1
|
Shi L, Zhao L, Li Q, Huang L, Qin Y, Zhuang Z, Wang X, Huang H, Zhang J, Zhang J, Yan Q. Role of the Pseudomonas plecoglossicida fliL gene in immune response of infected hybrid groupers (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Front Immunol 2024; 15:1415744. [PMID: 39026675 PMCID: PMC11254626 DOI: 10.3389/fimmu.2024.1415744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Pseudomonas plecoglossicida, a gram-negative bacterium, is the main pathogen of visceral white-point disease in marine fish, responsible for substantial economic losses in the aquaculture industry. The FliL protein, involved in torque production of the bacterial flagella motor, is essential for the pathogenicity of a variety of bacteria. In the current study, the fliL gene deletion strain (ΔfliL), fliL gene complement strain (C-ΔfliL), and wild-type strain (NZBD9) were compared to explore the influence of the fliL gene on P. plecoglossicida pathogenicity and its role in host immune response. Results showed that fliL gene deletion increased the survival rate (50%) and reduced white spot disease progression in the hybrid groupers. Moreover, compared to the NZBD9 strain, the ΔfliL strain was consistently associated with lower bacterial loads in the grouper spleen, head kidney, liver, and intestine, coupled with reduced tissue damage. Transcriptomic analysis identified 2 238 differentially expressed genes (DEGs) in the spleens of fish infected with the ΔfliL strain compared to the NZBD9 strain. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the DEGs were significantly enriched in seven immune system-associated pathways and three signaling molecule and interaction pathways. Upon infection with the ΔfliL strain, the toll-like receptor (TLR) signaling pathway was activated in the hybrid groupers, leading to the activation of transcription factors (NF-κB and AP1) and cytokines. The expression levels of proinflammatory cytokine-related genes IL-1β, IL-12B, and IL-6 and chemokine-related genes CXCL9, CXCL10, and CCL4 were significantly up-regulated. In conclusion, the fliL gene markedly influenced the pathogenicity of P. plecoglossicida infection in the hybrid groupers. Notably, deletion of fliL gene in P. plecoglossicida induced a robust immune response in the groupers, promoting defense against and elimination of pathogens via an inflammatory response involving multiple cytokines.
Collapse
Affiliation(s)
- Lian Shi
- Fisheries College, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
2
|
Liu X, Roujeinikova A, Ottemann KM. FliL Functions in Diverse Microbes to Negatively Modulate Motor Output via Its N-Terminal Region. mBio 2023; 14:e0028323. [PMID: 36852985 PMCID: PMC10127578 DOI: 10.1128/mbio.00283-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
The flagellar motor protein FliL is conserved across many microbes, but its exact role has been obscured by varying fliL mutant phenotypes. We reanalyzed results from fliL studies and found they utilized alleles that differed in the amount of N- and C-terminal regions that were retained. Alleles that retain the N-terminal cytoplasmic and transmembrane helix (TM) regions in the absence of the C-terminal periplasmic domain result in loss of motility, while alleles that completely lack the N-terminal region, independent of the periplasmic domain, retain motility. We then tested this prediction in Helicobacter pylori fliL and found support for the idea. This analysis suggests that FliL function may be more conserved across bacteria than previously thought, that it is not essential for motility, and that the N-terminal region has the negative ability to regulate motor function. IMPORTANCE FliL is a protein found in the flagellar motor of bacteria, but what it does was not clear. To study FliL function, scientists often remove it and see what happens. Loss of FliL was thought to have different effects depending on the microbe. We uncovered, however, that part of the confusion arose because scientists inadvertently removed different parts of the protein. Our analysis and data suggest that leaving the N-terminal regions blocks motility, while fully removing FliL allows normal motility. This finding will help scientists understand FliL because it clarifies what needs to be removed to fully eliminate the protein, and also that the N-terminal region can block motility.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Anna Roujeinikova
- Infection and Immunity Program, Department of Microbiology and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| |
Collapse
|
3
|
Sobe RC, Gilbert C, Vo L, Alexandre G, Scharf BE. FliL and its paralog MotF have distinct roles in the stator activity of the Sinorhizobium meliloti flagellar motor. Mol Microbiol 2022; 118:223-243. [PMID: 35808893 PMCID: PMC9541039 DOI: 10.1111/mmi.14964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
The bacterial flagellum is a complex macromolecular machine that drives bacteria through diverse fluid environments. Although many components of the flagellar motor are conserved across species, the roles of FliL are numerous and species-specific. Here, we have characterized an additional player required for flagellar motor function in Sinorhizobium meliloti, MotF, which we have identified as a FliL paralog. We performed a comparative analysis of MotF and FliL, identified interaction partners through bacterial two-hybrid and pull-down assays, and investigated their roles in motility and motor rotation. Both proteins form homooligomers, and interact with each other, and with the stator proteins MotA and MotB. The ∆motF mutant exhibits normal flagellation but its swimming behavior and flagellar motor activity are severely impaired and erratic. In contrast, the ∆fliL mutant is mostly aflagellate and nonmotile. Amino acid substitutions in cytoplasmic regions of MotA or disruption of the proton channel plug of MotB partially restored motor activity to the ∆motF but not the ∆fliL mutant. Altogether, our findings indicate that both, MotF and FliL, are essential for flagellar motor torque generation in S. meliloti. FliL may serve as a scaffold for stator integration into the motor, and MotF is required for proton channel modulation.
