1
|
Wang W, Qi Z, Yan C, Zhou Z, Wang J. A Cold-Induced LEA3 Protein, DohD, Confers Cryoprotective Protection Against Low-Temperature Stress in Deinococcus radiodurans. Int J Mol Sci 2025; 26:3511. [PMID: 40332004 PMCID: PMC12027078 DOI: 10.3390/ijms26083511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Deinococcus radiodurans is a remarkably unique microorganism, exhibiting extraordinary tolerance to extreme conditions such as ionizing radiation, ultraviolet light, and desiccation. However, the response mechanisms of D. radiodurans under low-temperature stress remain largely unexplored and have yet to be fully elucidated. The DohD protein is a hydrophilic member of the late embryogenesis abundant 3 (LEA3) family of D. radiodurans, playing a pivotal role in abiotic stress adaptation. Bioinformatics analysis revealed that DohD contains tandem repeats and disordered domains, with a remarkably high α-helix content (91.41%). Furthermore, DohD exhibits extremely low homology with other proteins, highlighting its uniqueness to D. radiodurans. Under low-temperature stress (15 °C), the expression of dohD was significantly upregulated (5-fold), regulated by a dual mechanism involving positive control by DrRRA and negative regulation by Csp. Circular dichroism spectroscopy unveiled temperature-dependent structural plasticity: as the temperature increased from 0 °C to 50° C, the α-helix content decreased from 23.5% to 18.7%, while the antiparallel β-sheet content increased from 31.3% to 50.8%. This suggests an α-helix to β-sheet interconversion mechanism as a strategy for thermal adaptation. Additionally, deletion of dohD impaired the tolerance of D. radiodurans to cold, desiccation, oxidative, and high-salt stresses, accompanied by the reduced activities of antioxidant enzymes (SOD, CAT, POD) and the downregulation of related gene expression. This study elucidates the multifunctional role of DohD in stress resistance through structural dynamics, transcriptional regulation, and redox homeostasis, providing valuable insights into the adaptation mechanisms of extremophiles.
Collapse
Affiliation(s)
- Wenxiu Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chunxia Yan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Zhengfu Zhou
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Guo Q, Zhan Y, Zhang W, Wang J, Yan Y, Wang W, Lin M. Development and Regulation of the Extreme Biofilm Formation of Deinococcus radiodurans R1 under Extreme Environmental Conditions. Int J Mol Sci 2023; 25:421. [PMID: 38203592 PMCID: PMC10778927 DOI: 10.3390/ijms25010421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
To grow in various harsh environments, extremophiles have developed extraordinary strategies such as biofilm formation, which is an extremely complex and progressive process. However, the genetic elements and exact mechanisms underlying extreme biofilm formation remain enigmatic. Here, we characterized the biofilm-forming ability of Deinococcus radiodurans in vitro under extreme environmental conditions and found that extremely high concentrations of NaCl or sorbitol could induce biofilm formation. Meantime, the survival ability of biofilm cells was superior to that of planktonic cells in different extreme conditions, such as hydrogen peroxide stress, sorbitol stress, and high UV radiation. Transcriptome profiles of D. radiodurans in four different biofilm development stages further revealed that only 13 matched genes, which are involved in environmental information processing, carbohydrate metabolism, or stress responses, share sequence homology with genes related to the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Overall, 64% of the differentially expressed genes are functionally unknown, indicating the specificity of the regulatory network of D. radiodurans. The mutation of the drRRA gene encoding a response regulator strongly impaired biofilm formation ability, implying that DrRRA is an essential component of the biofilm formation of D. radiodurans. Furthermore, transcripts from both the wild type and the drRRA mutant were compared, showing that the expression of drBON1 (Deinococcus radioduransBON domain-containing protein 1) significantly decreased in the drRRA mutant during biofilm development. Further analysis revealed that the drBON1 mutant lacked the ability to form biofilm and DrRRA, and as a facilitator of biofilm formation, could directly stimulate the transcription of the biofilm-related gene drBON1. Overall, our work highlights a molecular mechanism mediated by the response regulator DrRRA for controlling extreme biofilm formation and thus provides guidance for future studies to investigate novel mechanisms that are used by D. radiodurans to adapt to extreme environments.
Collapse
Affiliation(s)
- Qiannan Guo
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhua Zhan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongliang Yan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenxiu Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Lin
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
A Novel Glycoside Hydrolase DogH Utilizing Soluble Starch to Maltose Improve Osmotic Tolerance in Deinococcus radiodurans. Int J Mol Sci 2023; 24:ijms24043437. [PMID: 36834856 PMCID: PMC9967864 DOI: 10.3390/ijms24043437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Deinococcus radiodurans is a microorganism that can adjust, survive or thrive in hostile conditions and has been described as "the strongest microorganism in the world". The underlying mechanism behind the exceptional resistance of this robust bacterium still remains unclear. Osmotic stress, caused by abiotic stresses such as desiccation, salt stress, high temperatures and freezing, is one of the main stresses suffered by microorganisms, and it is also the basic response pathway by which organisms cope with environmental stress. In this study, a unique trehalose synthesis-related gene, dogH (Deinococcus radiodurans orphan glycosyl hydrolase-like family 10), which encodes a novel glycoside hydrolase, was excavated using a multi-omics combination method. The content accumulation of trehalose and its precursors under hypertonic conditions was quantified by HPLC-MS. Ours results showed that the dogH gene was strongly induced by sorbitol and desiccation stress in D. radiodurans. DogH glycoside hydrolase hydrolyzes α-1,4-glycosidic bonds by releasing maltose from starch in the regulation of soluble sugars, thereby increasing the concentration of TreS (trehalose synthase) pathway precursors and trehalose biomass. The maltose and alginate content in D. radiodurans amounted to 48 μg mg protein-1 and 45 μg mg protein-1, respectively, which were 9 and 28 times higher than those in E. coli, respectively. The accumulation of greater intracellular concentrations of osmoprotectants may be the true reason for the higher osmotic stress tolerance of D. radiodurans.
