1
|
Singh S, Kanzin D, Chavez S, Saavedra-Avila NA, Ng TW, Lukose R, Mayer O, Kim J, Chen B, Chen M, Porcelli SA, Jacobs WR, Tiwari S. Boosting Immunogenicity of a Recombinant Mycobacterium smegmatis Strain via Zinc-Dependent Ribosomal Proteins. Biomedicines 2024; 12:1571. [PMID: 39062144 PMCID: PMC11274837 DOI: 10.3390/biomedicines12071571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis (TB) continues to be a major global health burden and kills over a million people annually. New immunization strategies are required for the development of an efficacious TB vaccine that can potentially induce sterilizing immunity. In this study, we first confirmed that a live vaccine strain of Mycobacterium smegmatis, previously designated as IKEPLUS, conferred a higher survival benefit than the Bacillus Calmette-Guerin (BCG) in a murine model of intravenous Mycobacterium tuberculosis (Mtb) infection. We have shown that there was a significant increase in the expression of the Rv0282 gene, which is encoded in the esx-3 locus, which played an important role in iron uptake when IKEPLUS was grown in both low zinc and iron-containing Sauton medium. We then confirmed using in vitro assays of biofilm formation that zinc plays a vital role in the growth and formation of M. smegmatis biofilms. IKEPLUS grown in low zinc media led to the better protection of mice after intravenous challenge with a very high dosage of Mtb. We also showed that various variants of IKEPLUS induced apoptotic cell-death of infected macrophages at a higher rate than wild-type M. smegmatis. We next attempted to determine if zinc containing ribosomal proteins such as rpmb2 could contribute to protective efficacy against Mtb infection. Since BCG has an established role in anti-mycobacterial efficacy, we boosted BCG vaccinated mice with rmpb2, but this did not lead to an increment in the protection mediated by BCG.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - David Kanzin
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas, El Paso, TX 79968, USA
| | - Sarah Chavez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas, El Paso, TX 79968, USA
| | | | - Tony W. Ng
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Regy Lukose
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Oren Mayer
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - John Kim
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bing Chen
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Mei Chen
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Steven A. Porcelli
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - William R. Jacobs
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Sangeeta Tiwari
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas, El Paso, TX 79968, USA
| |
Collapse
|
2
|
Wada A, Ueta M, Wada C. The Discovery of Ribosomal Protein bL31 from Escherichia coli: A Long Story Revisited. Int J Mol Sci 2023; 24:ijms24043445. [PMID: 36834855 PMCID: PMC9966373 DOI: 10.3390/ijms24043445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosomal protein bL31 in Escherichia coli was initially detected as a short form (62 amino acids) using Kaltschmidt and Wittmann's two-dimensional polyacrylamide gel electrophoresis (2D PAGE), but the intact form (70 amino acids) was subsequently identified by means of Wada's improved radical-free and highly reducing (RFHR) 2D PAGE, which was consistent with the analysis of its encoding gene rpmE. Ribosomes routinely prepared from the K12 wild-type strain contained both forms of bL31. ΔompT cells, which lack protease 7, only contained intact bL31, suggesting that protease 7 cleaves intact bL31 and generates short bL31 during ribosome preparation from wild-type cells. Intact bL31 was required for subunit association, and its eight cleaved C-terminal amino acids contributed to this function. 70S ribosomes protected bL31 from cleavage by protease 7, but free 50S did not. In vitro translation was assayed using three systems. The translational activities of wild-type and ΔrpmE ribosomes were 20% and 40% lower than those of ΔompT ribosomes, which contained one copy of intact bL31. The deletion of bL31 reduces cell growth. A structural analysis predicted that bL31 spans the 30S and 50S subunits, consistent with its functions in 70S association and translation. It is important to re-analyze in vitro translation with ribosomes containing only intact bL31.
Collapse
|
3
|
Genes Differentially Expressed by Haemophilus ducreyi during Anaerobic Growth Significantly Overlap Those Differentially Expressed during Experimental Infection of Human Volunteers. J Bacteriol 2022; 204:e0000522. [PMID: 35377183 DOI: 10.1128/jb.00005-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Haemophilus ducreyi causes cutaneous ulcers in children and the genital ulcer disease chancroid in adults. In humans, H. ducreyi is found in the anaerobic environment of an abscess; previous studies comparing bacterial gene expression levels in pustules with the inocula (∼4-h aerobic mid-log-phase cultures) identified several upregulated differentially expressed genes (DEGs) that are associated with anaerobic metabolism. To determine how H. ducreyi alters its gene expression in response to anaerobiosis, we performed RNA sequencing (RNA-seq) on both aerobic and anaerobic broth cultures harvested after 4, 8, and 18 h of growth. Principal-coordinate analysis (PCoA) plots showed that anaerobic growth resulted in distinct transcriptional profiles compared to aerobic growth. During anaerobic growth, early-time-point comparisons (4 versus 8 h) identified few DEGs at a 2-fold change in expression and a false discovery rate (FDR) of <0.01. By 18 h, we observed 18 upregulated and 16 downregulated DEGs. DEGs involved in purine metabolism, the uptake and use of alternative carbon sources, toxin production, nitrate reduction, glycine metabolism, and tetrahydrofolate synthesis were upregulated; DEGs involved in electron transport, thiamine biosynthesis, DNA recombination, peptidoglycan synthesis, and riboflavin synthesis or modification were downregulated. To examine whether transcriptional changes that occur during anaerobiosis overlap those that occur during infection of human volunteers, we compared the overlap of DEGs obtained from 4 h of aerobic growth to 18 h of anaerobic growth to those found between the inocula and pustules in previous studies; the DEGs significantly overlapped. Thus, a major component of H. ducreyi gene regulation in vivo involves adaptation to anaerobiosis. IMPORTANCE In humans, H. ducreyi resides in the anaerobic environment of an abscess and appears to upregulate genes involved in anaerobic metabolism. How anaerobiosis alone affects gene transcription in H. ducreyi is unknown. Using RNA-seq, we investigated how anaerobiosis affects gene transcription over time compared to aerobic growth. Our results suggest that a substantial component of H. ducreyi gene regulation in vivo overlaps the organism's response to anaerobiosis in vitro. Our data identify potential therapeutic targets that could be inhibited during in vivo growth.
Collapse
|
4
|
Li Y, Sharma MR, Koripella RK, Banavali NK, Agrawal RK, Ojha AK. Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria. MICROBIOLOGY-SGM 2021; 167. [PMID: 33555244 DOI: 10.1099/mic.0.001035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Nilesh K Banavali
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA.,Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Anil K Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
5
|
Liu M, Xu W, Zhu Y, Cui X, Pang X. The Response Regulator MacR and its Potential in Improvement of Antibiotic Production in Streptomyces coelicolor. Curr Microbiol 2021; 78:3696-3707. [PMID: 34426858 DOI: 10.1007/s00284-021-02633-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
We previously reported that the two-component system MacRS regulates morphogenesis and production of the blue-pigmented antibiotic actinorhodin (ACT) in Streptomyces coelicolor. In this study, the role of MacRS was further extended to include control of the production of the red-pigmented antibiotic undecylprodigiosin (RED) and the calcium-dependent antibiotic (CDA), and control of other important cellular activities. Our data indicated that disruption of the MacRS TCS reduced production not only of ACT but also of RED and CDA. RNA-Seq analysis revealed that genes involved in both secondary metabolism and primary metabolism are differentially expressed in the MacRS deletion mutant ΔmacRS. Moreover, we found that genes of the Zur regulon are also markedly downregulated in ΔmacRS, suggesting a role for macRS in zinc homeostasis. In addition to previously identified MacR sites with strong matches to the MacR consensus recognition sequence, a genome-wide search revealed over one hundred less-stringent matches, including potential sites upstream of absR1, crgA, and smeA. Electrophoretic mobility shift assays demonstrated that MacR binds some of these sites in vitro. Although there is no strong MacR site upstream of the ACT regulatory gene actII-orf4 (sco5085), we showed that an engineered MacR site enhanced ACT production, providing an approach for modulating production of useful compounds. Altogether, our work suggests an important role for MacRS in a range of cellular activities in Streptomyces and its potential application in strain engineering.
Collapse
Affiliation(s)
- Meng Liu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wenhao Xu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yanping Zhu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiqing Cui
- Deqiang Biology Co. Ltd, Harbin, 150060, China.