Collapse
Affiliation(s)
- Richard C. Sobe
- Department of Biological SciencesLife Sciences I, Virginia TechBlacksburgVirginiaUSA
| | - Crystal Gilbert
- Department of Biological SciencesLife Sciences I, Virginia TechBlacksburgVirginiaUSA
| | - Lam Vo
- Department of Biochemistry and Cell and Molecular BiologyUniversity of Tennessee at KnoxvilleKnoxvilleTennesseeUSA
- Present address:
Molecular Cellular and Developmental Biology and PhysicsYale UniversityNew HavenConnecticutUSA
| | - Gladys Alexandre
- Department of Biochemistry and Cell and Molecular BiologyUniversity of Tennessee at KnoxvilleKnoxvilleTennesseeUSA
| | - Birgit E. Scharf
- Department of Biological SciencesLife Sciences I, Virginia TechBlacksburgVirginiaUSA
| |
Collapse
|
4
|
Eugenol, citral, and hexanal, alone or in combination with heat, affect viability, biofilm formation, and swarming on Shiga-toxin-producing Escherichia coli. Food Sci Biotechnol 2021; 30:599-607. [PMID: 33936852 DOI: 10.1007/s10068-021-00887-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 10/21/2022] Open
Abstract
Shiga-toxin-producing Escherichia coli strains are pathogenic for humans and cause mild to severe illnesses. In this study, the antimicrobial effect of citral, eugenol, and hexanal in combination with heat shock (HS) was evaluated in terms of the growth, biofilm formation, swarming, and expression of virulence genes of STEC serotypes (O157:H7, O103, O111, and O26). Eugenol was the most effective compound against the growth of E. coli strains (MBC = 0.58 to 0.73 mg/mL), followed by citral (MBC = 0.86 to 1.26 mg/mL) and hexanal (MBC = 2.24 to 2.52 mg/mL). Biofilm formation and swarming motility have great variability between STEC strains. Natural compounds-alone or combined with HS-inhibited biofilm formation; however, swarming motility was induced by most treatments. The expression of the studied genes during biofilm formation and swarming under natural antimicrobials was affected but not in a uniform pattern. These treatments could be used to control contamination of STEC and inhibit biofilm formation.
Collapse
|
5
|
Mordue J, O'Boyle N, Gadegaard N, Roe AJ. The force awakens: The dark side of mechanosensing in bacterial pathogens. Cell Signal 2020; 78:109867. [PMID: 33279672 DOI: 10.1016/j.cellsig.2020.109867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 02/01/2023]
Abstract
For many bacteria, the ability to sense physical stimuli such as contact with a surface or a potential host cell is vital for survival and proliferation. This ability, and subsequent attachment, confers a wide range of benefits to bacteria and many species have evolved to take advantage of this. Despite the impressive diversity of bacterial pathogens and their virulence factors, mechanosensory mechanisms are often conserved. These include sensing impedance of flagellar rotation and resistance to type IV pili retraction. There are additional mechanisms that rely on the use of specific membrane-bound adhesins to sense either surface proximity or shear forces. This review aims to examine these mechanosensors, and how they are used by pathogenic bacteria to sense physical features in their environment. We will explore how these sensors generate and transmit signals which can trigger modulation of virulence-associated gene expression in some of the most common bacterial pathogens: Pseudomonas aeruginosa, Proteus mirabilis, Escherichia coli and Vibrio species.