Collapse
|
4
|
Abstract
Deinococcus radiodurans possesses robust DNA damage response and repair abilities, and this is mainly due to its efficient homologous recombination repair system, which incorporates an uncharacterized Holliday junction (HJ) resolution process. D. radiodurans encodes two putative HJ resolvase (HJR) homologs: RuvC (DrRuvC) and YqgF (DrYqgF). Here, both DrRuvC and DrYqgF were identified as essential proteins for the survival of D. radiodurans. The crystal structures and the biochemical properties of DrRuvC and DrYqgF were also studied. DrRuvC crystallized as a homodimer, while DrYqgF crystallized as a monomer. DrRuvC could preferentially cleave HJ at the consensus 5'-(G/C)TC↓(G/C)-3' sequence and could prefer using Mn2+ for catalysis in vitro, which would be different from the preferences of the other previously characterized RuvCs. On the other hand, DrYqgF was identified as a Mn2+-dependent RNA 5'-3' exo/endonuclease with a sequence preference for poly(A) and without any HJR activity. IMPORTANCE Deinococcus radiodurans is one of the most radioresistant bacteria in the world due to its robust DNA damage response and repair abilities, which are contributed by its efficient homologous recombination repair system. However, the late steps of homologous recombination, especially the Holliday junction (HJ) resolution process, have not yet been well-studied in D. radiodurans. We characterized the structural and biochemical features of the two putative HJ resolvases, DrRuvC and DrYqgF, in D. radiodurans. It was identified that DrRuvC and DrYqgF exhibit HJ resolvase (HJR) activity and RNA exo/endonuclease activity, respectively. Furthermore, both DrRuvC and DrYqgF digest substrates in a sequence-specific manner with a preferred sequence that is different from those of the other characterized RuvCs or YqgFs. Our findings provide new insights into the HJ resolution process and reveal a novel RNase involved in RNA metabolism in D. radiodurans.
Collapse
|
5
|
A Novel Small RNA, DsrO, in Deinococcus radiodurans Promotes Methionine Sulfoxide Reductase ( msrA) Expression for Oxidative Stress Adaptation. Appl Environ Microbiol 2022; 88:e0003822. [PMID: 35575549 PMCID: PMC9195949 DOI: 10.1128/aem.00038-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS) can cause destructive damage to biological macromolecules and protein dysfunction in bacteria. Methionine sulfoxide reductase (Msr) with redox-active Cys and/or seleno-cysteine (Sec) residues can restore physiological functions of the proteome, which is essential for oxidative stress tolerance of the extremophile Deinococcus radiodurans. However, the underlying mechanism regulating MsrA enzyme activity in D. radiodurans under oxidative stress has remained elusive. Here, we identified the function of MsrA in response to oxidative stress. msrA expression in D. radiodurans was significantly upregulated under oxidative stress. The msrA mutant showed a deficiency in antioxidative capacity and an increased level of dabsyl-Met-S-SO, indicating increased sensitivity to oxidative stress. Moreover, msrA mRNA was posttranscriptionally regulated by a small RNA, DsrO. Analysis of the molecular interaction between DsrO and msrA mRNA demonstrated that DsrO increased the half-life of msrA mRNA and then upregulated MsrA enzyme activity under oxidative stress compared to the wild type. msrA expression was also transcriptionally regulated by the DNA-repairing regulator DrRRA, providing a connection for further analysis of protein restoration during DNA repair. Overall, our results provide direct evidence that DsrO and DrRRA regulate msrA expression at two levels to stabilize msrA mRNA and increase MsrA protein levels, revealing the protective roles of DsrO signaling in D. radiodurans against oxidative stress. IMPORTANCE The repair of oxidized proteins is an indispensable function allowing the extremophile D. radiodurans to grow in adverse environments. Msr proteins and various oxidoreductases can reduce oxidized Cys and Met amino acid residues of damaged proteins to recover protein function. Consequently, it is important to investigate the molecular mechanism maintaining the high reducing activity of MsrA protein in D. radiodurans during stresses. Here, we showed the protective roles of an sRNA, DsrO, in D. radiodurans against oxidative stress. DsrO interacts with msrA mRNA to improve msrA mRNA stability, and this increases the amount of MsrA protein. In addition, we also showed that DrRRA transcriptionally regulated msrA gene expression. Due to the importance of DrRRA in regulating DNA repair, this study provides a clue for further analysis of MsrA activity during DNA repair. This study indicates that protecting proteins from oxidation is an effective strategy for extremophiles to adapt to stress conditions.