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
6
|
Vibrio cholerae's mysterious Seventh Pandemic island (VSP-II) encodes novel Zur-regulated zinc starvation genes involved in chemotaxis and cell congregation. PLoS Genet 2021; 17:e1009624. [PMID: 34153031 PMCID: PMC8248653 DOI: 10.1371/journal.pgen.1009624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/01/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a notorious diarrheal disease that is typically transmitted via contaminated drinking water. The current pandemic agent, the El Tor biotype, has undergone several genetic changes that include horizontal acquisition of two genomic islands (VSP-I and VSP-II). VSP presence strongly correlates with pandemicity; however, the contribution of these islands to V. cholerae's life cycle, particularly the 26-kb VSP-II, remains poorly understood. VSP-II-encoded genes are not expressed under standard laboratory conditions, suggesting that their induction requires an unknown signal from the host or environment. One signal that bacteria encounter under both host and environmental conditions is metal limitation. While studying V. cholerae's zinc-starvation response in vitro, we noticed that a mutant constitutively expressing zinc starvation genes (Δzur) congregates at the bottom of a culture tube when grown in a nutrient-poor medium. Using transposon mutagenesis, we found that flagellar motility, chemotaxis, and VSP-II encoded genes were required for congregation. The VSP-II genes encode an AraC-like transcriptional activator (VerA) and a methyl-accepting chemotaxis protein (AerB). Using RNA-seq and lacZ transcriptional reporters, we show that VerA is a novel Zur target and an activator of the nearby AerB chemoreceptor. AerB interfaces with the chemotaxis system to drive oxygen-dependent congregation and energy taxis. Importantly, this work suggests a functional link between VSP-II, zinc-starved environments, and energy taxis, yielding insights into the role of VSP-II in a metal-limited host or aquatic reservoir.
Collapse
|
7
|
Akanuma G. Diverse relationships between metal ions and the ribosome. Biosci Biotechnol Biochem 2021; 85:1582-1593. [PMID: 33877305 DOI: 10.1093/bbb/zbab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/30/2021] [Indexed: 11/12/2022]
Abstract
The ribosome requires metal ions for structural stability and translational activity. These metal ions are important for stabilizing the secondary structure of ribosomal RNA, binding of ribosomal proteins to the ribosome, and for interaction of ribosomal subunits. In this review, various relationships between ribosomes and metal ions, especially Mg2+ and Zn2+, are presented. Mg2+ regulates gene expression by modulating the translational stability and synthesis of ribosomes, which in turn contribute to the cellular homeostasis of Mg2+. In addition, Mg2+ can partly complement the function of ribosomal proteins. Conversely, a reduction in the cellular concentration of Zn2+ induces replacement of ribosomal proteins, which mobilizes free-Zn2+ in the cell and represses translation activity. Evolutional relationships between these metal ions and the ribosome are also discussed.
Collapse
Affiliation(s)
- Genki Akanuma
- Department of Life Science, Graduate School of Science, Gakushuin University, Toshima-ku, Tokyo, Japan.,Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| |
Collapse
|
8
|
Sevilla E, Bes MT, Peleato ML, Fillat MF. Fur-like proteins: Beyond the ferric uptake regulator (Fur) paralog. Arch Biochem Biophys 2021; 701:108770. [PMID: 33524404 DOI: 10.1016/j.abb.2021.108770] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Proteins belonging to the FUR (ferric uptake regulator) family are the cornerstone of metalloregulation in most prokaryotes. Although numerous reviews have been devoted to these proteins, these reports are mainly focused on the Fur paralog that gives name to the family. In the last years, the increasing knowledge on the other, less ubiquitous members of this family has evidenced their importance in bacterial metabolism. As the Fur paralog, the major regulator of iron homeostasis, Zur, Irr, BosR and PerR are tightly related to stress defenses and host-pathogen interaction being in many cases essential for virulence. Furthermore, the Nur and Mur paralogs largely contribute to control nickel and manganese homeostasis, which are cofactors of pivotal proteins for host colonization and bacterial redox homeostasis. The present review highlights the main features of FUR proteins that differ to the canonical Fur paralog either in the coregulatory metal, such as Zur, Nur and Mur, or in the action mechanism to control target genes, such as PerR, Irr and BosR.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Teresa Bes
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
9
|
Ueta M, Wada C, Wada A. YkgM and YkgO maintain translation by replacing their paralogs, zinc‐binding ribosomal proteins L31 and L36, with identical activities. Genes Cells 2020; 25:562-581. [DOI: 10.1111/gtc.12796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Akira Wada
- Yoshida Biological Laboratory Kyoto Japan
| |
Collapse
|
10
|
Ammendola S, Ciavardelli D, Consalvo A, Battistoni A. Cobalt can fully recover the phenotypes related to zinc deficiency in Salmonella Typhimurium. Metallomics 2020; 12:2021-2031. [PMID: 33165471 DOI: 10.1039/d0mt00145g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cobalt is an essential element for living systems, which, however, make very limited use of this metal, using it mainly in cobalamin-containing enzymes. The reduced use of cobalt compared to other transition metals is generally attributed to the potential toxicity of this element. In this work, we demonstrate that cobalt not only does not have an obvious toxic effect on Salmonella Typhimurium, but that it can efficiently compensate for zinc deficiency in a znuABC deleted strain. In fact, cobalt, but not cobalamin supplementation, rescued all major phenotypic defects of the znuABC strain, including the reduced ability to grow and swim in zinc-deficient media and the high susceptibility to hydrogen peroxide stress. Growth in a cobalt-supplemented defined medium led to the accumulation of large amounts of cobalt both in the wild type and in the znuABC strain. These data suggest that atoms of cobalt may be incorporated in bacterial proteins in place of zinc, ensuring their functionality. In support of this hypothesis we have shown that, in vivo, cobalt can accumulate in ribosomes and replace zinc in a periplasmic Cu,Zn superoxide dismutase (SodCII). Finally, we provide evidence of the ability of cobalt to modulate the intracellular concentration of zinc-regulated proteins (ZnuA, ZinT, and SodCII). Although some observations suggest that in some proteins the replacement of zinc with cobalt can lead to subtle structural changes, the data reported in this study indicate that Salmonella has the ability to use cobalt instead of zinc, without evident harmful effects for cell physiology.
Collapse
Affiliation(s)
- Serena Ammendola
- Department of Biology, University of Rome ''Tor Vergata'', Via della Ricerca Scientifica, 00133 Rome, Italy.
| | | | | | | |
Collapse
|
11
|
Park JH, Lee JH, Roe JH. SigR, a hub of multilayered regulation of redox and antibiotic stress responses. Mol Microbiol 2019; 112:420-431. [PMID: 31269533 DOI: 10.1111/mmi.14341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2019] [Indexed: 02/01/2023]
Abstract
Signal-specific activation of alternative sigma factors redirects RNA polymerase to induce transcription of distinct sets of genes conferring protection against the damage the signal and the related stresses incur. In Streptomyces coelicolor, σR (SigR), a member of ECF12 subfamily of Group IV sigma factors, responds to thiol-perturbing signals such as oxidants and electrophiles, as well as to translation-blocking antibiotics. Oxidants and electrophiles interact with and inactivate the zinc-containing anti-sigma factor, RsrA, via disulfide bond formation or alkylation of reactive cysteines, subsequently releasing σR for target gene induction. Translation-blocking antibiotics induce the synthesis of σR , via the WhiB-like transcription factor, WblC/WhiB7. Signal transduction via RsrA produces a dramatic transient response that involves positive feedback to produce more SigR as an unstable isoform σ R ' and negative feedbacks to degrade σ R ' , and reduce oxidized RsrA that subsequently sequester σR and σ R ' . Antibiotic stress brings about a prolonged response by increasing stable σR levels. The third negative feedback, which occurs via IF3, lowers the translation efficiency of the sigRp1 transcript that utilizes a non-canonical start codon. σR is a global regulator that directly activates > 100 transcription units in S. coelicolor, including genes for thiol homeostasis, protein quality control, sulfur metabolism, ribosome modulation and DNA repair. Close homologues in Actinobacteria, such as σH in Mycobacteria and Corynebacteria, show high conservation of the signal transduction pathways and target genes, thus reflecting the robustness of this type of regulation in response to redox and antibiotic stresses.
Collapse
Affiliation(s)
- Joo-Hong Park
- School of Biological Sciences, and Institute of Microbiology, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Ju-Hyung Lee
- School of Biological Sciences, and Institute of Microbiology, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Jung-Hye Roe
- School of Biological Sciences, and Institute of Microbiology, College of Natural Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
12
|
Genome-Wide Mutagenesis Links Multiple Metabolic Pathways with Actinorhodin Production in Streptomyces coelicolor. Appl Environ Microbiol 2019; 85:AEM.03005-18. [PMID: 30709825 PMCID: PMC6585502 DOI: 10.1128/aem.03005-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/25/2019] [Indexed: 12/22/2022] Open
Abstract
Streptomyces species are important antibiotic-producing organisms that tightly regulate their antibiotic production. Actinorhodin is a typical antibiotic produced by the model actinomycete Streptomyces coelicolor To discover the regulators of actinorhodin production, we constructed a library of 50,000 independent mutants with hyperactive Tn5 transposase-based transposition systems. Five hundred fifty-one genes were found to influence actinorhodin production in 988 individual mutants. Genetic complementation suggested that most of the insertions (76%) were responsible for the changes in antibiotic production. Genes involved in diverse cellular processes such as amino acid biosynthesis, carbohydrate metabolism, cell wall homeostasis, and DNA metabolism affected actinorhodin production. Genome-wide mutagenesis can identify novel genes and pathways that impact antibiotic levels, potentially aiding in engineering strains to optimize the production of antibiotics in Streptomyces IMPORTANCE Previous studies have shown that various genes can influence antibiotic production in Streptomyces and that intercommunication between regulators can complicate antibiotic production. Therefore, to gain a better understanding of antibiotic regulation, a genome-wide perspective on genes that influence antibiotic production was needed. We searched for genes that affected production of the antibiotic actinorhodin using a genome-wide gene disruption system. We identified 551 genes that altered actinorhodin levels, and more than half of these genes were newly identified effectors. Some of these genes may be candidates for engineering Streptomyces strains to improve antibiotic production levels.