Collapse
Affiliation(s)
- James Mordue
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Nikolaj Gadegaard
- School of Engineering, Rankine Building, University of Glasgow, Glasgow G12 8LT, UK
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
6
|
All living cells are cognitive. Biochem Biophys Res Commun 2020; 564:134-149. [PMID: 32972747 DOI: 10.1016/j.bbrc.2020.08.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
All living cells sense and respond to changes in external or internal conditions. Without that cognitive capacity, they could not obtain nutrition essential for growth, survive inevitable ecological changes, or correct accidents in the complex processes of reproduction. Wherever examined, even the smallest living cells (prokaryotes) display sophisticated regulatory networks establishing appropriate adaptations to stress conditions that maximize the probability of survival. Supposedly "simple" prokaryotic organisms also display remarkable capabilities for intercellular signalling and multicellular coordination. These observations indicate that all living cells are cognitive.
Collapse
|
7
|
Peng L, Chen DQ, Jiang GM, Ou JY, Jiang Q, Zeng LT, Xiao Y, Jiang QY, Yang L, Ning Sun. Transcriptome Analysis of Two Strains of Proteus mirabilis with Swarming Migration Deficiency Isolated from Patients with Urinary Tract Infection. Curr Microbiol 2020; 77:1381-1389. [PMID: 32152756 DOI: 10.1007/s00284-020-01931-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
Two rare strains of Proteus mirabilis with swarming migration deficiency were isolated from urine samples of two patients with urinary tract infections and were named as G121 and G137. Migration experiments showed that P. mirabilis HI4320 had typical migration on blood agar, while G121 and G137 had significantly weakened migration ability. Results of adhesion tests showed that the adhesion ability of G121 and G137 to the bladder epithelial cell line 5637 was significantly reduced. High-throughput sequencing and alignment analysis of the transcriptomes of the three P. mirabilis strains were conducted, with P. mirabilis HI4320 as the reference strain. Reverse transcription quantitative PCR (RT-qPCR) was used to verify differentially expressed genes. Results of transcriptome analysis and RT-qPCR showed that, compared to the HI4320 strain, genes related to flagellum and fimbria formation, dicarboxylate transport, and cystathionine and anthranilate metabolism were down-regulated in G121 and G137, while genes related to iron transport, molybdenum metabolism, and metalloprotease were up-regulated, suggesting that these genes may be involved in the migration ability and epithelial cell adhesion ability of P. mirabilis. These results provide important insight to the search for virulence genes and the screening of new antibacterial targets for P. mirabilis.
Collapse
Affiliation(s)
- Liang Peng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Ding-Qiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Guan-Ming Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jing-Yi Ou
- Department of Clinical Laboratory, Guangzhou No. 8 People's Hospital, Guangzhou, 510000, Guangdong, China
| | - Qiao Jiang
- Intensive Care Unit, Guangdong 999 Brain Hospital, Guangzhou, 510510, Guangdong, China
| | - Li-Ting Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Yi Xiao
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Qiong-Yan Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Ling Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China.
| | - Ning Sun
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China.
| |
Collapse
|
8
|
Characterization of FliL Proteins in Bradyrhizobium diazoefficiens: Lateral FliL Supports Swimming Motility, and Subpolar FliL Modulates the Lateral Flagellar System. J Bacteriol 2020; 202:JB.00708-19. [PMID: 31843800 DOI: 10.1128/jb.00708-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Bradyrhizobium diazoefficiens is a soil alphaproteobacterium that possesses two evolutionarily distinct flagellar systems, a constitutive subpolar flagellum and inducible lateral flagella that, depending on the carbon source, may be expressed simultaneously in liquid medium and used interactively for swimming. In each system, more than 30 genes encode the flagellar proteins, most of which are well characterized. Among the exceptions is FliL, which has been scarcely studied in alphaproteobacteria and whose function in other bacterial classes is somewhat controversial. Because each B. diazoefficiens flagellar system contains its own fliL paralog, we obtained the respective deletions ΔfliLS (subpolar) and ΔfliLL (lateral) to study their functions in swimming. We determined that FliLL was essential for lateral flagellum-driven motility. FliLS was dispensable for swimming in either liquid or semisolid medium; however, it was found to play a crucial role in upregulation of the lateral flagellum regulon under conditions of increased viscosity/flagellar load. Therefore, although FliLS seems to be not essential for swimming, it may participate in a mechanosensor complex that controls lateral flagellum induction.IMPORTANCE Bacterial motility propelled by flagella is an important trait in most environments, where microorganisms must explore the habitat toward beneficial resources and evade toxins. Most bacterial species have a unique flagellar system, but a few species possess two different flagellar systems in the same cell. An example is Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean, which uses both systems for swimming. Among the less-characterized flagellar proteins is FliL, a protein typically associated with a flagellum-driven surface-based collective motion called swarming. By using deletion mutants in each flagellar system's fliL, we observed that one of them (lateral) was required for swimming, while the other (subpolar) took part in the control of lateral flagellum synthesis. Hence, this protein seems to participate in the coordination of activity and production of both flagellar systems.