Collapse
|
6
|
Liu Y, Zhang C, Wang Z, Lin M, Wang J, Wu M. Pleiotropic roles of late embryogenesis abundant proteins of Deinococcus radiodurans against oxidation and desiccation. Comput Struct Biotechnol J 2021; 19:3407-3415. [PMID: 34188783 PMCID: PMC8213827 DOI: 10.1016/j.csbj.2021.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 11/30/2022] Open
Abstract
Deinococcus radiodurans, an important extremophile, possesses extraordinary stress tolerance ability against lethal and mutagenic effects of DNA-damaging agents, such as γ-rays, ultraviolet, oxidation, and desiccation. How global regulators of this bacterium function in response to oxidation and desiccation has been an intense topic as elucidating such mechanisms may help to facilitate some beneficial applications in agriculture or medicine. Particularly, a variety of functional proteins have been characterized for D. radiodurans' behaviors under abiotic stresses. Interestingly, a group of Late Embryogenesis Abundant proteins (LEAs) in D. radiodurans have been characterized both biochemically and physiologically, which are shown indispensable for stabilizing crucial metabolic enzymes in a chaperone-like manner and thereby maintaining the metal ion homeostasis under oxidation and desiccation. The rapid progress in understanding deinococcal LEA proteins has substantially extended their functions in both plants and animals. Herein, we discuss the latest studies of radiodurans LEA proteins ranging from the classification to structures to functions. Importantly, the harnessing of these proteins may have unlimited potential for biotechnology, engineering and disease treatments.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Chen Zhang
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| |
Collapse
|
7
|
Pressure-resistant acclimation of lactic acid bacteria from a natural fermentation product using high pressure. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Pandey S, Kumar A, Kirti A, Gupta GD, Rajaram H. Rec(F/O/R) proteins of the nitrogen-fixing cyanobacterium Nostoc PCC7120: In silico and expression analysis. Gene 2021; 788:145663. [PMID: 33887372 DOI: 10.1016/j.gene.2021.145663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/01/2021] [Accepted: 04/15/2021] [Indexed: 01/19/2023]
Abstract
The high radioresistance of Nostoc sp. strain PCC7120 is indicative of a robust DNA repair pathway. In the absence of NHEJ pathway and the canonical RecBCD proteins, the RecF pathway proteins are expected to play an important role in double strand break repair in this organism. The RecF, RecO and RecR proteins which are central to the RecF pathway have not been characterised in the ancient cyanobacteria, several of which are known to be radioresistant. The characterisation of these proteins was initiated through a mix of in silico, expression and complementation analysis. Differential expression of the recF, recO and recR genes was observed both at the transcript and the protein level under normal growth condition, which did not change significantly upon exposure to DNA damage stresses. Expression of RecR as a 23 kDa protein in vivo in Nostoc PCC7120 confirmed the re-annotation of the initiation codon of the gene (alr4977) to a rare initiation codon 'GTT' 267 bases upstream of the annotated initiation codon. Of the three proteins, Nostoc RecO and RecR proteins could complement the corresponding mutations in Escherichia coli, but not RecF. The Nostoc RecO protein exhibited low sequence and structural homology with other bacterial RecO protein, and was predicted to have a longer loop region. Phylogenetic as well as sequence analysis revealed high conservation among bacterial RecR proteins and least for RecO. In silico analysis revealed a comparatively smaller interactome for the Nostoc RecF, RecO and RecR proteins compared to other bacteria, with RecO predicted to interact with both RecF and RecR. The information gathered can form a stepping stone to further characterise these proteins in terms of deciphering their interactome, biochemical and physiological activities. This would help in establishing their importance in RecF pathway of DSB repair in Nostoc PCC7120.
Collapse
Affiliation(s)
- Sarita Pandey
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Arvind Kumar
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Anurag Kirti
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Gagan D Gupta
- Radiaiton Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Hema Rajaram
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
9
|
Zhou X, Chen X, An Y, Lu H, Wang L, Xu H, Tian B, Zhao Y, Hua Y. Biochemical characterization of a unique DNA polymerase A from the extreme radioresistant organism Deinococcus radiodurans. Biochimie 2021; 185:22-32. [PMID: 33727139 DOI: 10.1016/j.biochi.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023]
Abstract
Deinococcus radiodurans survives extraordinary doses of ionizing radiation and desiccation that cause numerous DNA strand breaks. D. radiodurans DNA polymerase A (DrPolA) is essential for reassembling the shattered genome, while its biochemical property has not been fully demonstrated. In this study, we systematically examined the enzymatic activities of DrPolA and characterized its unique features. DrPolA contains an N-terminal nuclease domain (DrPolA-NTD) and a C-terminal Klenow fragment (KlenDr). Compared with the Klenow fragment of E. coli Pol I, KlenDr shows higher fidelity despite the lacking of 3'-5' exonuclease proofreading activity and prefers double-strand DNA rather than Primer-Template substrates. Apart from the well-annotated 5'-3' exonuclease and flap endonuclease activities, DrPolA-NTD displays approximately 140-fold higher gap endonuclease activity than its homolog in E. coli and Human FEN1. Its 5'-3' exonuclease activity on ssDNA, gap endonuclease, and Holliday junction cleavage activities are greatly enhanced by Mn2+. The DrPolA-NTD deficient strain shows increased sensitivity to UV and gamma-ray radiation. Collectively, our results reveal distinct biochemical characteristics of DrPolA during DNA degradation and re-synthesis, which provide new insight into the outstanding DNA repair capacity of D. radiodurans.
Collapse
Affiliation(s)
- Xingru Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Xuanyi Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Ying An
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Huizhi Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Liangyan Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Hong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Bing Tian
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Ye Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Yuejin Hua
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China.
| |
Collapse
|
10
|
Double strand break (DSB) repair in Cyanobacteria: Understanding the process in an ancient organism. DNA Repair (Amst) 2020; 95:102942. [DOI: 10.1016/j.dnarep.2020.102942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
|
11
|
Chen Z, Tang Y, Hua Y, Zhao Y. Structural features and functional implications of proteins enabling the robustness of Deinococcus radiodurans. Comput Struct Biotechnol J 2020; 18:2810-2817. [PMID: 33133422 PMCID: PMC7575645 DOI: 10.1016/j.csbj.2020.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Deinococcus radiodurans can survive under extreme conditions, including high doses of DNA damaging agents and ionizing radiation, desiccation, and oxidative stress. Both the efficient cellular DNA repair machinery and antioxidation systems contribute to the extreme resistance of this bacterium, making it an ideal organism for studying the cellular mechanisms of environmental adaptation. The number of stress-related proteins identified in this bacterium has mushroomed in the past two decades. The newly identified proteins reveal both commonalities and diversity of structure, mechanism, and function, which impact a wide range of cellular functions. Here, we review the unique and general structural features of these proteins and discuss how these studies improve our understanding of the environmental stress adaptation mechanisms of D. radiodurans.
Collapse
Affiliation(s)
- Zijing Chen
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuyue Tang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Draft Genome Sequence of Deinococcus sp. Strain S9, Isolated from Microbial Mat Deposits of Hot Springs Located atop the Himalayan Ranges at Manikaran, India. Microbiol Resour Announc 2019; 8:8/28/e00316-19. [PMID: 31296675 PMCID: PMC6624758 DOI: 10.1128/mra.00316-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present the draft genome sequence of Deinococcus sp. strain S9, a red-pigmented and moderately thermophilic bacterium isolated from microbial mat deposits around the hot springs at Manikaran, Himachal Pradesh, India. The draft genome (3.34 Mb) contains 101 contigs with an average GC content of 66.4%. Here, we present the draft genome sequence of Deinococcus sp. strain S9, a red-pigmented and moderately thermophilic bacterium isolated from microbial mat deposits around the hot springs at Manikaran, Himachal Pradesh, India. The draft genome (3.34 Mb) contains 101 contigs with an average GC content of 66.4%.
