1
|
Latta O, Weinert EE, Bechthold A. Heme dependent activity of the Streptomyces c-di-GMP-metabolizing enzyme CdgA. J Inorg Biochem 2025; 269:112874. [PMID: 40056506 DOI: 10.1016/j.jinorgbio.2025.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Streptomyces species are vital for producing natural products like antibiotics, with c-di-GMP playing a key role in regulating processes such as differentiation. C-di-GMP metabolism is controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), which synthesize and hydrolyze c-di-GMP, respectively, to modulate cellular levels. To improve our understanding of c-di-GMP-regulated processes in Streptomyces, we have characterized a c-di-GMP-metabolizing enzyme CdgA from Streptomyces ghanaensis that contains both a diguanylate cyclase and a phosphodiesterase domain. Our studies demonstrate that the enzyme is purified in a form without heme and is only able to degrade c-di-GMP. When reconstituted with heme, it enables c-di-GMP synthesis, and depending on the redox state the synthesis rate is changed. To our knowledge, this is the first heme-dependent activity reported for a c-di-GMP-metabolizing enzyme in Streptomyces and has major implications for understanding the way c-di-GMP is metabolized in vivo in Streptomyces.
Collapse
Affiliation(s)
- Olaf Latta
- Institute for Pharmaceutical Biology and Biotechnology, University of Freiburg, Germany
| | - Emily E Weinert
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andreas Bechthold
- Institute for Pharmaceutical Biology and Biotechnology, University of Freiburg, Germany.
| |
Collapse
|
2
|
Lee Y, Choe D, Palsson BO, Cho B. Machine-Learning Analysis of Streptomyces coelicolor Transcriptomes Reveals a Transcription Regulatory Network Encompassing Biosynthetic Gene Clusters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403912. [PMID: 39264300 PMCID: PMC11538686 DOI: 10.1002/advs.202403912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/26/2024] [Indexed: 09/13/2024]
Abstract
Streptomyces produces diverse secondary metabolites of biopharmaceutical importance, yet the rate of biosynthesis of these metabolites is often hampered by complex transcriptional regulation. Therefore, a fundamental understanding of transcriptional regulation in Streptomyces is key to fully harness its genetic potential. Here, independent component analysis (ICA) of 454 high-quality gene expression profiles of the model species Streptomyces coelicolor is performed, of which 249 profiles are newly generated for S. coelicolor cultivated on 20 different carbon sources and 64 engineered strains with overexpressed sigma factors. ICA of the transcriptome dataset reveals 117 independently modulated groups of genes (iModulons), which account for 81.6% of the variance in the dataset. The genes in each iModulon are involved in specific cellular responses, which are often transcriptionally controlled by specific regulators. Also, iModulons accurately predict 25 secondary metabolite biosynthetic gene clusters encoded in the genome. This systemic analysis leads to reveal the functions of previously uncharacterized genes, putative regulons for 40 transcriptional regulators, including 30 sigma factors, and regulation of secondary metabolism via phosphate- and iron-dependent mechanisms in S. coelicolor. ICA of large transcriptomic datasets thus enlightens a new and fundamental understanding of transcriptional regulation of secondary metabolite synthesis along with interconnected metabolic processes in Streptomyces.
Collapse
Affiliation(s)
- Yongjae Lee
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Donghui Choe
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Bernhard O. Palsson
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKemitorvet, KongensLyngby2800Denmark
| | - Byung‐Kwan Cho
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
- Graduate School of Engineering BiologyKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|
3
|
Crack JC, Le Brun NE. Binding of a single nitric oxide molecule is sufficient to disrupt DNA binding of the nitrosative stress regulator NsrR. Chem Sci 2024:d4sc04618h. [PMID: 39464610 PMCID: PMC11500311 DOI: 10.1039/d4sc04618h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
The regulatory protein NsrR, a member of the Rrf2 protein superfamily, plays a major role in the cellular response to nitrosative stress in many benign and pathogenic bacteria. The homodimeric protein binds a [4Fe-4S] cluster in each subunit (termed holo NsrR), and represses transcription of genes primarily involved in NO detoxification. Holo NsrR reacts rapidly with multiple NO molecules per [4Fe-4S] cluster, via a complex reaction, with loss of DNA binding and formation of NsrR-bound iron-nitrosyl species. However, the point at which DNA binding is lost is unknown. Here, we demonstrate using surface plasmon resonance (SPR) and native mass spectrometry (MS) that holo NsrR binds the promoter regions of NsrR-regulated genes with promoter-dependent nanomolar affinity, while hemi-apo NsrR (i.e. one cluster per dimer) binds >10-fold less tightly, and the cluster-free (apo) form not at all. Strikingly, native MS provided detailed information about the reaction of NO with the physiologically relevant form of NsrR, i.e. DNA-bound dimeric NsrR. Reaction with a single NO molecule per NsrR dimer is sufficient to abolish DNA binding. This exquisite sensitivity of DNA binding to NO is consistent with the importance of de-repressing NO detoxification systems at the earliest opportunity to minimise damage due to nitrosative stress. Furthermore, the data show that previously characterised iron-nitrosyls, which form at higher ratios of NO to [4Fe-4S], are not physiologically relevant for regulating the NsrR on/off switch.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy and Pharmacology, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy and Pharmacology, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
