycoside resistance four-gene cluster including aadE (streptomycin) and aphA (kanamycin). 15K appeared to be an unstable genetic element that, in the absence of recombinases, is capable of undergoing spontaneous excision under standard growth conditions. In the integrated form, 15K was found inside a 54,879-bp integrative and conjugative element (ICE) (50.5% G+C; 55 ORFs), which we designated ICESsu32457. An ∼1.3-kb segment that apparently served as the att site for excision of the unstable 15K element was identified. The novel ICE was transferable at high frequency to recipients from pathogenic Streptococcus species (S. suis, Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae), suggesting that the multiresistance 15K element can successfully spread within streptococcal populations.
Collapse
|
37
|
Palmieri C, Varaldo PE, Facinelli B. Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen. Front Microbiol 2011; 2:235. [PMID: 22275909 PMCID: PMC3223616 DOI: 10.3389/fmicb.2011.00235] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/09/2011] [Indexed: 12/05/2022] Open
Abstract
Streptococcus suis, a major porcine pathogen, has been receiving growing attention not only for its role in severe and increasingly reported infections in humans, but also for its involvement in drug resistance. Recent studies and the analysis of sequenced genomes have been providing important insights into the S. suis resistome, and have resulted in the identification of resistance determinants for tetracyclines, macrolides, aminoglycosides, chloramphenicol, antifolate drugs, streptothricin, and cadmium salts. Resistance gene-carrying genetic elements described so far include integrative and conjugative elements, transposons, genomic islands, phages, and chimeric elements. Some of these elements are similar to those reported in major streptococcal pathogens such as Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae and share the same chromosomal insertion sites. The available information strongly suggests that S. suis is an important antibiotic resistance reservoir that can contribute to the spread of resistance genes to the above-mentioned streptococci. S. suis is thus a paradigmatic example of possible intersections between animal and human resistomes.
Collapse
Affiliation(s)
- Claudio Palmieri
- Section of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Ancona, Italy
| | | | | |
Collapse
|
38
|
McMillan DJ, Kaul SY, Bramhachari PV, Smeesters PR, Vu T, Karmarkar MG, Shaila MS, Sriprakash KS. Recombination drives genetic diversification of Streptococcus dysgalactiae subspecies equisimilis in a region of streptococcal endemicity. PLoS One 2011; 6:e21346. [PMID: 21857905 PMCID: PMC3153926 DOI: 10.1371/journal.pone.0021346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/29/2011] [Indexed: 12/02/2022] Open
Abstract
Infection of the skin or throat by Streptococcus dysgalactiae subspecies equisimilis (SDSE) may result in a number of human diseases. To understand mechanisms that give rise to new genetic variants in this species, we used multi-locus sequence typing (MLST) to characterise relationships in the SDSE population from India, a country where streptococcal disease is endemic. The study revealed Indian SDSE isolates have sequence types (STs) predominantly different to those reported from other regions of the world. Emm-ST combinations in India are also largely unique. Split decomposition analysis, the presence of emm-types in unrelated clonal complexes, and analysis of phylogenetic trees based on concatenated sequences all reveal an extensive history of recombination within the population. The ratio of recombination to mutation (r/m) events (11∶1) and per site r/m ratio (41∶1) in this population is twice as high as reported for SDSE from non-endemic regions. Recombination involving the emm-gene is also more frequent than recombination involving housekeeping genes, consistent with diversification of M proteins offering selective advantages to the pathogen. Our data demonstrate that genetic recombination in endemic regions is more frequent than non-endemic regions, and gives rise to novel local SDSE variants, some of which may have increased fitness or pathogenic potential.
Collapse
Affiliation(s)
- David J McMillan
- Bacterial Pathogenesis Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Genomes and characterization of phages Bcep22 and BcepIL02, founders of a novel phage type in Burkholderia cenocepacia. J Bacteriol 2011; 193:5300-13. [PMID: 21804006 DOI: 10.1128/jb.05287-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages.
Collapse
|
40
|
Virulence gene pool detected in bovine group C Streptococcus dysgalactiae subsp. dysgalactiae isolates by use of a group A S. pyogenes virulence microarray. J Clin Microbiol 2011; 49:2470-9. [PMID: 21525223 DOI: 10.1128/jcm.00008-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans.