Collapse
|
13
|
Wang Y, Xu G, Wang L, Hua Y. Distinct roles of Deinococcus radiodurans RecFOR and RecA in DNA transformation. Biochem Biophys Res Commun 2019; 513:740-745. [PMID: 30992133 DOI: 10.1016/j.bbrc.2019.04.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
RecFOR and RecA are key recombination factors in Deinococcus radiodurans, a bacterium that possesses robust DNA repair capability and is also naturally transformable. While RecFOR functioning as a RecA loader during DNA repair has been established, their relative roles in transformation need further exploration. Here, we constructed recFOR and recA deletion mutants of D. radiodurans, and investigated the effect of these mutations on DNA transformation. recA deletion causes defects in both plasmid and chromosomal transformation. However, it was found that recFOR is not involved in chromosomal transformation, and that only recO and recR mutations compromise plasmid transformation. How recO, recR and recA mutations influence plasmid transformation was further examined by complementation plasmids. Interestingly, the transformation process remains defective in the recA mutant, but gets restored in the recO and recR mutants. This indicates that unlike RecA, RecOR may not be essential for DNA uptake. Therefore, we provide evidence that RecFOR is dispensable for RecA to protect incoming exogenous DNA and to catalyze recombination during transformation. Instead, RecO and RecR are likely to promote later steps in plasmid transformation.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Guangzhi Xu
- Agriculture and Food Science School, Zhejiang Agriculture and Forestry University, Zhejiang, Lin'an, 311300, China
| | - Liangyan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China.
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
14
|
Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19-52. [PMID: 30339218 PMCID: PMC6300522 DOI: 10.1093/femsre/fuy037] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species. For example, only a few Deinococcus-specific proteins and radiation resistance-associated regulatory proteins are present in each Deinococcus, notably the metallopeptidase/repressor pair IrrE/DdrO that controls the radiation/desiccation response regulon. Inversely, some Deinococcus species possess proteins that D. radiodurans lacks, including DNA repair proteins consisting of novel domain combinations, translesion polymerases, additional metalloregulators, redox-sensitive regulator SoxR and manganese-containing catalase. Moreover, the comparisons improved the characterisation of several proteins regarding important conserved residues, cellular location and possible protein–protein interactions. This comprehensive analysis indicates not only conservation but also large diversity in the molecular mechanisms involved in radiation resistance even within the Deinococcus genus.
Collapse
Affiliation(s)
- Sangyong Lim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | | | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
15
|
Cheng K, Xu G, Xu H, Zhao Y, Hua Y. Deinococcus radiodurans
DR1088 is a novel RecF-interacting protein that stimulates single-stranded DNA annealing. Mol Microbiol 2017; 106:518-529. [DOI: 10.1111/mmi.13828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Kaiying Cheng
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences; Zhejiang University; Hangzhou 310029 China
| | - Guangzhi Xu
- Agriculture and Food Science School; Zhejiang Agriculture and Forestry University, Zhejiang; Lin'an 311300 China
| | - Hong Xu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences; Zhejiang University; Hangzhou 310029 China
| | - Ye Zhao
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences; Zhejiang University; Hangzhou 310029 China
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences; Zhejiang University; Hangzhou 310029 China
| |
Collapse
|
16
|
Cheng K, Xu H, Chen X, Wang L, Tian B, Zhao Y, Hua Y. Structural basis for DNA 5´-end resection by RecJ. eLife 2016; 5:e14294. [PMID: 27058167 PMCID: PMC4846377 DOI: 10.7554/elife.14294] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022] Open
Abstract
The resection of DNA strand with a 5´ end at double-strand breaks is an essential step in recombinational DNA repair. RecJ, a member of DHH family proteins, is the only 5´ nuclease involved in the RecF recombination pathway. Here, we report the crystal structures of Deinococcus radiodurans RecJ in complex with deoxythymidine monophosphate (dTMP), ssDNA, the C-terminal region of single-stranded DNA-binding protein (SSB-Ct) and a mechanistic insight into the RecF pathway. A terminal 5´-phosphate-binding pocket above the active site determines the 5´-3´ polarity of the deoxy-exonuclease of RecJ; a helical gateway at the entrance to the active site admits ssDNA only; and the continuous stacking interactions between protein and nine nucleotides ensure the processive end resection. The active site of RecJ in the N-terminal domain contains two divalent cations that coordinate the nucleophilic water. The ssDNA makes a 180° turn at the scissile phosphate. The C-terminal domain of RecJ binds the SSB-Ct, which explains how RecJ and SSB work together to efficiently process broken DNA ends for homologous recombination.
Collapse
Affiliation(s)
- Kaiying Cheng
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Xuanyi Chen
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Bing Tian
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Cheng K, Zhao Y, Chen X, Li T, Wang L, Xu H, Tian B, Hua Y. A Novel C-Terminal Domain of RecJ is Critical for Interaction with HerA in Deinococcus radiodurans. Front Microbiol 2015; 6:1302. [PMID: 26648913 PMCID: PMC4663267 DOI: 10.3389/fmicb.2015.01302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/06/2015] [Indexed: 01/09/2023] Open
Abstract
Homologous recombination (HR) generates error-free repair products, which plays an important role in double strand break repair and replication fork rescue processes. DNA end resection, the critical step in HR, is usually performed by a series of nuclease/helicase. RecJ was identified as a 5'-3' exonuclease involved in bacterial DNA end resection. Typical RecJ possesses a conserved DHH domain, a DHHA1 domain, and an oligonucleotide/oligosaccharide-binding (OB) fold. However, RecJs from Deinococcus-Thermus phylum, such as Deinococcus radiodurans RecJ (DrRecJ), possess an extra C-terminal domain (CTD), of which the function has not been characterized. Here, we showed that a CTD-deletion of DrRecJ (DrRecJΔC) could not restore drrecJ mutant growth and mitomycin C (MMC)-sensitive phenotypes, indicating that this domain is essential for DrRecJ in vivo. DrRecJΔC displayed reduced DNA nuclease activity and DNA binding ability. Direct interaction was identified between DrRecJ-CTD and DrHerA, which stimulates DrRecJ nuclease activity by enhancing its DNA binding affinity. Moreover, DrNurA nuclease, another partner of DrHerA, inhibited the stimulation of DrHerA on DrRecJ nuclease activity by interaction with DrHerA. Opposing growth and MMC-resistance phenotypes between the recJ and nurA mutants were observed. A novel modulation mechanism among DrRecJ, DrHerA, and DrNurA was also suggested.