Collapse
|
9
|
Abstract
Bacteria move by a variety of mechanisms, but the best understood types of motility are powered by flagella (72). Flagella are complex machines embedded in the cell envelope that rotate a long extracellular helical filament like a propeller to push cells through the environment. The flagellum is one of relatively few biological machines that experience continuous 360° rotation, and it is driven by one of the most powerful motors, relative to its size, on earth. The rotational force (torque) generated at the base of the flagellum is essential for motility, niche colonization, and pathogenesis. This review describes regulatory proteins that control motility at the level of torque generation.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.,Biochemistry Graduate Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
10
|
Chan KL, Machuca MA, Rahman MM, Khan MF, Andrews D, Roujeinikova A. Purification, crystallization and preliminary X-ray crystallographic studies on the C-terminal domain of the flagellar protein FliL from Helicobacter pylori. Biosci Trends 2019; 12:630-635. [PMID: 30674764 DOI: 10.5582/bst.2018.01218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
FliL is an inner membrane protein, occupying a position between the rotor and the stator of the bacterial flagellar motor. Its proximity to, and interactions with, the MS (membrane and supramembranous) ring, the switch complex and the stator proteins MotA/B suggests a role in recruitment and/or stabilization of the stator around the rotor, although the precise role of FliL in the flagellum remains to be established. In this study, recombinant C-terminal domain of Helicobacter pylori FliL (amino-acid residues 81-183) has been expressed in Escherichia coli and purified to > 98% homogeneity. Purified recombinant protein behaved as a monomer in solution. Crystals were obtained by the hanging-drop vapour-diffusion method using ammonium phosphate monobasic as a precipitant. These crystals belong to space group P1, with unit-cell parameters a = 62.5, b = 82.6, c = 97.8 Å, α = 67.7, ꞵ = 83.4, γ = 72.8°. A complete data set has been collected to 2.8 Å resolution using synchrotron radiation. This is an important step towards elucidation of the function of FliL in the bacterial flagellar motor.
Collapse
Affiliation(s)
- Kar Lok Chan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University
| | - Mayra A Machuca
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University
| | - Mohammad Mizanur Rahman
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University
| | - Mohammad Firoz Khan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University
| | - Daniel Andrews
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University.,Department of Biochemistry and Molecular Biology, Monash University
| |
Collapse
|
11
|
Howell C, Grinthal A, Sunny S, Aizenberg M, Aizenberg J. Designing Liquid-Infused Surfaces for Medical Applications: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802724. [PMID: 30151909 DOI: 10.1002/adma.201802724] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/06/2018] [Indexed: 05/21/2023]
Abstract
The development of new technologies is key to the continued improvement of medicine, relying on comprehensive materials design strategies that can integrate advanced therapeutic and diagnostic functions with a variety of surface properties such as selective adhesion, dynamic responsiveness, and optical/mechanical tunability. Liquid-infused surfaces have recently come to the forefront as a unique approach to surface coatings that can resist adhesion of a wide range of contaminants on medical devices. Furthermore, these surfaces are proving highly versatile in enabling the integration of established medical surface treatments alongside the antifouling capabilities, such as drug release or biomolecule organization. Here, the range of research being conducted on liquid-infused surfaces for medical applications is presented, from an understanding of the basics behind the interactions of physiological fluids, microbes, and mammalian cells with liquid layers to current applications of these materials in point-of-care diagnostics, medical tubing, instruments, implants, and tissue engineering. Throughout this exploration, the design parameters of liquid-infused surfaces and how they can be adapted and tuned to particular applications are discussed, while identifying how the range of controllable factors offered by liquid-infused surfaces can be used to enable completely new and dynamic approaches to materials and devices for human health.