4
|
Demergasso C, Neilson JW, Tebes-Cayo C, Véliz R, Ayma D, Laubitz D, Barberán A, Chong-Díaz G, Maier RM. Hyperarid soil microbial community response to simulated rainfall. Front Microbiol 2023; 14:1202266. [PMID: 37779711 PMCID: PMC10537920 DOI: 10.3389/fmicb.2023.1202266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/31/2023] [Indexed: 10/03/2023] Open
Abstract
The exceptionally long and protracted aridity in the Atacama Desert (AD), Chile, provides an extreme, terrestrial ecosystem that is ideal for studying microbial community dynamics under hyperarid conditions. Our aim was to characterize the temporal response of hyperarid soil AD microbial communities to ex situ simulated rainfall (5% g water/g dry soil for 4 weeks) without nutrient amendment. We conducted replicated microcosm experiments with surface soils from two previously well-characterized AD hyperarid locations near Yungay at 1242 and 1609 masl (YUN1242 and YUN1609) with distinct microbial community compositions and average soil relative humidity levels of 21 and 17%, respectively. The bacterial and archaeal response to soil wetting was evaluated by 16S rRNA gene qPCR, and amplicon sequencing. Initial YUN1242 bacterial and archaeal 16S rRNA gene copy numbers were significantly higher than for YUN1609. Over the next 4 weeks, qPCR results showed significant increases in viable bacterial abundance, whereas archaeal abundance decreased. Both communities were dominated by 10 prokaryotic phyla (Actinobacteriota, Proteobacteria, Chloroflexota, Gemmatimonadota, Firmicutes, Bacteroidota, Planctomycetota, Nitrospirota, Cyanobacteriota, and Crenarchaeota) but there were significant site differences in the relative abundances of Gemmatimonadota and Chloroflexota, and specific actinobacterial orders. The response to simulated rainfall was distinct for the two communities. The actinobacterial taxa in the YUN1242 community showed rapid changes while the same taxa in the YUN1609 community remained relatively stable until day 30. Analysis of inferred function of the YUN1242 microbiome response implied an increase in the relative abundance of known spore-forming taxa with the capacity for mixotrophy at the expense of more oligotrophic taxa, whereas the YUN1609 community retained a stable profile of oligotrophic, facultative chemolithoautotrophic and mixotrophic taxa. These results indicate that bacterial communities in extreme hyperarid soils have the capacity for growth in response to simulated rainfall; however, historic variations in long-term hyperaridity exposure produce communities with distinct putative metabolic capacities.
Collapse
Affiliation(s)
- Cecilia Demergasso
- Biotechnology Center “Profesor Alberto Ruíz”, Universidad Católica del Norte, Antofagasta, Chile
| | - Julia W. Neilson
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Cinthya Tebes-Cayo
- Biotechnology Center “Profesor Alberto Ruíz”, Universidad Católica del Norte, Antofagasta, Chile
- Department of Geology, Faculty of Engineering and Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Roberto Véliz
- Biotechnology Center “Profesor Alberto Ruíz”, Universidad Católica del Norte, Antofagasta, Chile
| | - Diego Ayma
- Department of Mathematics, Faculty of Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Daniel Laubitz
- Steele Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Guillermo Chong-Díaz
- Department of Geology, Faculty of Engineering and Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Raina M. Maier
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Singh AK, Nakhate SP, Gupta RK, Chavan AR, Poddar BJ, Prakash O, Shouche YS, Purohit HJ, Khardenavis AA. Mining the landfill soil metagenome for denitrifying methanotrophic taxa and validation of methane oxidation in microcosm. ENVIRONMENTAL RESEARCH 2022; 215:114199. [PMID: 36058281 DOI: 10.1016/j.envres.2022.