Collapse
|
13
|
Bacterial zinc uptake regulator proteins and their regulons. Biochem Soc Trans 2018; 46:983-1001. [PMID: 30065104 PMCID: PMC6103462 DOI: 10.1042/bst20170228] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023]
Abstract
All organisms must regulate the cellular uptake, efflux, and intracellular trafficking of essential elements, including d-block metal ions. In bacteria, such regulation is achieved by the action of metal-responsive transcriptional regulators. Among several families of zinc-responsive transcription factors, the ‘zinc uptake regulator’ Zur is the most widespread. Zur normally represses transcription in its zinc-bound form, in which DNA-binding affinity is enhanced allosterically. Experimental and bioinformatic searches for Zur-regulated genes have revealed that in many cases, Zur proteins govern zinc homeostasis in a much more profound way than merely through the expression of uptake systems. Zur regulons also comprise biosynthetic clusters for metallophore synthesis, ribosomal proteins, enzymes, and virulence factors. In recognition of the importance of zinc homeostasis at the host–pathogen interface, studying Zur regulons of pathogenic bacteria is a particularly active current research area.
Collapse
|
14
|
Abstract
Mycobacteria as well as other bacteria remodel their ribosomes in response to zinc depletion by replacing zinc-binding ribosomal proteins with zinc-free paralogues, releasing zinc for other metabolic processes. In this study, we show that the remodeled ribosome acquires a structurally stable but functionally inactive and aminoglycoside-resistant state in zinc-starved Mycobacterium smegmatis. Conversely, M. smegmatis cells that are growth arrested in zinc-rich conditions have unstable ribosomes and reduced survival. We further provide evidence for ribosome remodeling in Mycobacterium tuberculosis in host tissues, suggesting that ribosome hibernation occurs during TB infections. Our findings could offer insights into mechanisms of persistence and antibiotic tolerance of mycobacterial infections. Bacteria respond to zinc starvation by replacing ribosomal proteins that have the zinc-binding CXXC motif (C+) with their zinc-free (C−) paralogues. Consequences of this process beyond zinc homeostasis are unknown. Here, we show that the C− ribosome in Mycobacterium smegmatis is the exclusive target of a bacterial protein Y homolog, referred to as mycobacterial-specific protein Y (MPY), which binds to the decoding region of the 30S subunit, thereby inactivating the ribosome. MPY binding is dependent on another mycobacterial protein, MPY recruitment factor (MRF), which is induced on zinc depletion, and interacts with C− ribosomes. MPY binding confers structural stability to C− ribosomes, promoting survival of growth-arrested cells under zinc-limiting conditions. Binding of MPY also has direct influence on the dynamics of aminoglycoside-binding pockets of the C− ribosome to inhibit binding of these antibiotics. Together, our data suggest that zinc limitation leads to ribosome hibernation and aminoglycoside resistance in mycobacteria. Furthermore, our observation of the expression of the proteins of C− ribosomes in Mycobacterium tuberculosis in a mouse model of infection suggests that ribosome hibernation could be relevant in our understanding of persistence and drug tolerance of the pathogen encountered during chemotherapy of TB.
Collapse
|
15
|
Rigali S, Anderssen S, Naômé A, van Wezel GP. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochem Pharmacol 2018; 153:24-34. [DOI: 10.1016/j.bcp.2018.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
|
16
|
Spohn M, Edenhart S, Alanjary M, Ziemert N, Wibberg D, Kalinowski J, Niedermeyer THJ, Stegmann E, Wohlleben W. Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA). Metallomics 2018; 10:722-734. [PMID: 29667664 DOI: 10.1039/c8mt00009c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanism of siderophore-mediated iron supply enhances fitness and survivability of microorganisms under iron limited growth conditions. One class of naturally occurring ionophores is the small aminopolycarboxylic acids (APCAs). Although they are structurally related to the most famous anthropogenic chelating agent, ethylenediaminetetraacetate (EDTA), they have been largely neglected by the scientific community. Here, we demonstrate the detection of APCA gene clusters by a computational screening of a nucleotide database. This genome mining approach enabled the discovery of a yet unknown APCA gene cluster in well-described actinobacterial strains, either known for their potential to produce valuable secondary metabolites (Streptomyces avermitilis) or for their pathogenic lifestyle (Streptomyces scabies, Corynebacterium pseudotuberculosis, Corynebacterium ulcerans and Nocardia brasiliensis). The herein identified gene cluster was shown to encode the biosynthesis of APCA, ethylenediaminesuccinic acid hydroxyarginine (EDHA). Detailed and comparatively performed production and transcriptional profiling of EDHA and its biosynthesis genes showed strict iron-responsive biosynthesis.
Collapse
Affiliation(s)
- Marius Spohn
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dow A, Prisic S. Alternative ribosomal proteins are required for growth and morphogenesis of Mycobacterium smegmatis under zinc limiting conditions. PLoS One 2018; 13:e0196300. [PMID: 29684089 PMCID: PMC5912738 DOI: 10.1371/journal.pone.0196300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/10/2018] [Indexed: 01/19/2023] Open
Abstract
Zinc is an essential micronutrient required for proper structure and function of many proteins. Bacteria regularly encounter zinc depletion and have evolved diverse mechanisms to continue growth when zinc is limited, including the expression of zinc-independent paralogs of zinc-binding proteins. Mycobacteria have a conserved operon encoding four zinc-independent alternative ribosomal proteins (AltRPs) that are expressed when zinc is depleted. It is unknown if mycobacterial AltRPs replace their primary paralogs in the ribosome and maintain protein synthesis under zinc-limited conditions, and if such replacements contribute to their physiology. This study shows that AltRPs from Mycobacterium smegmatis are essential for growth when zinc ion is scarce. Specifically, the deletion mutant of this operon (ΔaltRP) is unable to grow in media containing a high-affinity zinc chelator, while growth of the wild type strain is unaffected under the same conditions. However, when zinc is gradually depleted during growth in zinc-limited medium, the ΔaltRP mutant maintains the same growth rate as seen for the wild type strain. In contrast to M. smegmatis grown with sufficient zinc supplementation that forms shorter cells when transitioning from logarithmic to stationary phase, M. smegmatis deficient for zinc elongates after the expression of AltRPs in late logarithmic phase. These zinc-depleted bacteria also exhibit a remarkable morphology characterized by a condensed chromosome, increased number of polyphosphate granules, and distinct appearance of lipid bodies and the cell wall compared to the zinc-replete cells. However, the ΔaltRP cells fail to elongate and transition into the zinc-limited morphotype, resembling the wild type zinc-replete bacteria instead. Therefore, the altRP operon in M. smegmatis has a vital role in continuation of growth when zinc is scarce and in triggering specific morphogenesis during the adaptation to zinc limitation, suggesting that AltRPs can functionally replace their zinc-dependent paralogs, but also contribute to mycobacterial physiology in a unique way.