Collapse
|
41
|
Richards VP, Lang P, Bitar PDP, Lefébure T, Schukken YH, Zadoks RN, Stanhope MJ. Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae. INFECTION GENETICS AND EVOLUTION 2011; 11:1263-75. [PMID: 21536150 DOI: 10.1016/j.meegid.2011.04.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/12/2011] [Accepted: 04/16/2011] [Indexed: 12/18/2022]
Abstract
In addition to causing severe invasive infections in humans, Streptococcus agalactiae, or group B Streptococcus (GBS), is also a major cause of bovine mastitis. Here we provide the first genome sequence for S. agalactiae isolated from a cow diagnosed with clinical mastitis (strain FSL S3-026). Comparison to eight S. agalactiae genomes obtained from human disease isolates revealed 183 genes specific to the bovine strain. Subsequent polymerase chain reaction (PCR) screening for the presence/absence of a subset of these loci in additional bovine and human strains revealed strong differentiation between the two groups (Fisher exact test: p<0.0001). The majority of the bovine strain-specific genes (∼ 85%) clustered tightly into eight genomic islands, suggesting these genes were acquired through lateral gene transfer (LGT). This bovine GBS also contained an unusually high proportion of insertion sequences (4.3% of the total genome), suggesting frequent genomic rearrangement. Comparison to other mastitis-causing species of bacteria provided strong evidence for two cases of interspecies LGT within the shared bovine environment: bovine S. agalactiae with Streptococcus uberis (nisin U operon) and Streptococcus dysgalactiae subsp. dysgalactiae (lactose operon). We also found evidence for LGT, involving the salivaricin operon, between the bovine S. agalactiae strain and either Streptococcus pyogenes or Streptococcus salivarius. Our findings provide insight into mechanisms facilitating environmental adaptation and acquisition of potential virulence factors, while highlighting both the key role LGT has played in the recent evolution of the bovine S. agalactiae strain, and the importance of LGT among pathogens within a shared environment.
Collapse
Affiliation(s)
- Vincent P Richards
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Sitkiewicz I, Green NM, Guo N, Mereghetti L, Musser JM. Lateral gene transfer of streptococcal ICE element RD2 (region of difference 2) encoding secreted proteins. BMC Microbiol 2011; 11:65. [PMID: 21457552 PMCID: PMC3083328 DOI: 10.1186/1471-2180-11-65] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 04/01/2011] [Indexed: 11/10/2022] Open
Abstract
Background The genome of serotype M28 group A Streptococcus (GAS) strain MGAS6180 contains a novel genetic element named Region of Difference 2 (RD2) that encodes seven putative secreted extracellular proteins. RD2 is present in all serotype M28 strains and strains of several other GAS serotypes associated with female urogenital infections. We show here that the GAS RD2 element is present in strain MGAS6180 both as an integrative chromosomal form and a circular extrachromosomal element. RD2-like regions were identified in publicly available genome sequences of strains representing three of the five major group B streptococcal serotypes causing human disease. Ten RD2-encoded proteins have significant similarity to proteins involved in conjugative transfer of Streptococcus thermophilus integrative chromosomal elements (ICEs). Results We transferred RD2 from GAS strain MGAS6180 (serotype M28) to serotype M1 and M4 GAS strains by filter mating. The copy number of the RD2 element was rapidly and significantly increased following treatment of strain MGAS6180 with mitomycin C, a DNA damaging agent. Using a PCR-based method, we also identified RD2-like regions in multiple group C and G strains of Streptococcus dysgalactiae subsp.equisimilis cultured from invasive human infections. Conclusions Taken together, the data indicate that the RD2 element has disseminated by lateral gene transfer to genetically diverse strains of human-pathogenic streptococci.