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/21/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In the present study, the microbial community residing at different depths of the landfill was characterized to assess their roles in serving as a methane sink. Physico-chemical characterization revealed the characteristic signatures of anaerobic degradation of organic matter in the bottom soil (50-60 cm) and, active process of aerobic denitrification in the top soil (0-10 cm). This was also reflected from the higher abundance of bacterial domain in the top soil metagenome represented by dominant phyla Proteobacteria and Actinobacteria which are prime decomposers of organic matter in landfill soils. The multiple fold higher relative abundances of the two most abundant genera; Streptomyces and Intrasporangium in the top soil depicted greater denitrifying taxa in top soil than the bottom soil. Amongst the aerobic methanotrophs, the genera Methylomonas, Methylococcus, Methylocella, and Methylacidiphilum were abundantly found in the top soil metagenome that were essential for oxidizing methane generated in the landfill. On the other hand, the dominance of archaeal domain represented by Methanosarcina and Methanoculleus in the bottom soil highlighted the complete anaerobic digestion of organic components via acetoclasty, carboxydotrophy, hydrogenotrophy, methylotrophy. Functional characterization revealed a higher abundance of methane monooxygenase gene in the top soil and methyl coenzyme M reductase gene in the bottom soil that correlated with the higher relative abundance of aerobic methanotrophs in the top soil while methane generation being the active process in the highly anaerobic bottom soil in the landfill. The activity dependent abundance of endogenous microbial communities in the different zones of the landfill was further validated by microcosm studies in serum bottles which established the ability of the methanotrophic community for methane metabolism in the top soil and their potential to serve as sink for methane. The study provides a better understanding about the methanotrophs in correlation with their endogenous environment, so that these bacteria can be used in resolving the environmental issues related to methane and nitrogen management at landfill site.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Om Prakash
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Jurado V, Del Rosal Y, Jimenez de Cisneros C, Liñan C, Martin-Pozas T, Gonzalez-Pimentel JL, Hermosin B, Saiz-Jimenez C. Microbial communities in carbonate precipitates from drip waters in Nerja Cave, Spain. PeerJ 2022; 10:e13399. [PMID: 35529484 PMCID: PMC9074860 DOI: 10.7717/peerj.13399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/17/2022] [Indexed: 01/14/2023] Open
Abstract
Research on cave microorganisms has mainly focused on the microbial communities thriving on speleothems, rocks and sediments; however, drip water bacteria and calcite precipitation has received less attention. In this study, microbial communities of carbonate precipitates from drip waters in Nerja, a show cave close to the sea in southeastern Spain, were investigated. We observed a pronounced difference in the bacterial composition of the precipitates, depending on the galleries and halls. The most abundant phylum in the precipitates of the halls close to the cave entrance was Proteobacteria, due to the low depth of this sector, the direct influence of a garden on the top soil and the infiltration of waters into the cave, as well as the abundance of members of the order Hyphomicrobiales, dispersing from plant roots, and other Betaproteobacteria and Gammaproteobacteria, common soil inhabitants. The influence of marine aerosols explained the presence of Marinobacter, Idiomarina, Thalassobaculum, Altererythrobacter and other bacteria due to the short distance from the cave to the sea. Nineteen out of forty six genera identified in the cave have been reported to precipitate carbonate and likely have a role in mineral deposition.
Collapse
Affiliation(s)
- Valme Jurado
- Instituto de Recursos Naturales y Agrobiologia (IRNAS-CSIC), Sevilla, Spain
| | | | | | - Cristina Liñan
- Departamento de Ecologia y Geologia, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | | | | | - Bernardo Hermosin
- Instituto de Recursos Naturales y Agrobiologia (IRNAS-CSIC), Sevilla, Spain
| | | |
Collapse
|
7
|
He T, Wu Q, Ding C, Chen M, Zhang M. Hydroxylamine and nitrite are removed effectively by Streptomyces mediolani strain EM-B2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112693. [PMID: 34438268 DOI: 10.1016/j.ecoenv.2021.112693] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Biological nitrogen removal is primarily conducted by bacteria and fungi rather than actinomycetes. However, accumulations of nitrite and hydroxylamine could significantly impair the biological nitrogen removal process. A strain of Streptomyces mediolani, termed EM-B2, was isolated from a cow dung fermentation biogas digester. The strain removed more than 99% of ammonium and 78% of total nitrogen in the presence of glucose and under environmental conditions of 30 °C, a carbon/nitrogen ratio of 15, 7.4 mg/L dissolved oxygen and a pH range of 7.5-9.0. Maximal removal rates were 2.29 mg/L/h for ammonium, 1.90 mg/L/h for nitrate and 2.01 mg/L/h for nitrite. The removal efficiencies of hydroxylamine and total nitrogen peaked at 81.48% and 60.38%, respectively. Notably, hydroxylamine and nitrite were never detected during the heterotrophic nitrification and aerobic denitrification. Nitrate rather than nitrite was accumulated from the process of hydroxylamine oxidation. These findings indicate that S. mediolani strain EM-B2 performs heterotrophic nitrification and aerobic denitrification, and can be used to remove hydroxylamine and nitrite from wastewater.