Collapse
Affiliation(s)
- Allexa Dow
- Department of Microbiology, University of Hawai‛i at Mānoa, Honolulu, Hawai‛i, United States of America
| | - Sladjana Prisic
- Department of Microbiology, University of Hawai‛i at Mānoa, Honolulu, Hawai‛i, United States of America
- * E-mail:
| |
Collapse
|
18
|
The Components of the Unique Zur Regulon of Cupriavidus metallidurans Mediate Cytoplasmic Zinc Handling. J Bacteriol 2017; 199:JB.00372-17. [PMID: 28808127 DOI: 10.1128/jb.00372-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element, yet it is toxic at high concentrations. In the betaproteobacterium Cupriavidus metallidurans, the highly efficient removal of surplus zinc from the periplasm is responsible for the outstanding metal resistance of the organism. Rather than having a typical Zur-dependent, high-affinity ATP-binding cassette transporter of the ABC protein superfamily for zinc uptake at low concentrations, C. metallidurans has the secondary zinc importer ZupT of the zinc-regulated transporter, iron-regulated transporter (ZRT/IRT)-like protein (ZIP) family. It is important to understand, therefore, how this zinc-resistant bacterium copes with exposure to low zinc concentrations. Members of the Zur regulon in C. metallidurans were identified by comparing the transcriptomes of a Δzur mutant and its parent strain. The consensus sequence of the Zur-binding box was derived for the zupTp promoter-regulatory region by use of a truncation assay. The motif was used to predict possible Zur boxes upstream of Zur regulon members. The binding of Zur to these boxes was confirmed. Two Zur boxes upstream of the cobW 1 gene, encoding a putative zinc chaperone, proved to be required for complete repression of cobW 1 and its downstream genes in cells cultivated in mineral salts medium. A Zur box upstream of each of zur-cobW 2, cobW 3, and zupT permitted both low expression levels of these genes and their upregulation under conditions of zinc starvation. This demonstrates a compartmentalization of zinc homeostasis in C. metallidurans, where the periplasm is responsible for the removal of surplus zinc, cytoplasmic components are responsible for the management of zinc as an essential cofactor, and the two compartments are connected by ZupT.IMPORTANCE Elucidating zinc homeostasis is necessary for understanding both host-pathogen interactions and the performance of free-living bacteria in their natural environments. Escherichia coli acquires zinc under conditions of low zinc concentrations via the Zur-controlled ZnuABC importer of the ABC superfamily, and this was also the paradigm for other bacteria. In contrast, the heavy-metal-resistant bacterium C. metallidurans achieves high tolerance to zinc through sophisticated zinc handling and efflux systems operating on periplasmic zinc ions, so that removal of surplus zinc is a periplasmic feature in this bacterium. It is shown here that this process is augmented by the management of zinc by cytoplasmic zinc chaperones, whose synthesis is controlled by the Zur regulator. This demonstrates a new mechanism, involving compartmentalization, for organizing zinc homeostasis.
Collapse
|
19
|
Choi SH, Lee KL, Shin JH, Cho YB, Cha SS, Roe JH. Zinc-dependent regulation of zinc import and export genes by Zur. Nat Commun 2017; 8:15812. [PMID: 28598435 PMCID: PMC5472717 DOI: 10.1038/ncomms15812] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/04/2017] [Indexed: 12/21/2022] Open
Abstract
In most bacteria, zinc depletion is sensed by Zur, whereas the surplus is sensed by different regulators to achieve zinc homeostasis. Here we present evidence that zinc-bound Zur not only represses genes for zinc acquisition but also induces the zitB gene encoding a zinc exporter in Streptomyces coelicolor, a model actinobacteria. Zinc-dependent gene regulation by Zur occurs in two phases. At sub-femtomolar zinc concentrations (phase I), dimeric Zur binds to the Zur-box motif immediately upstream of the zitB promoter, resulting in low zitB expression. At the same time, Zur represses genes for zinc uptake. At micromolar zinc concentrations (phase II), oligomeric Zur binding with footprint expansion upward from the Zur box results in high zitB induction. Our findings reveal a mode of zinc-dependent gene activation that uses a single metalloregulator to control genes for both uptake and export over a wide range of zinc concentrations. Zinc homeostasis in most bacteria is achieved by a set of regulators, each responding to a certain level of intracellular zinc. Here the authors show that, in Streptomyces coelicolor, the Zur regulator modulates the expression of genes for zinc import and export over a large range of zinc concentrations.
Collapse
Affiliation(s)
- Seung-Hwan Choi
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Kang-Lok Lee
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Jung-Ho Shin
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Yoo-Bok Cho
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jung-Hye Roe
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
20
|
Neupane DP, Jacquez B, Sundararajan A, Ramaraj T, Schilkey FD, Yukl ET. Zinc-Dependent Transcriptional Regulation in Paracoccus denitrificans. Front Microbiol 2017; 8:569. [PMID: 28443074 PMCID: PMC5387054 DOI: 10.3389/fmicb.2017.00569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/20/2017] [Indexed: 01/20/2023] Open
Abstract
Zinc homeostasis is critical for bacterial survival and is mediated largely at the transcriptional level by the regulation of zinc uptake and efflux genes. Here we use RNA-seq to assess transcriptional changes as a result of zinc limitation in the denitrifying bacterium Paracoccus denitrificans. The results identify the differential expression of 147 genes, most of which were upregulated in zinc-depleted medium. Included in this set of genes are a large number of transition metal transporters, several transcription factors, and hypothetical proteins. Intriguingly, genes encoding nitric oxide reductase (norCB) and nitrite reductase (nirS) were also upregulated. A Zur consensus binding motif was identified in the promoters of the most highly upregulated genes. The zinc uptake regulator (Zur) from this organism was also characterized and shown to bind to the Zur motif in a zinc-dependent manner. This work expands our current understanding of the transcriptional response of gram-negative bacteria to zinc limitation and identifies genes involved in denitrification as part of the Zur regulon.
Collapse
Affiliation(s)
- Durga P Neupane
- Department of Chemistry and Biochemistry, New Mexico State UniversityLas Cruces, NM, USA
| | - Belkis Jacquez
- Department of Chemistry and Biochemistry, New Mexico State UniversityLas Cruces, NM, USA
| | | | | | | | - Erik T Yukl
- Department of Chemistry and Biochemistry, New Mexico State UniversityLas Cruces, NM, USA
| |
Collapse
|
21
|
Adamek M, Spohn M, Stegmann E, Ziemert N. Mining Bacterial Genomes for Secondary Metabolite Gene Clusters. Methods Mol Biol 2017; 1520:23-47. [PMID: 27873244 DOI: 10.1007/978-1-4939-6634-9_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With the emergence of bacterial resistance against frequently used antibiotics, novel antibacterial compounds are urgently needed. Traditional bioactivity-guided drug discovery strategies involve laborious screening efforts and display high rediscovery rates. With the progress in next generation sequencing methods and the knowledge that the majority of antibiotics in clinical use are produced as secondary metabolites by bacteria, mining bacterial genomes for secondary metabolites with antimicrobial activity is a promising approach, which can guide a more time and cost-effective identification of novel compounds. However, what sounds easy to accomplish, comes with several challenges. To date, several tools for the prediction of secondary metabolite gene clusters are available, some of which are based on the detection of signature genes, while others are searching for specific patterns in gene content or regulation.Apart from the mere identification of gene clusters, several other factors such as determining cluster boundaries and assessing the novelty of the detected cluster are important. For this purpose, comparison of the predicted secondary metabolite genes with different cluster and compound databases is necessary. Furthermore, it is advisable to classify detected clusters into gene cluster families. So far, there is no standardized procedure for genome mining; however, different approaches to overcome all of these challenges exist and are addressed in this chapter. We give practical guidance on the workflow for secondary metabolite gene cluster identification, which includes the determination of gene cluster boundaries, addresses problems occurring with the use of draft genomes, and gives an outlook on the different methods for gene cluster classification. Based on comprehensible examples a protocol is set, which should enable the readers to mine their own genome data for interesting secondary metabolites.
Collapse
Affiliation(s)
- Martina Adamek
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Marius Spohn
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, 72076, Tübingen, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, 72076, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, 72076, Tübingen, Germany.
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
The anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core. Nat Commun 2016; 7:12194. [PMID: 27432510 PMCID: PMC4960319 DOI: 10.1038/ncomms12194] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022] Open
Abstract
Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind the sigma factor σR preventing its association with RNA polymerase, and that zinc plays a central role in maintaining this high-affinity complex. Oxidation of RsrA is limited by the rate of zinc release, which weakens the RsrA–σR complex by accelerating its dissociation. The subsequent trigger disulfide, formed between specific combinations of RsrA's three zinc-binding cysteines, precipitates structural collapse to a compact state where all σR-binding residues are sequestered back into its hydrophobic core, releasing σR to activate transcription of anti-oxidant genes. Counteracting oxidative stress is essential in all organisms. Here, the authors outline a mechanism used by actinomycete bacteria in which oxidation of zinc-binding RsrA blocks its interaction with σR by sequestering hydrophobic residues used to bind σR within its own core.
Collapse
|
23
|
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Appl Environ Microbiol 2016; 82:4613-4627. [PMID: 27208114 DOI: 10.1128/aem.01176-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.