Collapse
Affiliation(s)
- Izabela Sitkiewicz
- Department of Pathology, The Methodist Hospital, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
43
|
Suzuki H, Lefébure T, Hubisz MJ, Pavinski Bitar P, Lang P, Siepel A, Stanhope MJ. Comparative genomic analysis of the Streptococcus dysgalactiae species group: gene content, molecular adaptation, and promoter evolution. Genome Biol Evol 2011; 3:168-85. [PMID: 21282711 PMCID: PMC3056289 DOI: 10.1093/gbe/evr006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Comparative genomics of closely related bacterial species with different pathogenesis and host preference can provide a means of identifying the specifics of adaptive differences. Streptococcus dysgalactiae (SD) is comprised of two subspecies: S. dysgalactiae subsp. equisimilis is both a human commensal organism and a human pathogen, and S. dysgalactiae subsp. dysgalactiae is strictly an animal pathogen. Here, we present complete genome sequences for both taxa, with analyses involving other species of Streptococcus but focusing on adaptation in the SD species group. We found little evidence for enrichment in biochemical categories of genes carried by each SD strain, however, differences in the virulence gene repertoire were apparent. Some of the differences could be ascribed to prophage and integrative conjugative elements. We identified approximately 9% of the nonrecombinant core genome to be under positive selection, some of which involved known virulence factors in other bacteria. Analyses of proteomes by pooling data across genes, by biochemical category, clade, or branch, provided evidence for increased rates of evolution in several gene categories, as well as external branches of the tree. Promoters were primarily evolving under purifying selection but with certain categories of genes evolving faster. Many of these fast-evolving categories were the same as those associated with rapid evolution in proteins. Overall, these results suggest that adaptation to changing environments and new hosts in the SD species group has involved the acquisition of key virulence genes along with selection of orthologous protein-coding loci and operon promoters.
Collapse
Affiliation(s)
- Haruo Suzuki
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | | | | | | | | | | |
Collapse
|
44
|
Different genetic elements carrying the tet(W) gene in two human clinical isolates of Streptococcus suis. Antimicrob Agents Chemother 2010; 55:631-6. [PMID: 21115784 DOI: 10.1128/aac.00965-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic support for tet(W), an emerging tetracycline resistance determinant, was studied in two strains of Streptococcus suis, SsCA and SsUD, both isolated in Italy from patients with meningitis. Two completely different tet(W)-carrying genetic elements, sharing only a tet(W)-containing segment barely larger than the gene, were found in the two strains. The one from strain SsCA was nontransferable, and aside from an erm(B)-containing insertion, it closely resembled a genomic island recently described in an S. suis Chinese human isolate in sequence, organization, and chromosomal location. The tet(W)-carrying genetic element from strain SsUD was transferable (at a low frequency) and, though apparently noninducible following mitomycin C treatment, displayed a typical phage organization and was named ΦSsUD.1. Its full sequence was determined (60,711 bp), the highest BLASTN score being Streptococcus pyogenes Φm46.1. ΦSsUD.1 exhibited a unique combination of antibiotic and heavy metal resistance genes. Besides tet(W), it contained a MAS (macrolide-aminoglycoside-streptothricin) fragment with an erm(B) gene having a deleted leader peptide and a cadC/cadA cadmium efflux cassette. The MAS fragment closely resembled the one recently described in pneumococcal transposons Tn6003 and Tn1545. These resistance genes found in the ΦSsUD.1 phage scaffold differed from, but were in the same position as, cargo genes carried by other streptococcal phages. The chromosome integration site of ΦSsUD.1 was at the 3' end of a conserved tRNA uracil methyltransferase (rum) gene. This site, known to be an insertional hot spot for mobile elements in S. pyogenes, might play a similar role in S. suis.
Collapse
|
45
|
Inverse association between Lancefield group G Streptococcus colonization and sore throat in slum and nonslum settings in Brazil. J Clin Microbiol 2010; 49:409-12. [PMID: 21048010 DOI: 10.1128/jcm.02095-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group G Streptococcus has been implicated as a causative agent of pharyngitis in outbreak situations, but its role in endemic disease remains elusive. We found an unexpected inverse association of Streptococcus dysgalactiae subsp. equisimilis colonization and sore throat in a study of 2,194 children of 3 to 15 years of age in Salvador, Brazil.