Collapse
Affiliation(s)
- Kaiying Cheng
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Ye Zhao
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Xuanyi Chen
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Tao Li
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Liangyan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Hong Xu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Bing Tian
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
18
|
Cheng J, Wang H, Xu X, Wang L, Tian B, Hua Y. Characteristics of dr1790 disruptant and its functional analysis in Deinococcus radiodurans. Braz J Microbiol 2015; 46:601-11. [PMID: 26273280 PMCID: PMC4507557 DOI: 10.1590/s1517-838246220131018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 12/19/2014] [Indexed: 11/22/2022] Open
Abstract
Deinococcus radiodurans (DR) is an extremophile that is well
known for its resistance to radiation, oxidants and desiccation. The gene
dr1790 of D. radiodurans
was predicted to encode a yellow-related protein. The primary objective of the
present study was to characterize the biological function of the DR1790 protein,
which is a member of the ancient yellow/major royal jelly (MRJ) protein family,
in prokaryotes. Fluorescence labeling demonstrated that the yellow-related
protein encoded by dr1790 is a membrane protein. The deletion
of the dr1790 gene decreased the cell growth rate and
sensitivity to hydrogen peroxide and radiation and increased the membrane
permeability of D. radiodurans. Transcript
profiling by microarray and RT-PCR analyses of the dr1790
deletion mutant suggested that some genes that are involved in protein secretion
and transport were strongly suppressed, while other genes that are involved in
protein quality control, such as chaperones and proteases, were induced. In
addition, the expression of genes with predicted functions that are involved in
antioxidant systems, electron transport, and energy metabolism was significantly
altered through the disruption of dr1790. Moreover, the results
of proteomic analyses using 2-DE and MS also demonstrated that DR1790
contributed to D. radiodurans survival. Taken
together, these results indicate that the DR1790 protein from the ancient yellow
protein family plays a pleiotropic role in the survival of prokaryotic cells and
contributes to the extraordinary resistance of D. radiodurans
against oxidative and radiation stresses.
Collapse
Affiliation(s)
- Jianhui Cheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hu Wang
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, China, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, China
| | - Xin Xu
- Zhejiang University, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- Zhejiang University, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Bing Tian
- Zhejiang University, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- Zhejiang University, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Biochemical and Functional Characterization of the NurA-HerA Complex from Deinococcus radiodurans. J Bacteriol 2015; 197:2048-61. [PMID: 25868646 DOI: 10.1128/jb.00018-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In archaea, the NurA nuclease and HerA ATPase/helicase, together with the Mre11-Rad50 complex, function in 3' single-stranded DNA (ssDNA) end processing during homologous recombination (HR). However, bacterial homologs of NurA and HerA have not been characterized. From Deinococcus radiodurans, we identified the manganese-dependent 5'-to-3' ssDNA/double-stranded DNA (dsDNA) exonuclease/endonuclease NurA (DrNurA) and the ATPase HerA (DrHerA). These two proteins stimulated each other's activity through direct protein-protein interactions. The N-terminal HAS domain of DrHerA was the key domain for this interaction. Several critical residues of DrNurA and DrHerA were verified by site-directed mutational analysis. Temperature-dependent activity assays confirmed that the two proteins had mesophilic features, with optimum activity temperatures 10 °C to 15 °C higher than their optimum growth temperatures. Knocking out either nurA or herA affected cell proliferation by shortening the growth phase, especially for growth at a high temperature (37 °C). In addition, both mutant strains displayed almost 10-fold-reduced intermolecular recombination efficiency, indicating that DrNurA and DrHerA might be involved in homologous recombination in vivo. However, single- and double-gene deletions did not show significantly decreased radioresistance. Our results confirmed that the biochemical activities of bacterial NurA and HerA proteins were conserved with archaea. Our phenotypical results suggested that these proteins might have different functions in bacteria. IMPORTANCE Deinococcus radiodurans NurA (DrNurA) was identified as a manganese-dependent 5'-to-3' ssDNA/dsDNA exonuclease/endonuclease, and Deinococcus radiodurans HerA (DrHerA) was identified as an ATPase. Physical interactions between DrNurA and DrHerA explained mutual stimulation of their activities. The N-terminal HAS domain on DrHerA was identified as the interaction domain. Several essential functional sites on DrNurA and DrHerA were characterized. Both DrHerA and DrNurA showed mesophilic biochemical features, with their optimum activity temperatures 10 °C to 15 °C higher than their optimum growth temperatures in vitro. Knockout of nurA or herA led to abnormal cell proliferation and reduced intermolecular recombination efficiency but no obvious effect on radioresistence.
Collapse
|
20
|
Tsai CH, Liao R, Chou B, Contreras LM. Transcriptional analysis of Deinococcus radiodurans reveals novel small RNAs that are differentially expressed under ionizing radiation. Appl Environ Microbiol 2015; 81:1754-64. [PMID: 25548054 PMCID: PMC4325154 DOI: 10.1128/aem.03709-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023] Open
Abstract
Small noncoding RNAs (sRNAs) are posttranscriptional regulators that have been identified in multiple species and shown to play essential roles in responsive mechanisms to environmental stresses. The natural ability of specific bacteria to resist high levels of radiation has been of high interest to mechanistic studies of DNA repair and biomolecular protection. Deinococcus radiodurans is a model extremophile for radiation studies that can survive doses of ionizing radiation of >12,000 Gy, 3,000 times higher than for most vertebrates. Few studies have investigated posttranscriptional regulatory mechanisms of this organism that could be relevant in its general gene regulatory patterns. In this study, we identified 199 potential sRNA candidates in D. radiodurans by whole-transcriptome deep sequencing analysis and confirmed the expression of 41 sRNAs by Northern blotting and reverse transcriptase PCR (RT-PCR). A total of 8 confirmed sRNAs showed differential expression during recovery after acute ionizing radiation (15 kGy). We have also found and confirmed 7 sRNAs in Deinococcus geothermalis, a closely related radioresistant species. The identification of several novel sRNAs in Deinococcus bacteria raises important questions about the evolution and nature of global gene regulation in radioresistance.