Collapse
|
24
|
The frontline antibiotic vancomycin induces a zinc starvation response in bacteria by binding to Zn(II). Sci Rep 2016; 6:19602. [PMID: 26797186 PMCID: PMC4726154 DOI: 10.1038/srep19602] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Vancomycin is a front-line antibiotic used for the treatment of nosocomial infections, particularly those caused by methicillin-resistant Staphylococcus aureus. Despite its clinical importance the global effects of vancomycin exposure on bacterial physiology are poorly understood. In a previous transcriptomic analysis we identified a number of Zur regulon genes which were highly but transiently up-regulated by vancomycin in Streptomyces coelicolor. Here, we show that vancomycin also induces similar zinc homeostasis systems in a range of other bacteria and demonstrate that vancomycin binds to Zn(II) in vitro. This implies that vancomycin treatment sequesters zinc from bacterial cells thereby triggering a Zur-dependent zinc starvation response. The Kd value of the binding between vancomycin and Zn(II) was calculated using a novel fluorometric assay, and NMR was used to identify the binding site. These findings highlight a new biologically relevant aspect of the chemical property of vancomycin as a zinc chelator.
Collapse
|
25
|
Spohn M, Wohlleben W, Stegmann E. Elucidation of the zinc-dependent regulation inAmycolatopsis japonicumenabled the identification of the ethylenediamine-disuccinate ([S,S]-EDDS) genes. Environ Microbiol 2016; 18:1249-63. [DOI: 10.1111/1462-2920.13159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/13/2015] [Accepted: 11/27/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Marius Spohn
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology; University of Tuebingen; 72076 Tuebingen Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology; University of Tuebingen; 72076 Tuebingen Germany
- Partner Site Tuebingen; German Centre for Infection Research (DZIF); Tuebingen Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology; University of Tuebingen; 72076 Tuebingen Germany
- Partner Site Tuebingen; German Centre for Infection Research (DZIF); Tuebingen Germany
| |
Collapse
|
26
|
Abstract
This chapter focuses on transition metals. All transition metal cations are toxic-those that are essential for Escherichia coli and belong to the first transition period of the periodic system of the element and also the "toxic-only" metals with higher atomic numbers. Common themes are visible in the metabolism of these ions. First, there is transport. High-rate but low-affinity uptake systems provide a variety of cations and anions to the cells. Control of the respective systems seems to be mainly through regulation of transport activity (flux control), with control of gene expression playing only a minor role. If these systems do not provide sufficient amounts of a needed ion to the cell, genes for ATP-hydrolyzing high-affinity but low-rate uptake systems are induced, e.g., ABC transport systems or P-type ATPases. On the other hand, if the amount of an ion is in surplus, genes for efflux systems are induced. By combining different kinds of uptake and efflux systems with regulation at the levels of gene expression and transport activity, the concentration of a single ion in the cytoplasm and the composition of the cellular ion "bouquet" can be rapidly adjusted and carefully controlled. The toxicity threshold of an ion is defined by its ability to produce radicals (copper, iron, chromate), to bind to sulfide and thiol groups (copper, zinc, all cations of the second and third transition period), or to interfere with the metabolism of other ions. Iron poses an exceptional metabolic problem due its metabolic importance and the low solubility of Fe(III) compounds, combined with the ability to cause dangerous Fenton reactions. This dilemma for the cells led to the evolution of sophisticated multi-channel iron uptake and storage pathways to prevent the occurrence of unbound iron in the cytoplasm. Toxic metals like Cd2+ bind to thiols and sulfide, preventing assembly of iron complexes and releasing the metal from iron-sulfur clusters. In the unique case of mercury, the cation can be reduced to the volatile metallic form. Interference of nickel and cobalt with iron is prevented by the low abundance of these metals in the cytoplasm and their sequestration by metal chaperones, in the case of nickel, or by B12 and its derivatives, in the case of cobalt. The most dangerous metal, copper, catalyzes Fenton-like reactions, binds to thiol groups, and interferes with iron metabolism. E. coli solves this problem probably by preventing copper uptake, combined with rapid efflux if the metal happens to enter the cytoplasm.
Collapse
|
27
|
Prisic S, Hwang H, Dow A, Barnaby O, Pan TS, Lonzanida JA, Chazin WJ, Steen H, Husson RN. Zinc regulates a switch between primary and alternative S18 ribosomal proteins in Mycobacterium tuberculosis. Mol Microbiol 2015; 97:263-80. [PMID: 25858183 DOI: 10.1111/mmi.13022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 12/21/2022]
Abstract
The Mycobacterium tuberculosis genome encodes five putative 'alternative' ribosomal proteins whose expression is repressed at high Zn(2+) concentration. Each alternative protein has a primary homologue that is predicted to bind Zn(2+). We hypothesized that zinc triggers a switch between these paired homologous proteins and therefore chose one of these pairs, S18-1/S18-2, to study mechanisms of the predicted competition for their incorporation into ribosomes. Our data show that Zn(2+)-depletion causes accumulation of both S18-2 mRNA and protein. In contrast, S18-1 mRNA levels are unchanged to slightly elevated under Zn(2+)-limited conditions. However, the amount of S18-1 protein is markedly decreased. We further demonstrate that both S18 proteins interact with ribosomal protein S6, a committed step in ribosome biogenesis. Zn(2+) is absolutely required for the S18-1/S6 interaction while it is dispensable for S18-2/S6 dimer formation. These data suggest a model in which S18-1 is the dominant ribosome constituent in high zinc conditions, e.g. inside of phagosomes, but that it can be replaced by S18-2 when zinc is deficient, e.g. in the extracellular milieu. Consequently, Zn(2+)-depletion may serve as a signal for building alternative ribosomes when M. tuberculosis is released from macrophages, to allow survival in the extracellular environment.
Collapse
Affiliation(s)
- Sladjana Prisic
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA.,Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI
| | - Hyonson Hwang
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Allexa Dow
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI
| | - Omar Barnaby
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Tenny S Pan
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI
| | | | - Walter J Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Prestel E, Noirot P, Auger S. Genome-wide identification of Bacillus subtilis Zur-binding sites associated with a Zur box expands its known regulatory network. BMC Microbiol 2015; 15:13. [PMID: 25649915 PMCID: PMC4324032 DOI: 10.1186/s12866-015-0345-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/13/2015] [Indexed: 11/10/2022] Open
Abstract
Background The Bacillus subtilis Zur transcription factor recognizes a specific DNA motif, the Zur box, to repress expression of genes in response to zinc availability. Although several Zur-regulated genes are well characterized, a genome-wide mapping of Zur-binding sites is needed to define further the set of genes directly regulated by this protein. Results Using chromatin immunoprecipitation coupled with hybridization to DNA tiling arrays (ChIP-on-chip), we reported the identification of 80 inter- and intragenic chromosomal sites bound by Zur. Seven Zur-binding regions constitute the Zur primary regulon while 35 newly identified targets were associated with a predicted Zur box. Using transcriptional fusions an intragenic Zur box was showed to promote a full Zur-mediated repression when placed within a promoter region. In addition, intragenic Zur boxes appeared to mediate a transcriptional cis-repressive effect (4- to 9-fold) but the function of Zur at these sites remains unclear. Zur binding to intragenic Zur boxes could prime an intricate mechanisms of regulation of the transcription elongation, possibly with other transcriptional factors. However, the disruption of zinc homeostasis in Δzur cells likely affects many cellular processes masking direct Zur-dependent effects. Finally, most Zur-binding sites were located near or within genes responsive to disulfide stress. These findings expand the potential Zur regulon and reveal unknown interconnections between zinc and redox homeostasis regulatory networks. Conclusions Our findings considerably expand the potential Zur regulon, and reveal a new level of complexity in Zur binding to its targets via a Zur box motif and via a yet unknown mechanism that remains to be characterized. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0345-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric Prestel
- INRA, UMR1319 Micalis, F-78352, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78352, Jouy-en-Josas, France.
| | - Philippe Noirot
- INRA, UMR1319 Micalis, F-78352, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78352, Jouy-en-Josas, France.
| | - Sandrine Auger
- INRA, UMR1319 Micalis, F-78352, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78352, Jouy-en-Josas, France.
| |
Collapse
|
29
|
Production of specialized metabolites by Streptomyces coelicolor A3(2). ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:217-66. [PMID: 25131404 DOI: 10.1016/b978-0-12-800259-9.00006-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The actinomycetes are well-known bioactive natural product producers, comprising the Streptomycetes, the richest drug-prolific family in all kingdoms, producing therapeutic compounds for the areas of infection, cancer, circulation, and immunity. Completion and annotation of many actinomycete genomes has highlighted further how proficient these bacteria are in specialized metabolism, which have been largely underexploited in traditional screening programs. The genome sequence of the model strain Streptomyces coelicolor A3(2), and subsequent development of genomics-driven approaches to understand its large specialized metabolome, has been key in unlocking the high potential of specialized metabolites for natural product genomics-based drug discovery. This review discusses systematically the biochemistry and genetics of each of the specialized metabolites of S. coelicolor and describes metabolite transport processes for excretion and complex regulatory patterns controlling biosynthesis.