Collapse
Affiliation(s)
- Tengxia He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Qifeng Wu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Chenyu Ding
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Mengping Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Manman Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
8
|
Photorespiration: The Futile Cycle? PLANTS 2021; 10:plants10050908. [PMID: 34062784 PMCID: PMC8147352 DOI: 10.3390/plants10050908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/03/2022]
Abstract
Photorespiration, or C2 photosynthesis, is generally considered a futile cycle that potentially decreases photosynthetic carbon fixation by more than 25%. Nonetheless, many essential processes, such as nitrogen assimilation, C1 metabolism, and sulfur assimilation, depend on photorespiration. Most studies of photosynthetic and photorespiratory reactions are conducted with magnesium as the sole metal cofactor despite many of the enzymes involved in these reactions readily associating with manganese. Indeed, when manganese is present, the energy efficiency of these reactions may improve. This review summarizes some commonly used methods to quantify photorespiration, outlines the influence of metal cofactors on photorespiratory enzymes, and discusses why photorespiration may not be as wasteful as previously believed.
Collapse
|
9
|
Bednarz B, Millan-Oropeza A, Kotowska M, Świat M, Quispe Haro JJ, Henry C, Pawlik K. Coelimycin Synthesis Activatory Proteins Are Key Regulators of Specialized Metabolism and Precursor Flux in Streptomyces coelicolor A3(2). Front Microbiol 2021; 12:616050. [PMID: 33897632 PMCID: PMC8062868 DOI: 10.3389/fmicb.2021.616050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/17/2021] [Indexed: 11/24/2022] Open
Abstract
Many microbial specialized metabolites are industrially relevant agents but also serve as signaling molecules in intra-species and even inter-kingdom interactions. In the antibiotic-producing Streptomyces, members of the SARP (Streptomyces antibiotic regulatory proteins) family of regulators are often encoded within biosynthetic gene clusters and serve as their direct activators. Coelimycin is the earliest, colored specialized metabolite synthesized in the life cycle of the model organism Streptomyces coelicolor A3(2). Deletion of its two SARP activators cpkO and cpkN abolished coelimycin synthesis and resulted in dramatic changes in the production of the later, stationary-phase antibiotics. The underlying mechanisms of these phenotypes were deregulation of precursor flux and quorum sensing, as shown by label-free, bottom-up shotgun proteomics. Detailed profiling of promoter activities demonstrated that CpkO is the upper-level cluster activator that induces CpkN, while CpkN activates type II thioesterase ScoT, necessary for coelimycin synthesis. What is more, we show that cpkN is regulated by quorum sensing gamma-butyrolactone receptor ScbR.
Collapse
Affiliation(s)
- Bartosz Bednarz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aaron Millan-Oropeza
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Magdalena Kotowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Świat
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Juan J Quispe Haro
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Céline Henry
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Krzysztof Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
10
|
Falke D, Fischer M, Ihling C, Hammerschmidt C, Sinz A, Sawers G. Co-purification of nitrate reductase 1 with components of the cytochrome bcc-aa 3 oxidase supercomplex from spores of Streptomyces coelicolor A3(2). FEBS Open Bio 2021; 11:652-669. [PMID: 33462996 PMCID: PMC7931247 DOI: 10.1002/2211-5463.13086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
In order to reduce nitrate in vivo, the spore‐specific respiratory nitrate reductase, Nar1, of Streptomyces coelicolor relies on an active cytochrome bcc‐aa3 oxidase supercomplex (bcc‐aa3 supercomplex). This suggests that membrane‐associated Nar1, comprising NarG1, NarH1, and NarI1 subunits, might not act as a classical menaquinol oxidase but could either receive electrons from the bcc‐aa3 supercomplex, or require the supercomplex to stabilize the reductase in the membrane to allow it to function. To address the biochemical basis for this dependence on the bcc‐aa3 supercomplex, we purified two different Strep‐tagged variants of Nar1 and enriched the native enzyme complex from spore extracts using different chromatographic and electrophoretic procedures. Polypeptides associated with the isolated Nar1 complexes were identified using mass spectrometry and included components of the bcc‐aa3 supercomplex, along with an alternative, spore‐specific cytochrome b component, QcrB3. Surprisingly, we also co‐enriched the Nar3 enzyme with Nar1 from the wild‐type strain of S. coelicolor. Two differentially migrating active Nar1 complexes could be identified after clear native polyacrylamide gel electrophoresis; these had masses of approximately 450 and 250 kDa. The distribution of active Nar1 in these complexes was influenced by the presence of cytochrome bd oxidase and by QcrB3; the presence of the latter shifted Nar1 into the larger complex. Together, these data suggest that several respiratory complexes can associate in the spore membrane, including Nar1, Nar3, and the bcc‐aa3 supercomplex. Moreover, these findings provide initial support for the hypothesis that Nar1 and the bcc‐aa3 supercomplex physically associate.