Collapse
Affiliation(s)
- Chen-Hsun Tsai
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Rick Liao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Brendan Chou
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
21
|
Zhang H, Xu Q, Lu M, Xu X, Wang Y, Wang L, Zhao Y, Hua Y. Structural and functional studies of MutS2 from Deinococcus radiodurans. DNA Repair (Amst) 2014; 21:111-9. [DOI: 10.1016/j.dnarep.2014.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/18/2014] [Accepted: 04/20/2014] [Indexed: 01/13/2023]
|
22
|
Cheng K, Xu X, Zhao Y, Wang L, Xu G, Hua Y. The key residue for SSB-RecO interaction is dispensable for Deinococcus radiodurans DNA repair in vivo. Acta Biochim Biophys Sin (Shanghai) 2014; 46:368-76. [PMID: 24681881 DOI: 10.1093/abbs/gmu013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The RecFOR DNA repair pathway is one of the major RecA-dependent recombinatorial repair pathways in bacteria and plays an important role in double-strand breaks repair. RecO, one of the major recombination mediator proteins in the RecFOR pathway, has been shown to assist RecA loading onto single-stranded binding protein (SSB) coated single-stranded DNA (ssDNA). However, it has not been characterized whether the protein-protein interaction between RecO and SSB contributes to that process in vivo. Here, we identified the residue arginine-121 of Deinococcus radiodurans RecO (drRecO-R121) as the key residue for RecO-SSB interaction. The substitution of drRecO-R121 with alanine greatly abolished the binding of RecO to SSB but not the binding to RecR. Meanwhile, SSB-coated ssDNA annealing activity was also compromised by the mutation of the residue of drRecO. However, the drRecO-R121A strain showed only modest sensitivity to DNA damaging agents. Taking these data together, arginine-121 of drRecO is the key residue for SSB-RecO interaction, which may not play a vital role in the SSB displacement and RecA loading process of RecFOR DNA repair pathway in vivo.
Collapse
Affiliation(s)
- Kaiying Cheng
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | |
Collapse
|
23
|
Yang P, Chen Z, Shan Z, Ding X, Liu L, Guo J. Effects of FMN riboswitch on antioxidant activity in Deinococcus radiodurans under H₂O₂ stress. Microbiol Res 2013; 169:411-6. [PMID: 24103862 DOI: 10.1016/j.micres.2013.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
The flavin mononucleotide (FMN) riboswitch is structured noncoding RNA domains that control gene expression by selectively binding FMN or sensing surrounding changes without protein factors, which are involved in the biosynthesis and transport of riboflavin and related compounds. We constructed the deletion mutant of FMN riboswitch to investigate its possible role in response to H₂O₂ stress in Deinococcus radiodurans. The results showed that the deletion of FMN riboswitch resulted in an obvious growth delay in D. radiodurans. Compared with the survival rate of 56% of D. radiodurans, only 40% of the mutant survived after treated with 50 mM of H₂O₂, indicating that deletion of FMN riboswitch obviously increased the susceptibility to H₂O₂. Compared with the wild type R1 strain of D. radiodurans, FMN riboswitch knockout cells accumulated a higher level of intracellular reactive oxygen species (ROS) while their total catalase activity reduced significantly. Results from quantitative real-time PCR analysis implies structural alterations of in response to H₂O₂ challenge. Our data suggest a critical role of FMN riboswitch in the oxidation tolerance system of D. radiodurans.
Collapse
Affiliation(s)
- Peng Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Zhouwei Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Zhan Shan
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Xianfeng Ding
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Lili Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Jiangfeng Guo
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
24
|
Gupta R, Ryzhikov M, Koroleva O, Unciuleac M, Shuman S, Korolev S, Glickman MS. A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing. Nucleic Acids Res 2013; 41:2284-95. [PMID: 23295671 PMCID: PMC3575820 DOI: 10.1093/nar/gks1298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 11/14/2012] [Indexed: 11/14/2022] Open
Abstract
Mycobacteria have two genetically distinct pathways for the homology-directed repair of DNA double-strand breaks: homologous recombination (HR) and single-strand annealing (SSA). HR is abolished by deletion of RecA and reduced in the absence of the AdnAB helicase/nuclease. By contrast, SSA is RecA-independent and requires RecBCD. Here we examine the function of RecO in mycobacterial DNA recombination and repair. Loss of RecO elicits hypersensitivity to DNA damaging agents similar to that caused by deletion of RecA. We show that RecO participates in RecA-dependent HR in a pathway parallel to the AdnAB pathway. We also find that RecO plays a role in the RecA-independent SSA pathway. The mycobacterial RecO protein displays a zinc-dependent DNA binding activity in vitro and accelerates the annealing of SSB-coated single-stranded DNA. These findings establish a role for RecO in two pathways of mycobacterial DNA double-strand break repair and suggest an in vivo function for the DNA annealing activity of RecO proteins, thereby underscoring their similarity to eukaryal Rad52.
Collapse
Affiliation(s)
- Richa Gupta
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mikhail Ryzhikov
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Olga Koroleva
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mihaela Unciuleac
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Stewart Shuman
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sergey Korolev
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Michael S. Glickman
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
25
|
Beaume N, Pathak R, Yadav VK, Kota S, Misra HS, Gautam HK, Chowdhury S. Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D. radiodurans involves G4 DNA-mediated regulation. Nucleic Acids Res 2012; 41:76-89. [PMID: 23161683 PMCID: PMC3592403 DOI: 10.1093/nar/gks1071] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4P) index we analysed >60 000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4P. Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4P of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ∼60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions.