Collapse
|
30
|
Hovde BT, Starkenburg SR, Hunsperger HM, Mercer LD, Deodato CR, Jha RK, Chertkov O, Monnat RJ, Cattolico RA. The mitochondrial and chloroplast genomes of the haptophyte Chrysochromulina tobin contain unique repeat structures and gene profiles. BMC Genomics 2014; 15:604. [PMID: 25034814 PMCID: PMC4226036 DOI: 10.1186/1471-2164-15-604] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/09/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Haptophytes are widely and abundantly distributed in both marine and freshwater ecosystems. Few genomic analyses of representatives within this taxon have been reported, despite their early evolutionary origins and their prominent role in global carbon fixation. RESULTS The complete mitochondrial and chloroplast genome sequences of the haptophyte Chrysochromulina tobin (Prymnesiales) provide insight into the architecture and gene content of haptophyte organellar genomes. The mitochondrial genome (~34 kb) encodes 21 protein coding genes and contains a complex, 9 kb tandem repeat region. Similar to other haptophytes and rhodophytes, but not cryptophytes or stramenopiles, the mitochondrial genome has lost the nad7, nad9 and nad11 genes. The ~105 kb chloroplast genome encodes 112 protein coding genes, including ycf39 which has strong structural homology to NADP-binding nitrate transcriptional regulators; a divergent 'CheY-like' two-component response regulator (ycf55) and Tic/Toc (ycf60 and ycf80) membrane transporters. Notably, a zinc finger domain has been identified in the rpl36 ribosomal protein gene of all chloroplasts sequenced to date with the exception of haptophytes and cryptophytes--algae that have gained (via lateral gene transfer) an alternative rpl36 lacking the zinc finger motif. The two C. tobin chloroplast ribosomal RNA operon spacer regions differ in tRNA content. Additionally, each ribosomal operon contains multiple single nucleotide polymorphisms (SNPs)--a pattern observed in rhodophytes and cryptophytes, but few stramenopiles. Analysis of small (<200 bp) chloroplast encoded tandem and inverted repeats in C. tobin and 78 other algal chloroplast genomes show that repeat type, size and location are correlated with gene identity and taxonomic clade. CONCLUSION The Chrysochromulina tobin organellar genomes provide new insight into organellar function and evolution. These are the first organellar genomes to be determined for the prymnesiales, a taxon that is present in both oceanic and freshwater systems and represents major primary photosynthetic producers and contributors to global ecosystem stability.
Collapse
|
31
|
Choi S, Bird AJ. Zinc'ing sensibly: controlling zinc homeostasis at the transcriptional level. Metallomics 2014; 6:1198-215. [PMID: 24722954 DOI: 10.1039/c4mt00064a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Zinc-responsive transcription factors are found in all kingdoms of life and include the transcriptional activators ZntR, SczA, Zap1, bZip19, bZip23, and MTF-1, and transcriptional repressors Zur, AdcR, Loz1, and SmtB. These factors have two defining features; their activity is regulated by zinc and they all play a central role in zinc homeostasis by controlling the expression of genes that directly affect zinc levels or its availability. This review summarizes what is known about the mechanisms by which each of these factors sense changes in intracellular zinc levels and how they control zinc homeostasis through target gene regulation. Other factors that influence zinc ion sensing are also discussed.
Collapse
Affiliation(s)
- Sangyong Choi
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
32
|
Proteomic Analysis of theStreptomyces griseusRibosomal Fraction. Biosci Biotechnol Biochem 2014; 76:2267-74. [DOI: 10.1271/bbb.120556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Fillat MF. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 2014; 546:41-52. [PMID: 24513162 DOI: 10.1016/j.abb.2014.01.029] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 11/17/2022]
Abstract
Control of metal homeostasis is essential for life in all kingdoms. In most prokaryotic organisms the FUR (ferric uptake regulator) family of transcriptional regulators is involved in the regulation of iron and zinc metabolism through control by Fur and Zur proteins. A third member of this family, the peroxide-stress response PerR, is present in most Gram-positives, establishing a tight functional interaction with the global regulator Fur. These proteins play a pivotal role for microbial survival under adverse conditions and in the expression of virulence in most pathogens. In this paper we present the current state of the art in the knowledge of the FUR family, including those members only present in more reduced numbers of bacteria, namely Mur, Nur and Irr. The huge amount of work done in the two last decades shows that FUR proteins present considerable diversity in their regulatory mechanisms and interesting structural differences. However, much work needs to be done to obtain a more complete picture of this family, especially in connection with the roles of some members as gas and redox sensors as well as to fully characterize their participation in bacterial adaptative responses.
Collapse
Affiliation(s)
- María F Fillat
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| |
Collapse
|
34
|
Hudek L, Pearson LA, Michalczyk A, Neilan BA, Ackland ML. Molecular and cellular characterisation of the zinc uptake (Znu) system ofNostoc punctiforme. FEMS Microbiol Ecol 2013; 86:149-71. [DOI: 10.1111/1574-6941.12153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lee Hudek
- Centre for Cellular and Molecular Biology; School of Life and Environmental Sciences; Deakin University; Burwood; Vic.; Australia
| | - Leanne A. Pearson
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - Agnes Michalczyk
- Centre for Cellular and Molecular Biology; School of Life and Environmental Sciences; Deakin University; Burwood; Vic.; Australia
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - M. Leigh Ackland
- Centre for Cellular and Molecular Biology; School of Life and Environmental Sciences; Deakin University; Burwood; Vic.; Australia
| |
Collapse
|
35
|
Liu G, Chater KF, Chandra G, Niu G, Tan H. Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol Mol Biol Rev 2013; 77:112-43. [PMID: 23471619 PMCID: PMC3591988 DOI: 10.1128/mmbr.00054-12] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Microbial Resources
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keith F. Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
36
|
Bielecki P, Komor U, Bielecka A, Müsken M, Puchałka J, Pletz MW, Ballmann M, Martins dos Santos VAP, Weiss S, Häussler S. Ex vivo transcriptional profiling reveals a common set of genes important for the adaptation of Pseudomonas aeruginosa to chronically infected host sites. Environ Microbiol 2012; 15:570-87. [PMID: 23145907 DOI: 10.1111/1462-2920.12024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/04/2012] [Accepted: 10/06/2012] [Indexed: 01/16/2023]
Abstract
The opportunistic bacterium Pseudomonas aeruginosa is a major nosocomial pathogen causing both devastating acute and chronic persistent infections. During the course of an infection, P. aeruginosa rapidly adapts to the specific conditions within the host. In the present study, we aimed at the identification of genes that are highly expressed during biofilm infections such as in chronically infected lungs of patients with cystic fibrosis (CF), burn wounds and subcutaneous mouse tumours. We found a common subset of differentially regulated genes in all three in vivo habitats and evaluated whether their inactivation impacts on the bacterial capability to form biofilms in vitro and to establish biofilm-associated infections in a murine model. Additive effects on biofilm formation and host colonization were discovered by the combined inactivation of several highly expressed genes. However, even combined inactivation was not sufficient to abolish the establishment of an infection completely. These findings can be interpreted as evidence that either redundant traits encode functions that are essential for in vivo survival and chronic biofilm infections and/or bacterial adaptation is considerably achieved independently of transcription levels. Supplemental screens, will have to be applied in order to identify the minimal set of key genes essential for the establishment of chronic infectious diseases.
Collapse
Affiliation(s)
- Piotr Bielecki
- Institute for Molecular Bacteriology, Twincore, Center for Clinical and Experimental Infection Research, a joint venture of the Helmholtz Center of Infection Research and the Hannover Medical School, Hannover, 30625, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Teramoto H, Inui M, Yukawa H. Corynebacterium glutamicumZur acts as a zinc-sensing transcriptional repressor of both zinc-inducible and zinc-repressible genes involved in zinc homeostasis. FEBS J 2012; 279:4385-97. [DOI: 10.1111/febs.12028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/24/2012] [Accepted: 10/09/2012] [Indexed: 01/06/2023]
Affiliation(s)
- Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth; Kyoto; Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth; Kyoto; Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth; Kyoto; Japan
| |
Collapse
|
38
|
Kim MS, Dufour YS, Yoo JS, Cho YB, Park JH, Nam GB, Kim HM, Lee KL, Donohue TJ, Roe JH. Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes. Mol Microbiol 2012; 85:326-44. [PMID: 22651816 DOI: 10.1111/j.1365-2958.2012.08115.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Numerous thiol-reactive compounds cause oxidative stress where cells counteract by activation of survival strategies regulated by thiol-based sensors. In Streptomyces coelicolor, a model actinomycete, a sigma/antisigma pair SigR/RsrA controls the response to thiol-oxidative stress. To unravel its full physiological functions, chromatin immuno-precipitation combined with sequence and transcript analyses were employed to identify 108 SigR target genes in S. coelicolor and to predict orthologous regulons across actinomycetes. In addition to reported genes for thiol homeostasis, protein degradation and ribosome modulation, 64 additional operons were identified suggesting new functions of this global regulator. We demonstrate that SigR maintains the level and activity of the housekeeping sigma factor HrdB during thiol-oxidative stress, a novel strategy for stress responses. We also found that SigR defends cells against UV and thiol-reactive damages, in which repair UvrA takes a part. Using a refined SigR-binding sequence model, SigR orthologues and their targets were predicted in 42 actinomycetes. This revealed a conserved core set of SigR targets to function for thiol homeostasis, protein quality control, possible modulation of transcription and translation, flavin-mediated redox reactions, and Fe-S delivery. The composition of the SigR regulon reveals a robust conserved physiological mechanism to deal with thiol-oxidative stress from bacteria to human.
