1
|
Evolutionary Conservation, Variability, and Adaptation of Type III Secretion Systems. J Membr Biol 2022; 255:599-612. [PMID: 35695900 DOI: 10.1007/s00232-022-00247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Type III secretion (T3S) systems are complex bacterial structures used by many pathogens to inject proteins directly into the cytosol of the host cell. These secretion machines evolved from the bacterial flagella and they have been grouped into families by phylogenetic analysis. The T3S system is composed of more than 20 proteins grouped into five complexes: the cytosolic platform, the export apparatus, the basal body, the needle, and the translocon complex. While the proteins located inside the bacterium are conserved, those exposed to the external media present high variability among families. This suggests that the T3S systems have adapted to interact with different cells or tissues in the host, and/or have been subjected to the evolutionary pressure of the host immune defenses. Such adaptation led to changes in the sequence of the T3S needle tip and translocon suggesting differences in the mechanism of assembly and structure of this complex.
Collapse
|
2
|
Moir DT, Bowlin NO, Berube BJ, Yabut J, Mills DM, Nguyen GT, Aron ZD, Williams JD, Mecsas J, Hauser AR, Bowlin TL. A Structure-Function-Inhibition Analysis of the Pseudomonas aeruginosa Type III Secretion Needle Protein PscF. J Bacteriol 2020; 202:e00055-20. [PMID: 32601072 PMCID: PMC7925083 DOI: 10.1128/jb.00055-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/19/2020] [Indexed: 01/10/2023] Open
Abstract
The Pseudomonas aeruginosa type III secretion system (T3SS) needle comprised of multiple PscF subunits is essential for the translocation of effector toxins into human cells, facilitating the establishment and dissemination of infection. Mutations in the pscF gene provide resistance to the phenoxyacetamide (PhA) series of T3SS inhibitory chemical probes. To better understand PscF functions and interactions with PhA, alleles of pscF with 71 single mutations altering 49 of the 85 residues of the encoded protein were evaluated for their effects on T3SS phenotypes. Of these, 37% eliminated and 63% maintained secretion, with representatives of both evenly distributed across the entire protein. Mutations in 14 codons conferred a degree of PhA resistance without eliminating secretion, and all but one were in the alpha-helical C-terminal 25% of PscF. PhA-resistant mutants exhibited no cross-resistance to two T3SS inhibitors with different chemical scaffolds. Two mutations caused constitutive T3SS secretion. The pscF allele at its native locus, whether wild type (WT), constitutive, or PhA resistant, was dominant over other pscF alleles expressed from nonnative loci and promoters, but mixed phenotypes were observed in chromosomal ΔpscF strains with both WT and mutant alleles at nonnative loci. Some PhA-resistant mutants exhibited reduced translocation efficiency that was improved in a PhA dose-dependent manner, suggesting that PhA can bind to those resistant needles. In summary, these results are consistent with a direct interaction between PhA inhibitors and the T3SS needle, suggest a mechanism of blocking conformational changes, and demonstrate that PscF affects T3SS regulation, as well as carrying out secretion and translocation.IMPORTANCEP. aeruginosa effector toxin translocation into host innate immune cells is critical for the establishment and dissemination of P. aeruginosa infections. The medical need for new anti-P. aeruginosa agents is evident by the fact that P. aeruginosa ventilator-associated pneumonia is associated with a high mortality rate (40 to 69%) and recurs in >30% of patients, even with standard-of-care antibiotic therapy. The results described here confirm roles for the PscF needle in T3SS secretion and translocation and suggest that it affects regulation, possibly by interaction with T3SS regulatory proteins. The results also support a model of direct interaction of the needle with PhA and suggest that, with further development, members of the PhA series may prove useful as drugs for P. aeruginosa infection.