Collapse
Affiliation(s)
- Nicolas Beaume
- GNR Knowledge Centre for Genome Informatics, Division of Comparative Genomics, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | | | | | | | | | |
Collapse
|
26
|
Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 2012; 78:4074-82. [PMID: 22492435 DOI: 10.1128/aem.00050-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Around the world, there are numerous alkaline, hypersaline environments that are heated either geothermally or through intense solar radiation. It was once thought that such harsh environments were inhospitable and incapable of supporting a variety of life. However, numerous culture-dependent and -independent studies revealed the presence of an extensive diversity of aerobic and anaerobic bacteria and archaea that survive and grow under these multiple harsh conditions. This diversity includes the halophilic alkalithermophiles, a novel group of polyextremophiles that require for growth and proliferation the multiple extremes of high salinity, alkaline pH, and elevated temperature. Life under these conditions undoubtedly involves the development of unique physiological characteristics, phenotypic properties, and adaptive mechanisms that enable control of membrane permeability, control of intracellular osmotic balance, and stability of the cell wall, intracellular proteins, and other cellular constituents. This minireview highlights the ecology and growth characteristics of the extremely halophilic alkalithermophiles that have been isolated thus far. Biochemical, metabolic, and physiological properties of the extremely halophilic alkalithermophiles are described, and their roles in resistance to the combined stressors of high salinity, alkaline pH, and high temperature are discussed. The isolation of halophilic alkalithermophiles broadens the physicochemical boundaries for life and extends the boundaries for the combinations of the maximum salinity, pH, and temperature that can support microbial growth.
Collapse
|
27
|
Satoh K, Kikuchi M, Ishaque AM, Ohba H, Yamada M, Tejima K, Onodera T, Narumi I. The role of Deinococcus radiodurans RecFOR proteins in homologous recombination. DNA Repair (Amst) 2012; 11:410-8. [PMID: 22321371 DOI: 10.1016/j.dnarep.2012.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 11/26/2022]
Abstract
Deinococcus radiodurans exhibits extraordinary resistance to the lethal effect of DNA-damaging agents, a characteristic attributed to its highly proficient DNA repair capacity. Although the D. radiodurans genome is clearly devoid of recBC and addAB counterparts as RecA mediators, the genome possesses all genes associated with the RecFOR pathway. In an effort to gain insights into the role of D. radiodurans RecFOR proteins in homologous recombination, we generated recF, recO and recR disruptant strains and characterized the disruption effects. All the disruptant strains exhibited delayed growth relative to the wild-type, indicating that the RecF, RecO and RecR proteins play an important role in cell growth under normal growth conditions. A slight reduction in transformation efficiency was observed in the recF and recO disruptant strains compared to the wild-type strain. Interestingly, disruption of recR resulted in severe reduction of the transformation efficiency. On the other hand, the recF disruptant strain was the most sensitive phenotype to γ rays, UV irradiation and mitomycin C among the three disruptants. In the recF disruptant strain, the intracellular level of the LexA1 protein did not decrease following γ irradiation, suggesting that a large amount of the RecA protein remains inactive despite being induced. These results demonstrate that the RecF protein plays a crucial role in the homologous recombination repair process by facilitating RecA activation in D. radiodurans. Thus, the RecF and RecR proteins are involved in the RecA activation and the stability of incoming DNA, respectively, during RecA-mediated homologous recombination processes that initiated the ESDSA pathway in D. radiodurans. Possible mechanisms that involve the RecFOR complex in homologous intermolecular recombination and homologous recombination repair processes are also discussed.
Collapse
Affiliation(s)
- Katsuya Satoh
- Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Takasaki, Gunma, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang H, Wang F, Hua X, Ma T, Chen J, Xu X, Wang L, Tian B, Hua Y. Genetic and biochemical characteristics of the histone-like protein DR0199 in Deinococcus radiodurans. MICROBIOLOGY-SGM 2012; 158:936-943. [PMID: 22282513 DOI: 10.1099/mic.0.053702-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial histone-like proteins are important for nucleoid structure, cell growth, DNA replication, recombination and gene regulation. In this study, we focused on the role of DR0199 (the EbfC orthologue), a newly identified member of the nucleoid-associated protein family in Deinococcus radiodurans. The survival fraction of DR0199-null mutant decreased by tenfold after treatment with 50 mM H(2)O(2), nearly sixfold at a 10 kGy dose of gamma ray and nearly eightfold at a UV exposure of 1000 J m(-2) compared with wild-type cells. The results of fluorescence labelling assays indicated that DR0199 protein localized in the nucleoid area of cells. Electrophoretic mobility shift assays demonstrated that D. radiodurans DR0199 is a DNA-binding protein. Furthermore, DNA protection assays suggested that DR0199 shields DNA from hydroxyl radical- and DNase I-mediated cleavage. The supercoiling of relaxed plasmid DNA in the presence of topoisomerase I revealed that DR0199 constrains DNA supercoils in vitro. Collectively, these findings suggest that DR0199 is a protein with DNA-protective properties and histone-like features that are involved in protecting D. radiodurans DNA from damage.
Collapse
Affiliation(s)
- Hu Wang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Fei Wang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 310016 Hangzhou, PR China
| | - Tingting Ma
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Jianhui Chen
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Xin Xu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Liangyan Wang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| |
Collapse
|
29
|
Abstract
Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.
Collapse
|
30
|
Repar J, Cvjetan S, Slade D, Radman M, Zahradka D, Zahradka K. RecA protein assures fidelity of DNA repair and genome stability in Deinococcus radiodurans. DNA Repair (Amst) 2011; 9:1151-61. [PMID: 20817622 DOI: 10.1016/j.dnarep.2010.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 08/02/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
Abstract
Deinococcus radiodurans is one of the most radiation-resistant organisms known. It can repair hundreds of radiation-induced double-strand DNA breaks without loss of viability. Genome reassembly in heavily irradiated D. radiodurans is considered to be an error-free process since no genome rearrangements were detected after post-irradiation repair. Here, we describe for the first time conditions that frequently cause erroneous chromosomal assemblies. Gross chromosomal rearrangements have been detected in recA mutant cells that survived exposure to 5kGy γ-radiation. The recA mutants are prone also to spontaneous DNA rearrangements during normal exponential growth. Some insertion sequences have been identified as dispersed genomic homology blocks that can mediate DNA rearrangements. Whereas the wild-type D. radiodurans appears to repair accurately its genome shattered by 5kGy γ-radiation, extremely high γ-doses, e.g., 25kGy, produce frequent genome rearrangements among survivors. Our results show that the RecA protein is quintessential for the fidelity of repair of both spontaneous and γ-radiation-induced DNA breaks and, consequently, for genome stability in D. radiodurans. The mechanisms of decreased genome stability in the absence of RecA are discussed.