Collapse
Affiliation(s)
- Min-Sik Kim
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Barnett JP, Millard A, Ksibe AZ, Scanlan DJ, Schmid R, Blindauer CA. Mining genomes of marine cyanobacteria for elements of zinc homeostasis. Front Microbiol 2012; 3:142. [PMID: 22514551 PMCID: PMC3323870 DOI: 10.3389/fmicb.2012.00142] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/25/2012] [Indexed: 12/13/2022] Open
Abstract
Zinc is a recognized essential element for the majority of organisms, and is indispensable for the correct function of hundreds of enzymes and thousands of regulatory proteins. In aquatic photoautotrophs including cyanobacteria, zinc is thought to be required for carbonic anhydrase and alkaline phosphatase, although there is evidence that at least some carbonic anhydrases can be cambialistic, i.e., are able to acquire in vivo and function with different metal cofactors such as Co2+ and Cd2+. Given the global importance of marine phytoplankton, zinc availability in the oceans is likely to have an impact on both carbon and phosphorus cycles. Zinc concentrations in seawater vary over several orders of magnitude, and in the open oceans adopt a nutrient-like profile. Most studies on zinc handling by cyanobacteria have focused on freshwater strains and zinc toxicity; much less information is available on marine strains and zinc limitation. Several systems for zinc homeostasis have been characterized in the freshwater species Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803, but little is known about zinc requirements or zinc handling by marine species. Comparative metallo-genomics has begun to explore not only the putative zinc proteome, but also specific protein families predicted to have an involvement in zinc homeostasis, including sensors for excess and limitation (SmtB and its homologs as well as Zur), uptake systems (ZnuABC), putative intracellular zinc chaperones (COG0523) and metallothioneins (BmtA), and efflux pumps (ZiaA and its homologs).
Collapse
|
40
|
|
41
|
Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 2012; 60:91-210. [PMID: 22633059 PMCID: PMC4100946 DOI: 10.1016/b978-0-12-398264-3.00002-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes.
Collapse
Affiliation(s)
- Sabeeha S. Merchant
- Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101
| |
Collapse
|
42
|
Fujimoto M, Yamada A, Kurosawa J, Kawata A, Beppu T, Takano H, Ueda K. Pleiotropic role of the Sco1/SenC family copper chaperone in the physiology of Streptomyces. Microb Biotechnol 2011; 5:477-88. [PMID: 22117562 PMCID: PMC3815325 DOI: 10.1111/j.1751-7915.2011.00319.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Antibiotic production and cell differentiation in Streptomyces is stimulated by micromolar levels of Cu(2+) . Here, we knocked out the Sco1/SenC family copper chaperone (ScoC) encoded in the conserved gene cluster 'sco' (the S treptomycescopper utilization) in Streptomyces coelicolor A3(2) and S. griseus. It is known that the Sco1/SenC family incorporates Cu(2+) into the active centre of cytochrome oxidase (cox). The knockout caused a marked delay in antibiotic production and aerial mycelium formation on solid medium, temporal pH decline in glucose-containing liquid medium, and significant reduction of cox activity in S. coelicolor. The scoC mutant produced two- to threefold higher cellular mass of the wild type exhibiting a marked cox activity in liquid medium supplied with 10 µM CuSO(4) , suggesting that ScoC is involved in not only the construction but also the deactivation of cox. The scoC mutant was defective in the monoamine oxidase activity responsible for cell aggregation and sedimentation. These features were similarly observed with regard to the scoC mutant of S. griseus. The scoC mutant of S. griseus was also defective in the extracellular activity oxidizing N,N'-dimethyl-p-phenylenediamine sulfate. Addition of 10 µM CuSO(4) repressed the activity of the conserved promoter preceding scoA and caused phenylalanine auxotrophy in some Streptomyces spp. probably because of the repression of pheA; pheA encodes prephenate dehydratase, which is located at the 3' terminus of the putative operon structure. Overall, the evidence indicates that Sco is crucial for the utilization of copper under a low-copper condition and for the activation of the multiple Cu(2+) -containing oxidases that play divergent roles in the complex physiology of Streptomyces.
Collapse
Affiliation(s)
- Masahiro Fujimoto
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Hesketh A, Hill C, Mokhtar J, Novotna G, Tran N, Bibb M, Hong HJ. Genome-wide dynamics of a bacterial response to antibiotics that target the cell envelope. BMC Genomics 2011; 12:226. [PMID: 21569315 PMCID: PMC3123327 DOI: 10.1186/1471-2164-12-226] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/11/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A decline in the discovery of new antibacterial drugs, coupled with a persistent rise in the occurrence of drug-resistant bacteria, has highlighted antibiotics as a diminishing resource. The future development of new drugs with novel antibacterial activities requires a detailed understanding of adaptive responses to existing compounds. This study uses Streptomyces coelicolor A3(2) as a model system to determine the genome-wide transcriptional response following exposure to three antibiotics (vancomycin, moenomycin A and bacitracin) that target distinct stages of cell wall biosynthesis. RESULTS A generalised response to all three antibiotics was identified which involves activation of transcription of the cell envelope stress sigma factor σ(E), together with elements of the stringent response, and of the heat, osmotic and oxidative stress regulons. Attenuation of this system by deletion of genes encoding the osmotic stress sigma factor σ(B) or the ppGpp synthetase RelA reduced resistance to both vancomycin and bacitracin. Many antibiotic-specific transcriptional changes were identified, representing cellular processes potentially important for tolerance to each antibiotic. Sensitivity studies using mutants constructed on the basis of the transcriptome profiling confirmed a role for several such genes in antibiotic resistance, validating the usefulness of the approach. CONCLUSIONS Antibiotic inhibition of bacterial cell wall biosynthesis induces both common and compound-specific transcriptional responses. Both can be exploited to increase antibiotic susceptibility. Regulatory networks known to govern responses to environmental and nutritional stresses are also at the core of the common antibiotic response, and likely help cells survive until any specific resistance mechanisms are fully functional.
Collapse
Affiliation(s)
- Andy Hesketh
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Chris Hill
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jehan Mokhtar
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gabriela Novotna
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ngat Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Mervyn Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Hee-Jeon Hong
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
44
|
Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proc Natl Acad Sci U S A 2011; 108:5045-50. [PMID: 21383173 DOI: 10.1073/pnas.1017744108] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Zinc is one of the essential transition metals in cells. Excess or lack of zinc is detrimental, and cells exploit highly sensitive zinc-binding regulators to achieve homeostasis. In this article, we present a crystal structure of active Zur from Streptomyces coelicolor with three zinc-binding sites (C-, M-, and D-sites). Mutations of the three sites differentially affected sporulation and transcription of target genes, such that C- and M-site mutations inhibited sporulation and derepressed all target genes examined, whereas D-site mutations did not affect sporulation and derepressed only a sensitive gene. Biochemical and spectroscopic analyses of representative metal site mutants revealed that the C-site serves a structural role, whereas the M- and D-sites regulate DNA-binding activity as an on-off switch and a fine-tuner, respectively. Consistent with differential effect of mutations on target genes, zinc chelation by TPEN derepressed some genes (znuA, rpmF2) more sensitively than others (rpmG2, SCO7682) in vivo. Similar pattern of TPEN-sensitivity was observed for Zur-DNA complexes formed on different promoters in vitro. The sensitive promoters bound Zur with lower affinity than the less sensitive ones. EDTA-treated apo-Zur gained its DNA binding activity at different concentrations of added zinc for the two promoter groups, corresponding to free zinc concentrations of 4.5×10(-16) M and 7.9×10(-16) M for the less sensitive and sensitive promoters, respectively. The graded expression of target genes is a clever outcome of subtly modulating Zur-DNA binding affinities in response to zinc availability. It enables bacteria to detect metal depletion with improved sensitivity and optimize gene-expression pattern.
Collapse
|
45
|
Castro-Melchor M, Charaniya S, Karypis G, Takano E, Hu WS. Genome-wide inference of regulatory networks in Streptomyces coelicolor. BMC Genomics 2010; 11:578. [PMID: 20955611 PMCID: PMC3224704 DOI: 10.1186/1471-2164-11-578] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. RESULTS In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. CONCLUSIONS Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification.