Collapse
Affiliation(s)
| | | | - Bryan J Berube
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois, USA
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jaden Yabut
- Microbiotix, Inc., Worcester, Massachusetts, USA
| | | | - Giang T Nguyen
- Tufts Graduate School in Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alan R Hauser
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
3
|
Dey S, Chakravarty A, Guha Biswas P, De Guzman RN. The type III secretion system needle, tip, and translocon. Protein Sci 2019; 28:1582-1593. [PMID: 31301256 DOI: 10.1002/pro.3682] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/06/2022]
Abstract
Many Gram-negative bacteria pathogenic to plants and animals deploy the type III secretion system (T3SS) to inject virulence factors into their hosts. All bacteria that rely on the T3SS to cause infectious diseases in humans have developed antibiotic resistance. The T3SS is an attractive target for developing new antibiotics because it is essential in virulence, and part of its structural component is exposed on the bacterial surface. The structural component of the T3SS is the needle apparatus, which is assembled from over 20 different proteins and consists of a base, an extracellular needle, a tip, and a translocon. This review summarizes the current knowledge on the structure and assembly of the needle, tip, and translocon.
Collapse
Affiliation(s)
- Supratim Dey
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | | | | | | |
Collapse
|
4
|
Lombardi C, Tolchard J, Bouillot S, Signor L, Gebus C, Liebl D, Fenel D, Teulon JM, Brock J, Habenstein B, Pellequer JL, Faudry E, Loquet A, Attrée I, Dessen A, Job V. Structural and Functional Characterization of the Type Three Secretion System (T3SS) Needle of Pseudomonas aeruginosa. Front Microbiol 2019; 10:573. [PMID: 31001211 PMCID: PMC6455054 DOI: 10.3389/fmicb.2019.00573] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/05/2019] [Indexed: 01/23/2023] Open
Abstract
The type three secretion system (T3SS) is a macromolecular protein nano-syringe used by different bacterial pathogens to inject effectors into host cells. The extracellular part of the syringe is a needle-like filament formed by the polymerization of a 9-kDa protein whose structure and proper localization on the bacterial surface are key determinants for efficient toxin injection. Here, we combined in vivo, in vitro, and in silico approaches to characterize the Pseudomonas aeruginosa T3SS needle and its major component PscF. Using a combination of mutagenesis, phenotypic analyses, immunofluorescence, proteolysis, mass spectrometry, atomic force microscopy, electron microscopy, and molecular modeling, we propose a model of the P. aeruginosa needle that exposes the N-terminal region of each PscF monomer toward the outside of the filament, while the core of the fiber is formed by the C-terminal helix. Among mutations introduced into the needle protein PscF, D76A, and P47A/Q54A caused a defect in the assembly of the needle on the bacterial surface, although the double mutant was still cytotoxic on macrophages in a T3SS-dependent manner and formed filamentous structures in vitro. These results suggest that the T3SS needle of P. aeruginosa displays an architecture that is similar to that of other bacterial needles studied to date and highlight the fact that small, targeted perturbations in needle assembly can inhibit T3SS function. Therefore, the T3SS needle represents an excellent drug target for small molecules acting as virulence blockers that could disrupt pathogenesis of a broad range of bacteria.