Collapse
Affiliation(s)
- Jelena Repar
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
31
|
Kamble VA, Misra HS. The SbcCD complex of Deinococcus radiodurans contributes to radioresistance and DNA strand break repair in vivo and exhibits Mre11–Rad50 type activity in vitro. DNA Repair (Amst) 2010; 9:488-94. [DOI: 10.1016/j.dnarep.2010.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/14/2010] [Accepted: 01/16/2010] [Indexed: 11/16/2022]
|
32
|
Chang X, Yang L, Zhao Q, Fu W, Chen H, Qiu Z, Chen JA, Hu R, Shu W. Involvement of recF in 254 nm Ultraviolet Radiation Resistance in Deinococcus radiodurans and Escherichia coli. Curr Microbiol 2010; 61:458-64. [DOI: 10.1007/s00284-010-9638-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 03/24/2010] [Indexed: 11/28/2022]
|
33
|
Cao Z, Mueller CW, Julin DA. Analysis of the recJ gene and protein from Deinococcus radiodurans. DNA Repair (Amst) 2010; 9:66-75. [DOI: 10.1016/j.dnarep.2009.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 02/01/2023]
|
34
|
Characterization in vitro and in vivo of the DNA helicase encoded by Deinococcus radiodurans locus DR1572. DNA Repair (Amst) 2009; 8:612-9. [PMID: 19179120 DOI: 10.1016/j.dnarep.2008.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 02/09/2023]
Abstract
Deinococcus radiodurans survives extremely high doses of ionizing and ultraviolet radiation and treatment with various DNA-damaging chemicals. As an effort to identify and characterize proteins that function in DNA repair in this organism, we have studied the protein encoded by locus DR1572. This gene is predicted to encode a Superfamily I DNA helicase, except that genome sequencing indicated that it has a one-base frameshift and would not encode a complete helicase. We have cloned the gene from two different D. radiodurans strains and find that the frameshift mutation is not present. The corrected gene encodes a 755 residue protein that is similar to the Bacillus subtilis YvgS protein and to helicase IV of Escherichia coli. The purified protein (helicase IV(Dr)) has ATP hydrolysis and DNA helicase activity. A truncated protein that lacks 214 residues from the N-terminus, which precede the conserved helicase domain, has greater ATPase activity than the full-length protein but has no detectable helicase activity. Disruption of locus DR1572 in the D. radiodurans chromosome causes greater sensitivity to hydrogen peroxide and methyl-methanesulfonate compared to wild-type cells, but no change in resistance to gamma and ultraviolet radiation and to mitomycin C. The results indicate that locus DR1572 encodes a complete protein that contributes to DNA metabolism in D. radiodurans.
Collapse
|
35
|
Wu Y, Chen W, Zhao Y, Xu H, Hua Y. Involvement of RecG in H2O2-induced damage repair in Deinococcus radiodurans. Can J Microbiol 2009; 55:841-8. [DOI: 10.1139/w09-028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deinococcus radiodurans (ex Raj et al. 1960) Brooks and Murray 1981 is well known for its efficient repair of various types of physically or chemically induced DNA damage caused by ionizing and ultraviolet radiation or H2O2. RecG codes for a helicase that is known to be involved in repairing oxidative damage in other bacterium. In this work, we constructed a DRrecG deletion mutant and investigated its possible role in H2O2-induced damage. The results showed that the deletion of DRrecG resulted in an obvious growth defect and great decrease of radioresistance of D. radiodurans to gamma radiation and H2O2. We also defined the transcriptional profiles of the recG mutant and wild-type strain with and without treatment with H2O2. These results suggested that DRrecG is important for DNA repair during oxidative damage.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| | - Weiwei Chen
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| | - Ye Zhao
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| | - Hong Xu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| |
Collapse
|
36
|
Makharashvili N, Mi T, Koroleva O, Korolev S. RecR-mediated modulation of RecF dimer specificity for single- and double-stranded DNA. J Biol Chem 2008; 284:1425-34. [PMID: 19017635 DOI: 10.1074/jbc.m806378200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecF pathway proteins play an important role in the restart of stalled replication and DNA repair in prokaryotes. Following DNA damage, RecF, RecR, and RecO initiate homologous recombination (HR) by loading of the RecA recombinase on single-stranded (ss) DNA, protected by ssDNA-binding protein. The specific role of RecF in this process is not well understood. Previous studies have proposed that RecF directs the RecOR complex to boundaries of damaged DNA regions by recognizing single-stranded/double-stranded (ss/ds) DNA junctions. RecF belongs to ABC-type ATPases, which function through an ATP-dependent dimerization. Here, we demonstrate that the RecF of Deinococcus radiodurans interacts with DNA as an ATP-dependent dimer, and that the DNA binding and ATPase activity of RecF depend on both the structure of DNA substrate, and the presence of RecR. We found that RecR interacts as a tetramer with the RecF dimer. RecR increases the RecF affinity to dsDNA without stimulating ATP hydrolysis but destabilizes RecF binding to ssDNA and dimerization, likely due to increasing the ATPase rate. The DNA-dependent binding of RecR to the RecF-DNA complex occurs through specific protein-protein interactions without significant contributions from RecR-DNA interactions. Finally, RecF neither alone nor in complex with RecR preferentially binds to the ss/dsDNA junction. Our data suggest that the specificity of the RecFOR complex toward the boundaries of DNA damaged regions may result from a network of protein-protein and DNA-protein interactions, rather than a simple recognition of the ss/dsDNA junction by RecF.
Collapse
Affiliation(s)
- Nodar Makharashvili
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|