Collapse
Affiliation(s)
- Marlene Castro-Melchor
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
46
|
Reyes-Caballero H, Guerra AJ, Jacobsen FE, Kazmierczak KM, Cowart D, Koppolu UMK, Scott RA, Winkler ME, Giedroc DP. The metalloregulatory zinc site in Streptococcus pneumoniae AdcR, a zinc-activated MarR family repressor. J Mol Biol 2010; 403:197-216. [PMID: 20804771 DOI: 10.1016/j.jmb.2010.08.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/14/2010] [Accepted: 08/16/2010] [Indexed: 12/11/2022]
Abstract
Streptococcus pneumoniae D39 AdcR (adhesin competence repressor) is the first metal-sensing member of the MarR (multiple antibiotic resistance repressor) family to be characterized. Expression profiling with a ΔadcR strain grown in liquid culture (brain-heart infusion) under microaerobic conditions revealed upregulation of 13 genes, including adcR and adcCBA, encoding a high-affinity ABC uptake system for zinc, and genes encoding cell-surface zinc-binding pneumococcal histidine triad (Pht) proteins and AdcAII (Lmb, laminin binding). The ΔadcR, H108Q and H112Q adcR mutant allelic strains grown in 0.2 mM Zn(II) exhibit a slow-growth phenotype and an approximately twofold increase in cell-associated Zn(II). Apo- and Zn(II)-bound AdcR are homodimers in solution and binding to a 28-mer DNA containing an adc operator is strongly stimulated by Zn(II) with K(DNA-Zn)=2.4 × 10(8) M(-1) (pH 6.0, 0.2 M NaCl, 25 °C). AdcR binds two Zn(II) per dimer, with stepwise Zn(II) affinities K(Zn1) and K(Zn2) of ≥10(9) M(-1) at pH 6.0 and ≥10(12) M(-1) at pH 8.0, and one to three lower affinity Zn(II) depending on the pH. X-ray absorption spectroscopy of the high-affinity site reveals a pentacoordinate N/O complex and no cysteine coordination, the latter finding corroborated by wild type-like functional properties of C30A AdcR. Alanine substitution of conserved residues His42 in the DNA-binding domain, and His108 and His112 in the C-terminal regulatory domain, abolish high-affinity Zn(II) binding and greatly reduce Zn(II)-activated binding to DNA. NMR studies reveal that these mutants adopt the same folded conformation as dimeric wild type apo-AdcR, but fail to conformationally switch upon Zn(II) binding. These studies implicate His42, His108 and H112 as metalloregulatory zinc ligands in S. pneumoniae AdcR.
Collapse
|
47
|
Kallifidas D, Thomas D, Doughty P, Paget MSB. The sigmaR regulon of Streptomyces coelicolor A32 reveals a key role in protein quality control during disulphide stress. MICROBIOLOGY-SGM 2010; 156:1661-1672. [PMID: 20185507 DOI: 10.1099/mic.0.037804-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diamide is an artificial disulphide-generating electrophile that mimics an oxidative shift in the cellular thiol-disulphide redox state (disulphide stress). The Gram-positive bacterium Streptomyces coelicolor senses and responds to disulphide stress through the sigma(R)-RsrA system, which comprises an extracytoplasmic function (ECF) sigma factor and a redox-active anti-sigma factor. Known targets that aid in the protection and recovery from disulphide stress include the thioredoxin system and genes involved in producing the major thiol buffer mycothiol. Here we determine the global response to diamide in wild-type and sigR mutant backgrounds to understand the role of sigma(R) in this response and to reveal additional regulatory pathways that allow cells to cope with disulphide stress. In addition to thiol oxidation, diamide was found to cause protein misfolding and aggregation, which elicited the induction of the HspR heat-shock regulon. Although this response is sigma(R)-independent, sigma(R) does directly control Clp and Lon ATP-dependent AAA(+) proteases, which may partly explain the reduced ability of a sigR mutant to resolubilize protein aggregates. sigma(R) also controls msrA and msrB methionine sulphoxide reductase genes, implying that sigma(R)-RsrA is responsible for the maintenance of both cysteine and methionine residues during oxidative stress. This work shows that the sigma(R)-RsrA system plays a more significant role in protein quality control than previously realized, and emphasizes the importance of controlling the cellular thiol-disulphide redox balance.
Collapse
Affiliation(s)
- Dimitris Kallifidas
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Derek Thomas
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Phillip Doughty
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Mark S B Paget
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
48
|
Schröder J, Jochmann N, Rodionov DA, Tauch A. The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics 2010; 11:12. [PMID: 20055984 PMCID: PMC2823685 DOI: 10.1186/1471-2164-11-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 01/07/2010] [Indexed: 12/30/2022] Open
Abstract
Background Zinc is considered as an essential element for all living organisms, but it can be toxic at large concentrations. Bacteria therefore tightly regulate zinc metabolism. The Cg2502 protein of Corynebacterium glutamicum was a candidate to control zinc metabolism in this species, since it was classified as metalloregulator of the zinc uptake regulator (Zur) subgroup of the ferric uptake regulator (Fur) family of DNA-binding transcription regulators. Results The cg2502 (zur) gene was deleted in the chromosome of C. glutamicum ATCC 13032 by an allelic exchange procedure to generate the zur-deficient mutant C. glutamicum JS2502. Whole-genome DNA microarray hybridizations and real-time RT-PCR assays comparing the gene expression in C. glutamicum JS2502 with that of the wild-type strain detected 18 genes with enhanced expression in the zur mutant. The expression data were combined with results from cross-genome comparisons of shared regulatory sites, revealing the presence of candidate Zur-binding sites in the mapped promoter regions of five transcription units encoding components of potential zinc ABC-type transporters (cg0041-cg0042/cg0043; cg2911-cg2912-cg2913), a putative secreted protein (cg0040), a putative oxidoreductase (cg0795), and a putative P-loop GTPase of the COG0523 protein family (cg0794). Enhanced transcript levels of the respective genes in C. glutamicum JS2502 were verified by real-time RT-PCR, and complementation of the mutant with a wild-type zur gene reversed the effect of differential gene expression. The zinc-dependent expression of the putative cg0042 and cg2911 operons was detected in vivo with a gfp reporter system. Moreover, the zinc-dependent binding of purified Zur protein to double-stranded 40-mer oligonucleotides containing candidate Zur-binding sites was demonstrated in vitro by DNA band shift assays. Conclusion Whole-genome expression profiling and DNA band shift assays demonstrated that Zur directly represses in a zinc-dependent manner the expression of nine genes organized in five transcription units. Accordingly, the Zur (Cg2502) protein is the key transcription regulator for genes involved in zinc homeostasis in C. glutamicum.
Collapse
Affiliation(s)
- Jasmin Schröder
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, D-33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
49
|
Hesketh A, Kock H, Mootien S, Bibb M. The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 2009; 74:1427-44. [PMID: 19906184 DOI: 10.1111/j.1365-2958.2009.06941.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The availability of zinc was shown to have a marked influence on the biosynthesis of actinorhodin in Streptomyces coelicolor A3(2). Production of actinorhodin and undecylprodigiosin was abolished when a novel pleiotropic regulatory gene, absC, was deleted, but only when zinc concentrations were low. AbsC was shown to control expression of the gene cluster encoding production of coelibactin, an uncharacterized non-ribosomally synthesized peptide with predicted siderophore-like activity, and the observed defect in antibiotic production was found to result from elevated expression of this gene cluster. Promoter regions in the coelibactin cluster contain predicted binding motifs for the zinc-responsive regulator Zur, and dual regulation of coelibactin expression by zur and absC was demonstrated using strains engineered to contain deletions in either or both of these genes. An AbsC binding site was identified in a divergent promoter region within the coelibactin biosynthetic gene cluster, adjacent to a putative Zur binding site. Repression of the coelibactin gene cluster by both AbsC and Zur appears to be required to maintain appropriate intracellular levels of zinc in S. coelicolor.
Collapse
Affiliation(s)
- Andy Hesketh
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.
| | | | | | | |
Collapse
|
50
|
The zinc-responsive regulator Zur controls expression of the coelibactin gene cluster in Streptomyces coelicolor. J Bacteriol 2009; 192:608-11. [PMID: 19915027 DOI: 10.1128/jb.01022-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor mutants lacking the zinc-responsive Zur repressor are conditionally defective in sporulation, presumably due to the overexpression of one or more Zur target genes. Gene disruption analyses revealed that deregulation of previously known Zur targets was not responsible for the sporulation phenotype. We used microarrays to identify further Zur targets and discovered that Zur controls a cluster of genes predicted to direct synthesis of an uncharacterized siderophore-related non-ribosomally encoded peptide designated coelibactin. Disruption of a key coelibactin biosynthetic gene suppressed the Zur sporulation phenotype, suggesting that deregulation of coelibactin synthesis inhibits sporulation.
Collapse
|