Collapse
Affiliation(s)
- Charlotte Lombardi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - James Tolchard
- Institute of Chemistry and Biology of Membranes and Nanoobjects, Institut Européen de Chimie et Biologie (CBMN), UMR5248 CNRS, University of Bordeaux, Pessac, France
| | - Stephanie Bouillot
- Univ. Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses Group, U1036 INSERM, ERL5261 CNRS, CEA, Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Caroline Gebus
- Univ. Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses Group, U1036 INSERM, ERL5261 CNRS, CEA, Grenoble, France
| | - David Liebl
- Univ. Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses Group, U1036 INSERM, ERL5261 CNRS, CEA, Grenoble, France
| | - Daphna Fenel
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Juliane Brock
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nanoobjects, Institut Européen de Chimie et Biologie (CBMN), UMR5248 CNRS, University of Bordeaux, Pessac, France
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Eric Faudry
- Univ. Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses Group, U1036 INSERM, ERL5261 CNRS, CEA, Grenoble, France
| | - Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nanoobjects, Institut Européen de Chimie et Biologie (CBMN), UMR5248 CNRS, University of Bordeaux, Pessac, France
| | - Ina Attrée
- Univ. Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses Group, U1036 INSERM, ERL5261 CNRS, CEA, Grenoble, France
| | - Andréa Dessen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.,Brazilian Biosciences National Laboratory (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Viviana Job
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.,Univ. Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses Group, U1036 INSERM, ERL5261 CNRS, CEA, Grenoble, France
| |
Collapse
|
5
|
Wagner S, Grin I, Malmsheimer S, Singh N, Torres-Vargas CE, Westerhausen S. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol Lett 2018; 365:5068689. [PMID: 30107569 PMCID: PMC6140923 DOI: 10.1093/femsle/fny201] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Virulence-associated type III secretion systems (T3SS) serve the injection of bacterial effector proteins into eukaryotic host cells. They are able to secrete a great diversity of substrate proteins in order to modulate host cell function, and have evolved to sense host cell contact and to inject their substrates through a translocon pore in the host cell membrane. T3SS substrates contain an N-terminal signal sequence and often a chaperone-binding domain for cognate T3SS chaperones. These signals guide the substrates to the machine where substrates are unfolded and handed over to the secretion channel formed by the transmembrane domains of the export apparatus components and by the needle filament. Secretion itself is driven by the proton motive force across the bacterial inner membrane. The needle filament measures 20-150 nm in length and is crowned by a needle tip that mediates host-cell sensing. Secretion through T3SS is a highly regulated process with early, intermediate and late substrates. A strict secretion hierarchy is required to build an injectisome capable of reaching, sensing and penetrating the host cell membrane, before host cell-acting effector proteins are deployed. Here, we review the recent progress on elucidating the assembly, structure and function of T3SS injectisomes.
Collapse
Affiliation(s)
- Samuel Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Iwan Grin
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Silke Malmsheimer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Nidhi Singh
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Claudia E Torres-Vargas
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Sibel Westerhausen
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Structure of a bacterial type III secretion system in contact with a host membrane in situ. Nat Commun 2015; 6:10114. [PMID: 26656452 PMCID: PMC4682100 DOI: 10.1038/ncomms10114] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/03/2015] [Indexed: 12/16/2022] Open
Abstract
Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform–ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking ‘pump-action' conformational changes that underpin effector injection. Bacterial type III secretion systems (T3SSs) inject virulence effector proteins into eukaryotic cells and are activated by host membrane contact. Here the authors report the in situ structure of the Chlamydia trachomatis T3SS in the presence or absence of host membrane, and observe compaction of the basal body embedded in the bacterial envelope.