Collapse
Affiliation(s)
- Dörte Falke
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marco Fischer
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy, Charles Tanford Protein Center, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Hammerschmidt
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy, Charles Tanford Protein Center, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
11
|
Ciemniecki JA, Newman DK. The Potential for Redox-Active Metabolites To Enhance or Unlock Anaerobic Survival Metabolisms in Aerobes. J Bacteriol 2020; 202:e00797-19. [PMID: 32071098 PMCID: PMC7221258 DOI: 10.1128/jb.00797-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Classifying microorganisms as "obligate" aerobes has colloquially implied death without air, leading to the erroneous assumption that, without oxygen, they are unable to survive. However, over the past few decades, more than a few obligate aerobes have been found to possess anaerobic energy conservation strategies that sustain metabolic activity in the absence of growth or at very low growth rates. Similarly, studies emphasizing the aerobic prowess of certain facultative aerobes have sometimes led to underrecognition of their anaerobic capabilities. Yet an inescapable consequence of the affinity both obligate and facultative aerobes have for oxygen is that the metabolism of these organisms may drive this substrate to scarcity, making anoxic survival an essential skill. To illustrate this, we highlight the importance of anaerobic survival strategies for Pseudomonas aeruginosa and Streptomyces coelicolor, representative facultative and obligate aerobes, respectively. Included among these strategies, we describe a role for redox-active secondary metabolites (RAMs), such as phenazines made by P. aeruginosa, in enhancing substrate-level phosphorylation. Importantly, RAMs are made by diverse bacteria, often during stationary phase in the absence of oxygen, and can sustain anoxic survival. We present a hypothesis for how RAMs may enhance or even unlock energy conservation pathways that facilitate the anaerobic survival of both RAM producers and nonproducers.
Collapse
Affiliation(s)
- John A Ciemniecki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
12
|
Sawers RG, Fischer M, Falke D. Anaerobic nitrate respiration in the aerobe Streptomyces coelicolor A3(2): helping maintain a proton gradient during dormancy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:645-650. [PMID: 31268622 DOI: 10.1111/1758-2229.12781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
Respiratory nitrate reductases (Nar) catalyse the reduction of nitrate to nitrite, coupling this process to energy conservation. The obligate aerobic actinobacterium Streptomyces coelicolor synthesizes three Nar enzymes that contribute to maintenance of a membrane potential when either the mycelium or the spores become hypoxic or anoxic. No growth occurs under such conditions but the bacterium survives the lack of O2 by remaining metabolically active; reducing nitrate is one means whereby this process is aided. Nar1 is exclusive to spores, Nar2 to vegetative mycelium and Nar3 to stationary-phase mycelium, each making a distinct contribution to energy conservation. While Nar2 and Nar3 appear to function like conventional menaquinol oxidases, unusually, Nar1 is completely dependent for its activity on a cytochrome bcc-aa 3 oxidase supercomplex. This suggest that electrons within this supercomplex are diverted to Nar1 during O2 limitation. Receiving electrons from this supercomplex potentially allows nitrate reduction to be coupled to the Q-cycle of the cytochrome bcc complex. This modification likely improves the efficiency of energy conservation, extending longevity of spores under O2 limitation. Knowledge gained on the bioenergetics of NO3 - respiration in the actinobacteria will aid our understanding of how many microorganisms survive under conditions of extreme nutrient and energy restriction.
Collapse
Affiliation(s)
- R Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Marco Fischer
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Dörte Falke
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| |
Collapse
|
13
|
Fischer M, Falke D, Rönitz J, Haase A, Damelang T, Pawlik T, Sawers RG. Hypoxia-induced synthesis of respiratory nitrate reductase 2 of Streptomyces coelicolor A3(2) depends on the histidine kinase OsdK in mycelium but not in spores. MICROBIOLOGY-SGM 2019; 165:905-916. [PMID: 31259680 DOI: 10.1099/mic.0.000829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The three nitrate reductases (Nar) of the saprophytic aerobic actinobacterium Streptomyces coelicolor A3(2) contribute to survival when oxygen becomes limiting. In the current study, we focused on synthesis of the Nar2 enzyme, which is the main Nar enzyme present and active in exponentially growing mycelium. Synthesis of Nar2 can, however, also be induced in spores after extended periods of anoxic incubation. The osdRK genes (oxygen stress and development) were recently identified to encode a two-component system important for expression of the nar2 operon in mycelium. OsdK is a predicted histidine kinase and we show here that an osdK mutant completely lacks Nar2 enzyme activity in mycelium. Recovery of Nar2 enzyme activity was achieved by re-introduction of the osdRK genes into the mutant on an integrative plasmid. In anoxically incubated spores, however, the osdK mutant retained the ability to synthesize NarG2, the catalytic subunit of Nar2. We could also demonstrate that synthesis of NarG2 in spores occurred only under hypoxic conditions; anoxia, as well as O2 concentrations significantly higher than 1 % in the gas-phase, failed to result in induction of NarG2 synthesis. Together, these findings indicate that, although Nar2 synthesis in both mycelium and spores is induced by oxygen limitation, different mechanisms control these processes and only Nar2 synthesis in mycelium is under the control of the OsdKR two-component system.