Collapse
|
46
|
Diversity and mobility of integrative and conjugative elements in bovine isolates of Streptococcus agalactiae, S. dysgalactiae subsp. dysgalactiae, and S. uberis. Appl Environ Microbiol 2010; 76:7957-65. [PMID: 20952646 DOI: 10.1128/aem.00805-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine isolates of Streptococcus agalactiae (n = 76), Streptococcus dysgalactiae subsp. dysgalactiae (n = 32), and Streptococcus uberis (n = 101) were analyzed for the presence of different integrative and conjugative elements (ICEs) and their association with macrolide, lincosamide, and tetracycline resistance. The diversity of the isolates included in this study was demonstrated by multilocus sequence typing for S. agalactiae and pulsed-field gel electrophoresis for S. dysgalactiae and S. uberis. Most of the erythromycin-resistant strains carry an ermB gene. Five strains of S. uberis that are resistant to lincomycin but susceptible to erythromycin carry the lin(B) gene, and one has both linB and lnuD genes. In contrast to S. uberis, most of the S. agalactiae and S. dysgalactiae tetracycline-resistant isolates carry a tet(M) gene. A tet(S) gene was also detected in the three species. A Tn916-related element was detected in 30 to 50% of the tetracycline-resistant strains in the three species. Tetracycline resistance was successfully transferred by conjugation to an S. agalactiae strain. Most of the isolates carry an ICE integrated in the rplL gene. In addition, half of the S. agalactiae isolates have an ICE integrated in a tRNA lysine (tRNA(Lys)) gene. Such an element is also present in 20% of the isolates of S. dysgalactiae and S. uberis. A circular form of these ICEs was detected in all of the isolates tested, indicating that these genetic elements are mobile. These ICEs could thus also be a vehicle for horizontal gene transfer between streptococci of animal and/or human origin.
Collapse
|
47
|
Wozniak RAF, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010; 8:552-63. [PMID: 20601965 DOI: 10.1038/nrmicro2382] [Citation(s) in RCA: 552] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrative and conjugative elements (ICEs) are a diverse group of mobile genetic elements found in both Gram-positive and Gram-negative bacteria. These elements primarily reside in a host chromosome but retain the ability to excise and to transfer by conjugation. Although ICEs use a range of mechanisms to promote their core functions of integration, excision, transfer and regulation, there are common features that unify the group. This Review compares and contrasts the core functions for some of the well-studied ICEs and discusses them in the broader context of mobile-element and genome evolution.
Collapse
|
48
|
Thenmozhi R, Balaji K, Kanagavel M, Karutha Pandian S. Development of species-specific primers for detection of Streptococcus pyogenes from throat swabs. FEMS Microbiol Lett 2010; 306:110-6. [PMID: 20337717 DOI: 10.1111/j.1574-6968.2010.01939.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A species-specific molecular marker has been developed to detect the human pathogen Streptococcus pyogenes from throat swabs. Streptococcus pyogenes is an important pathogen among Gram-positive organisms. A rapid and simple diagnostic tool is of utmost importance for the identification of this pathogen. The random amplified polymorphic DNA (RAPD) technique was used to differentiate the S. pyogenes strains. A differentially amplified fragment obtained from RAPD profiles was sequenced and characterized, which was developed into a sequence characterized amplified region (SCAR) marker to evaluate the specificity of S. pyogenes from other species of Streptococcus. The sensitivity of the SCAR primers was studied by qualitative PCR and the detection limit was found to be 10(-1) ng of genomic DNA or one to two cells of S. pyogenes. The specificity of the primers was assayed in 270 clinical throat swabs wherein 23 samples turned to be positive, which was highly significant over culture-based methods. This species-specific primer enables accurate detection of S. pyogenes from clinical samples and will be a useful tool in epidemiological studies.
Collapse
|
49
|
Mullapudi S, Siletzky RM, Kathariou S. Diverse cadmium resistance determinants in Listeria monocytogenes isolates from the turkey processing plant environment. Appl Environ Microbiol 2010; 76:627-30. [PMID: 19948870 PMCID: PMC2805206 DOI: 10.1128/aem.01751-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 11/15/2009] [Indexed: 11/20/2022] Open
Abstract
Two different cadA cadmium resistance determinants (cadA1, first identified in Tn5422, and cadA2, associated with pLM80) were detected among cadmium-resistant Listeria monocytogenes strains from turkey processing plants. Prevalence of cadA1 versus cadA2 was serotype associated. Cadmium-resistant isolates that were also resistant to benzalkonium chloride (BC) were more likely to harbor cadA2 alone or together with cadA1 than isolates that were cadmium resistant but BC susceptible.