Collapse
Affiliation(s)
- Caitlin Howell
- Department of Chemical and Biomedical Engineering and School of Biomedical Science and Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA
| | - Alison Grinthal
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 021383, USA
| | - Steffi Sunny
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 021383, USA
| | - Michael Aizenberg
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Cir, Boston, MA, 02115, USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 021383, USA
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Cir, Boston, MA, 02115, USA
- Kavli Institute for Bionano Science and Technology, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
12
|
Lin TS, Zhu S, Kojima S, Homma M, Lo CJ. FliL association with flagellar stator in the sodium-driven Vibrio motor characterized by the fluorescent microscopy. Sci Rep 2018; 8:11172. [PMID: 30042401 PMCID: PMC6057877 DOI: 10.1038/s41598-018-29447-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022] Open
Abstract
Bacterial flagellar motor (BFM) is a protein complex used for bacterial motility and chemotaxis that involves in energy transformation, torque generation and switching. FliL is a single-transmembrane protein associated with flagellar motor function. We performed biochemical and biophysical approaches to investigate the functional roles of FliL associated with stator-units. Firstly, we found the periplasmic region of FliL is crucial for its polar localization. Also, the plug mutation in stator-unit affected the polar localization of FliL implying the activation of stator-unit is important for FliL recruitment. Secondly, we applied single-molecule fluorescent microscopy to study the role of FliL in stator-unit assembly. Using molecular counting by photobleaching, we found the stoichiometry of stator-unit and FliL protein would be 1:1 in a functional motor. Moreover, the turnover time of stator-units are slightly increased in the absence of FliL. By further investigation of protein dynamics on membrane, we found the diffusions of stator-units and FliL are independent. Surprisingly, the FliL diffusion rate without stator-units is unexpectedly slow indicating a protein-complex forming event. Our results suggest that FliL plays a supporting role to the stator in the BFM.
Collapse
Affiliation(s)
- Tsai-Shun Lin
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, 32001, Republic of China
| | - Shiwei Zhu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, CT, 06536, USA
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, 32001, Republic of China.
| |
Collapse
|
13
|
Kumar A, Isumi M, Sakuma M, Zhu S, Nishino Y, Onoue Y, Kojima S, Miyanoiri Y, Imada K, Homma M. Biochemical characterization of the flagellar stator-associated inner membrane protein FliL from Vibrio alginolyticus. J Biochem 2017; 161:331-337. [PMID: 28013221 DOI: 10.1093/jb/mvw076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/02/2016] [Indexed: 01/25/2023] Open
Abstract
The flagellar motor is embedded in the cell envelope and rotates upon interaction between the stator and the rotor. The rotation is powered by ion flow through the stator. A single transmembrane protein named FliL is associated with torque generation in the flagellar motor. We established an Escherichia coli over-expression system for FliL of Vibrio alginolyticus, a marine bacterium that has a sodium-driven polar flagellum. We successfully expressed, purified, and crystallized the ca. 17 kDa full-length FliL protein and generated a construct that expresses only the ca. 14 kDa periplasmic region of FliL (ΔTM FliL). Biochemical characterization and NMR analysis revealed that ΔTM FliL weakly interacted with itself to form an oligomer. We speculate that the observed dynamic interaction may be involved in the role of FliL in flagellar motor function.
Collapse
Affiliation(s)
- Ananthanarayanan Kumar
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Miyu Isumi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Mayuko Sakuma
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,Radioisotope Research Center, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shiwei Zhu
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuuki Nishino
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yasuhiro Onoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yohei Miyanoiri
- Structural Biology Research Center, Graduate School of Science
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Abstract
Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis.