Collapse
Affiliation(s)
- Marco Fischer
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Dörte Falke
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Jakob Rönitz
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Alexander Haase
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Timon Damelang
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Tony Pawlik
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - R Gary Sawers
- Institute of Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| |
Collapse
|
14
|
Activity of Spore-Specific Respiratory Nitrate Reductase 1 of Streptomyces coelicolor A3(2) Requires a Functional Cytochrome bcc-aa 3 Oxidase Supercomplex. J Bacteriol 2019; 201:JB.00104-19. [PMID: 30858301 DOI: 10.1128/jb.00104-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Spores have strongly reduced metabolic activity and are produced during the complex developmental cycle of the actinobacterium Streptomyces coelicolor Resting spores can remain viable for decades, yet little is known about how they conserve energy. It is known, however, that they can reduce either oxygen or nitrate using endogenous electron sources. S. coelicolor uses either a cytochrome bd oxidase or a cytochrome bcc-aa 3 oxidase supercomplex to reduce oxygen, while nitrate is reduced by Nar-type nitrate reductases, which typically oxidize quinol directly. Here, we show that in resting spores the Nar1 nitrate reductase requires a functional bcc-aa 3 supercomplex to reduce nitrate. Mutants lacking the complete qcr-cta genetic locus encoding the bcc-aa 3 supercomplex showed no Nar1-dependent nitrate reduction. Recovery of Nar1 activity was achieved by genetic complementation but only when the complete qcr-cta locus was reintroduced to the mutant strain. We could exclude that the dependence on the supercomplex for nitrate reduction was via regulation of nitrate transport. Moreover, the catalytic subunit, NarG1, of Nar1 was synthesized in the qcr-cta mutant, ruling out transcriptional control. Constitutive synthesis of Nar1 in mycelium revealed that the enzyme was poorly active in this compartment, suggesting that the Nar1 enzyme cannot act as a typical quinol oxidase. Notably, nitrate reduction by the Nar2 enzyme, which is active in growing mycelium, was not wholly dependent on the bcc-aa 3 supercomplex for activity. Together, our data suggest that Nar1 functions together with the proton-translocating bcc-aa 3 supercomplex to increase the efficiency of energy conservation in resting spores.IMPORTANCE Streptomyces coelicolor forms spores that respire with either oxygen or nitrate, using only endogenous electron donors. This helps maintain a membrane potential and, thus, viability. Respiratory nitrate reductase (Nar) usually receives electrons directly from reduced quinone species; however, we show that nitrate respiration in spores requires a respiratory supercomplex comprising cytochrome bcc oxidoreductase and aa 3 oxidase. Our findings suggest that the Nar1 enzyme in the S. coelicolor spore functions together with the proton-translocating bcc-aa 3 supercomplex to help maintain the membrane potential more efficiently. Dissecting the mechanisms underlying this survival strategy is important for our general understanding of bacterial persistence during infection processes and of how bacteria might deal with nutrient limitation in the natural environment.