Collapse
|
7
|
Zhang Y, Tam JW, Mena P, van der Velden AWM, Bliska JB. CCR2+ Inflammatory Dendritic Cells and Translocation of Antigen by Type III Secretion Are Required for the Exceptionally Large CD8+ T Cell Response to the Protective YopE69-77 Epitope during Yersinia Infection. PLoS Pathog 2015; 11:e1005167. [PMID: 26468944 PMCID: PMC4607306 DOI: 10.1371/journal.ppat.1005167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/25/2015] [Indexed: 12/24/2022] Open
Abstract
During Yersinia pseudotuberculosis infection of C57BL/6 mice, an exceptionally large CD8+ T cell response to a protective epitope in the type III secretion system effector YopE is produced. At the peak of the response, up to 50% of splenic CD8+ T cells recognize the epitope YopE69-77. The features of the interaction between pathogen and host that result in this large CD8+ T cell response are unknown. Here, we used Y. pseudotuberculosis strains defective for production, secretion and/or translocation of YopE to infect wild-type or mutant mice deficient in specific dendritic cells (DCs). Bacterial colonization of organs and translocation of YopE into spleen cells was measured, and flow cytometry and tetramer staining were used to characterize the cellular immune response. We show that the splenic YopE69-77-specific CD8+ T cells generated during the large response are polyclonal and are produced by a “translocation-dependent” pathway that requires injection of YopE into host cell cytosol. Additionally, a smaller YopE69-77-specific CD8+ T cell response (~10% of the large expansion) can be generated in a “translocation-independent” pathway in which CD8α+ DCs cross present secreted YopE. CCR2-expressing inflammatory DCs were required for the large YopE69-77-specific CD8+ T cell expansion because this response was significantly reduced in Ccr2-/- mice, YopE was translocated into inflammatory DCs in vivo, inflammatory DCs purified from infected spleens activated YopE69-77-specific CD8+ T cells ex vivo and promoted the expansion of YopE69-77-specific CD8+ T cells in infected Ccr2-/- mice after adoptive transfer. A requirement for inflammatory DCs in producing a protective CD8+ T cell response to a bacterial antigen has not previously been demonstrated. Therefore, the production of YopE69-77-specific CD8+ T cells by inflammatory DCs that are injected with YopE during Y. pseudotuberculosis infection represents a novel mechanism for generating a massive and protective adaptive immune response. Dendritic cells (DCs) direct host protective adaptive immune responses during infection. How different subpopulations of DCs contribute to the formation of antigen-specific CD8+ T cells is incompletely understood. Infection of C57BL/6 mice with the bacterial pathogen Yersinia pseudotuberculosis results in the production of an exceptionally large CD8+ T cell response to an epitope in the type III secretion system effector YopE. Here, we show that this large CD8+ T cell response requires translocation of YopE into inflammatory DCs, which express CCR2 and accumulate in infected tissues. In contrast, when mice are infected with a Y. pseudotuberculosis strain that can secrete but not translocate YopE, a smaller response is seen, and under these conditions the generation of YopE-specific CD8+ T cell requires CD8α+ DCs. Our results indicate that distinct DC subsets participate in constructing the CD8+ T cell response to secreted, versus translocated, YopE. Furthermore our data indicate that inflammatory DCs are a driving force behind the massive CD8+ T cell response to a protective epitope in a bacterial virulence factor that is translocated into host cells.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason W. Tam
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Patricio Mena
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Adrianus W. M. van der Velden
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Cheung M, Shen DK, Makino F, Kato T, Roehrich AD, Martinez-Argudo I, Walker ML, Murillo I, Liu X, Pain M, Brown J, Frazer G, Mantell J, Mina P, Todd T, Sessions RB, Namba K, Blocker AJ. Three-dimensional electron microscopy reconstruction and cysteine-mediated crosslinking provide a model of the type III secretion system needle tip complex. Mol Microbiol 2014; 95:31-50. [PMID: 25353930 PMCID: PMC4539596 DOI: 10.1111/mmi.12843] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2014] [Indexed: 01/14/2023]
Abstract
Type III secretion systems are found in many Gram-negative bacteria. They are activated by contact with eukaryotic cells and inject virulence proteins inside them. Host cell detection requires a protein complex located at the tip of the device's external injection needle. The Shigella tip complex (TC) is composed of IpaD, a hydrophilic protein, and IpaB, a hydrophobic protein, which later forms part of the injection pore in the host membrane. Here we used labelling and crosslinking methods to show that TCs from a ΔipaB strain contain five IpaD subunits while the TCs from wild-type can also contain one IpaB and four IpaD subunits. Electron microscopy followed by single particle and helical image analysis was used to reconstruct three-dimensional images of TCs at ∼ 20 Å resolution. Docking of an IpaD crystal structure, constrained by the crosslinks observed, reveals that TC organisation is different from that of all previously proposed models. Our findings suggest new mechanisms for TC assembly and function. The TC is the only site within these secretion systems targeted by disease-protecting antibodies. By suggesting how these act, our work will allow improvement of prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Martin Cheung
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 2014; 68:415-38. [PMID: 25002086 DOI: 10.1146/annurev-micro-092412-155725] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilize complex nanomachines to deliver bacterially encoded effector proteins into target eukaryotic cells. These effector proteins modulate a variety of cellular functions for the pathogen's benefit. One of these protein-delivery machines is the type III secretion system (T3SS). T3SSs are widespread in nature and are encoded not only by bacteria pathogenic to vertebrates or plants but also by bacteria that are symbiotic to plants or insects. A central component of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins across the bacterial envelope. Working in conjunction with several cytoplasmic components, the needle complex engages specific substrates in sequential order, moves them across the bacterial envelope, and ultimately delivers them into eukaryotic cells. The central role of T3SSs in pathogenesis makes them great targets for novel antimicrobial strategies.