Collapse
|
15
|
Kim SH, Kim JB. Comparative Proteome Analysis of Cyanidin 3-O-glucoside Treated Helicobacter pylori. ACTA ACUST UNITED AC 2015. [DOI: 10.15616/bsl.2015.21.4.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
16
|
Chaban B, Hughes HV, Beeby M. The flagellum in bacterial pathogens: For motility and a whole lot more. Semin Cell Dev Biol 2015; 46:91-103. [DOI: 10.1016/j.semcdb.2015.10.032] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 02/05/2023]
|
17
|
Zhu S, Kumar A, Kojima S, Homma M. FliL
associates with the stator to support torque generation of the sodium‐driven polar flagellar motor of
V
ibrio. Mol Microbiol 2015; 98:101-10. [DOI: 10.1111/mmi.13103] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Shiwei Zhu
- Division of Biological Science Graduate School of Science Nagoya University Chikusa‐ku Nagoya 464‐8602 Japan
| | - Ananthanarayanan Kumar
- Division of Biological Science Graduate School of Science Nagoya University Chikusa‐ku Nagoya 464‐8602 Japan
| | - Seiji Kojima
- Division of Biological Science Graduate School of Science Nagoya University Chikusa‐ku Nagoya 464‐8602 Japan
| | - Michio Homma
- Division of Biological Science Graduate School of Science Nagoya University Chikusa‐ku Nagoya 464‐8602 Japan
| |
Collapse
|
18
|
The Matrix Reloaded: Probing the Extracellular Matrix Synchronizes Bacterial Communities. J Bacteriol 2015; 197:2092-2103. [PMID: 25825428 DOI: 10.1128/jb.02516-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In response to chemical communication, bacterial cells often organize themselves into complex multicellular communities that carry out specialized tasks. These communities are frequently referred to as biofilms, which involve collective behavior of different cell types. Like cells of multicellular eukaryotes, the biofilm cells are surrounded by self-produced polymers that constitute the extracellular matrix (ECM), which binds them to each other and to the surface. In multicellular eukaryotes, it has been evident for decades that cell-ECM interactions control multiple cellular processes during development. While cells, both in biofilms and in multicellular eukaryotes, are surrounded by ECM and activate various genetic programs, until recently it has been unclear whether cell-ECM interactions are recruited in bacterial communicative behaviors. In this review, we will describe the examples reported thus far for ECM involvement in control of cell behavior throughout the different stages of biofilm formation. The studies presented in this review provide a newly emerging perspective of the bacterial ECM as an active player in regulation of biofilm development.
Collapse
|
19
|
Nunn BL, Slattery KV, Cameron KA, Timmins-Schiffman E, Junge K. Proteomics of Colwellia psychrerythraea at subzero temperatures - a life with limited movement, flexible membranes and vital DNA repair. Environ Microbiol 2015; 17:2319-35. [PMID: 25471130 DOI: 10.1111/1462-2920.12691] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 11/27/2022]
Abstract
The mechanisms that allow psychrophilic bacteria to remain metabolically active at subzero temperatures result from form and function of their proteins. We present first proteomic evidence of physiological changes of the marine psychrophile Colwellia psychrerythraea 34H (Cp34H) after exposure to subzero temperatures (-1, and -10°C in ice) through 8 weeks. Protein abundance was compared between different treatments to understand the effects of temperature and time, independently and jointly, within cells transitioning to, and being maintained in ice. Parallel [3H]-leucine and [3H]-thymidine incubations indicated active protein and DNA synthesis to -10°C. Mass spectrometry-based proteomics identified 1763 proteins across four experimental treatments. Proteins involved in osmolyte regulation and polymer secretion were found constitutively present across all treatments, suggesting that they are required for metabolic success below 0°C. Differentially abundant protein groups indicated a reallocation of resources from DNA binding to DNA repair and from motility to chemo-taxis and sensing. Changes to iron and nitrogen metabolism, cellular membrane structures, and protein synthesis and folding were also revealed. By elucidating vital strategies during life in ice, this study provides novel insight into the extensive molecular adaptations that occur in cold-adapted marine organisms to sustain cellular function in their habitat.