Collapse
|
15
|
Falke D, Fischer M, Biefel B, Ihling C, Hammerschmidt C, Reinefeld K, Haase A, Sinz A, Sawers RG. Cytochrome bcc-aa3 Oxidase Supercomplexes in the Aerobic Respiratory Chain of Streptomyces coelicolor A3(2). J Mol Microbiol Biotechnol 2019; 28:255-268. [PMID: 30861513 DOI: 10.1159/000496390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022] Open
Abstract
Streptomyces coelicolor A3(2), an obligately aerobic, oxidase-positive, and filamentous soil bacterium, lacks a soluble cytochrome c in its respiratory chain, having instead a membrane-associated diheme c-type cytochrome, QcrC. This necessitates complex formation to allow electron transfer between the cytochrome bcc and aa3 oxidase respiratory complexes. Combining genetic complementation studies with in-gel cytochrome oxidase activity staining, we demonstrate that the complete qcrCAB-ctaCDFE gene locus on the chromosome, encoding, respectively, the bcc and aa3 complexes, is required to manifest a cytochrome oxidase enzyme activity in both spores and mycelium of a qcr-cta deletion mutant. Blue-native-PAGE identified a cytochrome aa3 oxidase complex of approximately 270 kDa, which catalyzed oxygen-dependent diaminobenzidine oxidation without the requirement for exogenously supplied cytochrome c, indicating association with QcrC. Furthermore, higher molecular mass complexes were identified upon addition of soluble cytochrome c, suggesting the supercomplex is unstable and readily dissociates into subcomplexes lacking QcrC. Immunological and mass spectrometric analyses of active, high-molecular mass oxidase-containing complexes separated by clear-native PAGE identified key subunits of both the bcc complex and the aa3 oxidase, supporting supercomplex formation. Our data also indicate that the cytochrome b QcrB of the bcc complex is less abundant in spores compared with mycelium.
Collapse
Affiliation(s)
- Dörte Falke
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marco Fischer
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bianca Biefel
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy, Charles Tanford Protein Center, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Hammerschmidt
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kevin Reinefeld
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Haase
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy, Charles Tanford Protein Center, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - R Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany,
| |
Collapse
|
16
|
Daniels W, Bouvin J, Busche T, Rückert C, Simoens K, Karamanou S, Van Mellaert L, Friðjónsson ÓH, Nicolai B, Economou A, Kalinowski J, Anné J, Bernaerts K. Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein. Microb Cell Fact 2018; 17:198. [PMID: 30577858 PMCID: PMC6302529 DOI: 10.1186/s12934-018-1040-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Gram-positive Streptomyces lividans TK24 is an attractive host for heterologous protein production because of its high capability to secrete proteins-which favors correct folding and facilitates downstream processing-as well as its acceptance of methylated DNA and its low endogeneous protease activity. However, current inconsistencies in protein yields urge for a deeper understanding of the burden of heterologous protein production on the cell. In the current study, transcriptomics and [Formula: see text]-based fluxomics were exploited to uncover gene expression and metabolic flux changes associated with heterologous protein production. The Rhodothermus marinus thermostable cellulase A (CelA)-previously shown to be successfully overexpressed in S. lividans-was taken as an example protein. RESULTS RNA-seq and [Formula: see text]-based metabolic flux analysis were performed on a CelA-producing and an empty-plasmid strain under the same conditions. Differential gene expression, followed by cluster analysis based on co-expression and co-localization, identified transcriptomic responses related to secretion-induced stress and DNA damage. Furthermore, the OsdR regulon (previously associated with hypoxia, oxidative stress, intercellular signaling, and morphological development) was consistently upregulated in the CelA-producing strain and exhibited co-expression with isoenzymes from the pentose phosphate pathway linked to secondary metabolism. Increased expression of these isoenzymes matches to increased fluxes in the pentose phosphate pathway. Additionally, flux maps of the central carbon metabolism show increased flux through the tricarboxylic acid cycle in the CelA-producing strain. Redirection of fluxes in the CelA-producing strain leads to higher production of NADPH, which can only partly be attributed to increased secretion. CONCLUSIONS Transcriptomic and fluxomic changes uncover potential new leads for targeted strain improvement strategies which may ease the secretion stress and metabolic burden associated with heterologous protein synthesis and secretion, and may help create a more consistently performing S. lividans strain. Yet, links to secondary metabolism and redox balancing should be further investigated to fully understand the S. lividans metabolome under heterologous protein production.
Collapse
Affiliation(s)
- Wouter Daniels
- Department of Chemical Engineering, Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, KU Leuven, Celestijnenlaan 200F, box 2424, 3001, Leuven, Belgium
| | - Jeroen Bouvin
- Department of Chemical Engineering, Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, KU Leuven, Celestijnenlaan 200F, box 2424, 3001, Leuven, Belgium
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Kenneth Simoens
- Department of Chemical Engineering, Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, KU Leuven, Celestijnenlaan 200F, box 2424, 3001, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, box 1037, 3000, Leuven, Belgium
| | - Lieve Van Mellaert
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, box 1037, 3000, Leuven, Belgium
| | | | - Bart Nicolai
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, box 1037, 3000, Leuven, Belgium
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Jozef Anné
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, box 1037, 3000, Leuven, Belgium
| | - Kristel Bernaerts
- Department of Chemical Engineering, Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, KU Leuven, Celestijnenlaan 200F, box 2424, 3001, Leuven, Belgium.