Collapse
Affiliation(s)
- S. Mullapudi
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - R. M. Siletzky
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - S. Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
50
|
Belotserkovsky I, Baruch M, Peer A, Dov E, Ravins M, Mishalian I, Persky M, Smith Y, Hanski E. Functional analysis of the quorum-sensing streptococcal invasion locus (sil). PLoS Pathog 2009; 5:e1000651. [PMID: 19893632 PMCID: PMC2766830 DOI: 10.1371/journal.ppat.1000651] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 10/08/2009] [Indexed: 11/19/2022] Open
Abstract
Group A streptococcus (GAS) causes a wide variety of human diseases, and at the same time, GAS can also circulate without producing symptoms, similar to its close commensal relative, group G streptococcus (GGS). We previously identified, by transposon-tagged mutagenesis, the streptococcal invasion locus (sil). sil is a quorum-sensing regulated locus which is activated by the autoinducer peptide SilCR through the two-component system SilA-SilB. Here we characterize the DNA promoter region necessary for SilA-mediated activation. This site is composed of two direct repeats of 10 bp, separated by a spacer of 11 bp. Fusion of this site to gfp allowed us to systematically introduce single-base substitutions in the repeats region and to assess the relative contribution of various positions to promoter strength. We then developed an algorithm giving different weights to these positions, and performed a chromosome-wide bioinformatics search which was validated by transcriptome analysis. We identified 13 genes, mostly bacteriocin related, that are directly under the control of SilA. Having developed the ability to quantify SilCR signaling via GFP accumulation prompted us to search for GAS and GGS strains that sense and produce SilCR. While the majority of GAS strains lost sil, all GGS strains examined still possess the locus and ∼63% are able to respond to exogenously added SilCR. By triggering the autoinduction circle using a minute concentration of synthetic SilCR, we identified GAS and GGS strains that are capable of sensing and naturally producing SilCR, and showed that SilCR can be sensed across these streptococci species. These findings suggest that sil may be involved in colonization and establishment of commensal host-bacterial relationships. Cell-to-cell communication in bacteria is termed quorum-sensing (QS), which is triggered by signaling molecules called autoinducers. In streptococci, autoinducers are synthesized as immature peptides that are processed, secreted, and then sensed by two-component systems (TCSs). As a result, the autoinducer's own expression is upregulated (autoinduction), subsequently creating an ultrasensitive switch that turns on more genes. Group A streptococcus (GAS) is a human pathogen that causes many infections, including necrotizing fasciitis (NF). Previously, we identified in a NF GAS strain a QS locus termed streptococcal invasion locus (sil). Due to a mutation in the autoinducer peptide-SilCR, it is not produced by this strain. Here we sought to better explore sil and to examine if SilCR can be produced by other GAS strains, or strains of its close relative group G streptococcus (GGS). To this end, we characterized the DNA promoter region responsible for the TCS-mediated activation upon sensing of SilCR, and based on bioinformatics and transcriptome analyses we identified genes that are directly affected by the autoinducer peptide. By converting SilCR response to fluorescence production and turning on the autoinduction circle with minute concentrations of synthetic SilCR, we discovered naturally SilCR-producing GAS and GGS strains, and showed that SilCR can be sensed across these species. Our study describes a novel way of cell-to-cell communications among streptococci.
Collapse
Affiliation(s)
- Ilia Belotserkovsky
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University, Faculty of Medicine Jerusalem, Israel
| | - Moshe Baruch
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University, Faculty of Medicine Jerusalem, Israel
| | - Asaf Peer
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University, Faculty of Medicine Jerusalem, Israel
| | - Eran Dov
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University, Faculty of Medicine Jerusalem, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University, Faculty of Medicine Jerusalem, Israel
| | - Inbal Mishalian
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University, Faculty of Medicine Jerusalem, Israel
| | - Merav Persky
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University, Faculty of Medicine Jerusalem, Israel
| | - Yoav Smith
- Genomic Data Analysis Unit of the Hebrew University Medical School, Jerusalem, Israel
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research – Israel-Canada (IMRIC), The Hebrew University, Faculty of Medicine Jerusalem, Israel
- * E-mail:
| |
Collapse
|