Collapse
Affiliation(s)
- Brook L Nunn
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
| | - Krystal V Slattery
- Applied Physics Laboratory, Polar Science Center, University of Washington, Box 355640, Seattle, WA, 98195, USA
| | - Karen A Cameron
- Applied Physics Laboratory, Polar Science Center, University of Washington, Box 355640, Seattle, WA, 98195, USA
| | - Emma Timmins-Schiffman
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
| | - Karen Junge
- Applied Physics Laboratory, Polar Science Center, University of Washington, Box 355640, Seattle, WA, 98195, USA
| |
Collapse
|
20
|
Loss of FliL alters Proteus mirabilis surface sensing and temperature-dependent swarming. J Bacteriol 2014; 197:159-73. [PMID: 25331431 DOI: 10.1128/jb.02235-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Proteus mirabilis is a dimorphic motile bacterium well known for its flagellum-dependent swarming motility over surfaces. In liquid, P. mirabilis cells are 1.5- to 2.0-μm swimmer cells with 4 to 6 flagella. When P. mirabilis encounters a solid surface, where flagellar rotation is limited, swimmer cells differentiate into elongated (10- to 80-μm), highly flagellated swarmer cells. In order for P. mirabilis to swarm, it first needs to detect a surface. The ubiquitous but functionally enigmatic flagellar basal body protein FliL is involved in P. mirabilis surface sensing. Previous studies have suggested that FliL is essential for swarming through its involvement in viscosity-dependent monitoring of flagellar rotation. In this study, we constructed and characterized ΔfliL mutants of P. mirabilis and Escherichia coli. Unexpectedly and unlike other fliL mutants, both P. mirabilis and E. coli ΔfliL cells swarm (Swr(+)). Further analysis revealed that P. mirabilis ΔfliL cells also exhibit an alteration in their ability to sense a surface: e.g., ΔfliL P. mirabilis cells swarm precociously over surfaces with low viscosity that normally impede wild-type swarming. Precocious swarming is due to an increase in the number of elongated swarmer cells in the population. Loss of fliL also results in an inhibition of swarming at <30°C. E. coli ΔfliL cells also exhibit temperature-sensitive swarming. These results suggest an involvement of FliL in the energetics and function of the flagellar motor.
Collapse
|
21
|
Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 2014; 22:517-27. [DOI: 10.1016/j.tim.2014.05.002] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022]
|
22
|
Chan JM, Guttenplan SB, Kearns DB. Defects in the flagellar motor increase synthesis of poly-γ-glutamate in Bacillus subtilis. J Bacteriol 2014; 196:740-53. [PMID: 24296669 PMCID: PMC3911173 DOI: 10.1128/jb.01217-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022] Open
Abstract
Bacillus subtilis swims in liquid media and swarms over solid surfaces, and it encodes two sets of flagellar stator homologs. Here, we show that B. subtilis requires only the MotA/MotB stator during swarming motility and that the residues required for stator force generation are highly conserved from the Proteobacteria to the Firmicutes. We further find that mutants that abolish stator function also result in an overproduction of the extracellular polymer poly-γ-glutamate (PGA) to confer a mucoid colony phenotype. PGA overproduction appeared to be the result of an increase in the expression of the pgs operon that encodes genes for PGA synthesis. Transposon mutagenesis was conducted to identify insertions that abolished colony mucoidy and disruptions in known transcriptional regulators of PGA synthesis (Com and Deg two-component systems) as well as mutants defective in transcription-coupled DNA repair (Mfd)-reduced expression of the pgs operon. A final class of insertions disrupted proteins involved in the assembly of the flagellar filament (FliD, FliT, and FlgL), and these mutants did not reduce expression of the pgs operon, suggesting a second mechanism of PGA control.
Collapse
Affiliation(s)
- Jia Mun Chan
- Indiana University, Department of Biology, Bloomington, Indiana, USA
| | | | | |
Collapse
|
23
|
Josenhans C, Jung K, Rao CV, Wolfe AJ. A tale of two machines: a review of the BLAST meeting, Tucson, AZ, 20-24 January 2013. Mol Microbiol 2013; 91:6-25. [PMID: 24125587 DOI: 10.1111/mmi.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 01/06/2023]
Abstract
Since its inception, Bacterial Locomotion and Signal Transduction (BLAST) meetings have been the place to exchange and share the latest developments in the field of bacterial signal transduction and motility. At the 12th BLAST meeting, held last January in Tucson, AZ, researchers from all over the world met to report and discuss progress in diverse aspects of the field. The majority of these advances, however, came at the level of atomic level structures and their associated mechanisms. This was especially true of the biological machines that sense and respond to environmental changes.