Collapse
Affiliation(s)
- Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536;
| | | | | | | |
Collapse
|
10
|
Type III secretion needle proteins induce cell signaling and cytokine secretion via Toll-like receptors. Infect Immun 2014; 82:2300-9. [PMID: 24643544 DOI: 10.1128/iai.01705-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pathogens are recognized by hosts by use of various receptors, including the Toll-like receptor (TLR) and Nod-like receptor (NLR) families. Ligands for these varied receptors, including bacterial products, are identified by the immune system, resulting in development of innate immune responses. Only a couple of components from type III secretion (T3S) systems are known to be recognized by TLR or NLR family members. Known T3S components that are detected by pattern recognition receptors (PRRs) are (i) flagellin, detected by TLR5 and NLRC4 (Ipaf); and (ii) T3S rod proteins (PrgJ and homologs) and needle proteins (PrgI and homologs), detected by NAIP and the NLRC4 inflammasome. In this report, we characterize the induction of proinflammatory responses through TLRs by the Yersinia pestis T3S needle protein, YscF, the Salmonella enterica needle proteins PrgI and SsaG, and the Shigella needle protein, MxiH. More specifically, we determine that the proinflammatory responses occur through TLR2 and -4. These data support the hypothesis that T3S needles have an unrecognized role in bacterial pathogenesis by modulating immune responses.
Collapse
|
11
|
Paczosa MK, Fisher ML, Maldonado-Arocho FJ, Mecsas J. Yersinia pseudotuberculosis uses Ail and YadA to circumvent neutrophils by directing Yop translocation during lung infection. Cell Microbiol 2013; 16:247-68. [PMID: 24119087 DOI: 10.1111/cmi.12219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/03/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
Abstract
A Yersinia pseudotuberculosis (Yptb) murine model of lung infection was previously developed using the serotype III IP2666NdeI strain, which robustly colonized lungs but only sporadically disseminated to the spleen and liver. We demonstrate here that a serotype Ib Yptb strain, IP32953, colonizes the lungs at higher levels and disseminates more efficiently to the spleen and liver compared with IP2666NdeI . The role of adhesins was investigated during IP32953 lung infection by constructing isogenic Δail, Δinv, ΔpsaE and ΔyadA mutants. An IP32953ΔailΔyadA mutant initially colonized but failed to persist in the lungs and disseminate to the spleen and liver. Yptb expressing these adhesins selectively bound to and targeted neutrophils for translocation of Yops. This selective targeting was critical for virulence because persistence of the ΔailΔyadA mutant was restored following intranasal infection of neutropenic mice. Furthermore, Ail and YadA prevented killing by complement-mediated mechanisms during dissemination to and/or growth in the spleen and liver, but not in the lungs. Combined, these results demonstratethat Ail and YadA are critical, redundant virulence factors during lung infection, because they thwart neutrophils by directing Yop-translocation specifically into these cells.
Collapse
Affiliation(s)
- Michelle K Paczosa
- Graduate Program in Immunology, MERGE-ID Track, Sackler School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | | |
Collapse
|