Collapse
Affiliation(s)
- Christine Josenhans
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | | | | | | |
Collapse
|
24
|
A distant homologue of the FlgT protein interacts with MotB and FliL and is essential for flagellar rotation in Rhodobacter sphaeroides. J Bacteriol 2013; 195:5285-96. [PMID: 24056105 DOI: 10.1128/jb.00760-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this work, we describe a periplasmic protein that is essential for flagellar rotation in Rhodobacter sphaeroides. This protein is encoded upstream of flgA, and its expression is dependent on the flagellar master regulator FleQ and on the class III flagellar activator FleT. Sequence comparisons suggest that this protein is a distant homologue of FlgT. We show evidence that in R. sphaeroides, FlgT interacts with the periplasmic regions of MotB and FliL and with the flagellar protein MotF, which was recently characterized as a membrane component of the flagellum in this bacterium. In addition, the localization of green fluorescent protein (GFP)-MotF is completely dependent on FlgT. The Mot(-) phenotype of flgT cells was weakly suppressed by point mutants of MotB that presumably keep the proton channel open and efficiently suppress the Mot(-) phenotype of motF and fliL cells, indicating that FlgT could play an additional role beyond the opening of the proton channel. The presence of FlgT in purified filament-hook-basal bodies of the wild-type strain was confirmed by Western blotting, and the observation of these structures under an electron microscope showed that the basal bodies from flgT cells had lost the ring that covers the LP ring in the wild-type structure. Moreover, MotF was detected by immunoblotting in the basal bodies obtained from the wild-type strain but not from flgT cells. From these results, we suggest that FlgT forms a ring around the LP ring, which anchors MotF and stabilizes the stator complex of the flagellar motor.
Collapse
|
25
|
Belas R. When the swimming gets tough, the tough form a biofilm. Mol Microbiol 2013; 90:1-5. [PMID: 23927648 DOI: 10.1111/mmi.12354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 12/25/2022]
Abstract
Bacteria live either as independent planktonic cells or as members of surface-attached communities called biofilms. Motility and biofilm development are mutually exclusive events, and control of the phase of this 'swim-or-stick' switch involves the ability of the bacterium to sense and respond appropriately to a surface. Cairns et al. (2013) report that the Bacillus subtilis flagellum functions in surface-sensing. Using mutants of B. subtilis that prevent flagellum rotation, they measured the expression and activity of DegU, the response regulator of the two-component DegS-DegU circuit. DegU activity and degU transcription increased when flagellum rotation was prevented, and were dependent on the DegS kinase. Inhibiting flagellar rotation by overexpressing the EpsE flagellar 'clutch' or addition of anti-flagellin antiserum also increased degU transcription and activity. These results suggest B. subtilis senses restriction of flagellum rotation as the cell nears a surface. Inhibition of the flagellum activates the DegS-DegU circuit to turn on biofilm formation, i.e. the flagellum is acting as a mechanosensor of surfaces. B. subtilis joins an ever-expanding group of bacteria, including species of Vibrio, Proteus and Caulobacter that use the flagellum as a surface sensor.
Collapse
Affiliation(s)
- Robert Belas
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 East Pratt Street, Baltimore, MD, 21202, USA
| |
Collapse
|
26
|
Cairns LS, Marlow VL, Bissett E, Ostrowski A, Stanley-Wall NR. A mechanical signal transmitted by the flagellum controls signalling in Bacillus subtilis. Mol Microbiol 2013; 90:6-21. [PMID: 23888912 PMCID: PMC3963450 DOI: 10.1111/mmi.12342] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2013] [Indexed: 12/15/2022]
Abstract
In the natural environment bacteria predominantly live adhered to a surface as part of a biofilm. While many of the components needed for biofilm assembly are known, the mechanism by which microbes sense and respond to contact with a surface is poorly understood. Bacillus subtilis is a Gram-positive model for biofilm formation. The DegS–DegU two-component system controls several multicellular behaviours in B. subtilis, including biofilm formation. Here we identify the B. subtilis flagellum as a mechanosensor that activates the DegS–DegU regulatory pathway. Inhibition of flagellar rotation by deletion or mutation of the flagellar stator gene, motB, results in an increase in both degU transcription and DegU∼P driven processes, namely exoprotease production and poly-γ-dl-glutamic acid biosynthesis. Similarly, inhibition of flagellar rotation by engaging the flagellar clutch or by tethering the flagella with antibodies also promotes an increase in degU transcription that is reflective of increased DegU∼P levels in the cell. Collectively, these findings strongly indicate that inhibition of flagellar rotation acts as a mechanical trigger to activate the DegS–DegU two-component signal transduction system. We postulate that inhibition of flagellar rotation could function as a mechanical trigger to activate bacterial signal transduction cascades in many motile bacteria upon contact with a surface.
Collapse
Affiliation(s)
- Lynne S Cairns
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | |
Collapse
|