| |
Collapse
|
17
|
Cytochrome bd Oxidase Has an Important Role in Sustaining Growth and Development of Streptomyces coelicolor A3(2) under Oxygen-Limiting Conditions. J Bacteriol 2018; 200:JB.00239-18. [PMID: 29784883 DOI: 10.1128/jb.00239-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor A3(2) is a filamentously growing, spore-forming, obligately aerobic actinobacterium that uses both a copper aa3 -type cytochrome c oxidase and a cytochrome bd oxidase to respire oxygen. Using defined knockout mutants, we demonstrated that either of these terminal oxidases was capable of allowing the bacterium to grow and complete its developmental cycle. The genes encoding the bcc complex and the aa3 oxidase are clustered at a single locus. Using Western blot analyses, we showed that the bcc-aa3 oxidase branch is more prevalent in spores than the bd oxidase. The level of the catalytic subunit, CydA, of the bd oxidase was low in spore extracts derived from the wild type, but it was upregulated in a mutant lacking the bcc-aa3 supercomplex. This indicates that cytochrome bd oxidase can compensate for the lack of the other respiratory branch. Components of both oxidases were abundant in growing mycelium. Growth studies in liquid medium revealed that a mutant lacking the bcc-aa3 oxidase branch grew approximately half as fast as the wild type, while the oxygen reduction rate of the mutant remained close to that of the wild type, indicating that the bd oxidase was mainly functioning in controlling electron flux. Developmental defects were observed for a mutant lacking the cytochrome bd oxidase during growth on buffered rich medium plates with glucose as the energy substrate. Evidence based on using the redox-cycling dye methylene blue suggested that cytochrome bd oxidase is essential for the bacterium to grow and complete its developmental cycle under oxygen limitation.IMPORTANCE Respiring with oxygen is an efficient means of conserving energy in biological systems. The spore-forming, filamentous actinobacterium Streptomyces coelicolor grows only aerobically, synthesizing two enzyme complexes for O2 reduction, the cytochrome bcc-aa3 cytochrome oxidase supercomplex and the cytochrome bd oxidase. We show in this study that the bacterium can survive with either of these respiratory pathways to oxygen. Immunological studies indicate that the bcc-aa3 oxidase is the main oxidase present in spores, but the bd oxidase compensates if the bcc-aa3 oxidase is inactivated. Both oxidases are active in mycelia. Growth conditions were identified, revealing that cytochrome bd oxidase is essential for aerial hypha formation and sporulation, and this was linked to an important role of the enzyme under oxygen-limiting conditions.
Collapse
|
18
|
Response of Microbial Community Function to Fluctuating Geochemical Conditions within a Legacy Radioactive Waste Trench Environment. Appl Environ Microbiol 2017; 83:AEM.00729-17. [PMID: 28667104 PMCID: PMC5561297 DOI: 10.1128/aem.00729-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
During the 1960s, small quantities of radioactive materials were codisposed with chemical waste at the Little Forest Legacy Site (Sydney, Australia) in 3-meter-deep, unlined trenches. Chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess the impact of changing water levels upon the microbial ecology and contaminant mobility. Collectively, results demonstrated that oxygen-laden rainwater rapidly altered the redox balance in the trench water, strongly impacting microbial functioning as well as the radiochemistry. Two contaminants of concern, plutonium and americium, were shown to transition from solid-iron-associated species immediately after the initial rainwater pulse to progressively more soluble moieties as reducing conditions were enhanced. Functional metagenomics revealed the potentially important role that the taxonomically diverse microbial community played in this transition. In particular, aerobes dominated in the first day, followed by an increase of facultative anaerobes/denitrifiers at day 4. Toward the mid-end of the sampling period, the functional and taxonomic profiles depicted an anaerobic community distinguished by a higher representation of dissimilatory sulfate reduction and methanogenesis pathways. Our results have important implications to similar near-surface environmental systems in which redox cycling occurs. IMPORTANCE The role of chemical and microbiological factors in mediating the biogeochemistry of groundwaters from trenches used to dispose of radioactive materials during the 1960s is examined in this study. Specifically, chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess how changing water levels influence microbial ecology and contaminant mobility. Results demonstrate that oxygen-laden rainwater rapidly altered the redox balance in the trench water, strongly impacting microbial functioning as well as the radiochemistry. Two contaminants of concern, plutonium and americium, were shown to transition from solid-iron-associated species immediately after the initial rainwater pulse to progressively more soluble moieties as reducing conditions were enhanced. Functional metagenomics revealed the important role that the taxonomically diverse microbial community played in this transition. Our results have important implications to similar near-surface environmental systems in which redox cycling occurs.
Collapse
|
19
|
Maciejewska M, Adam D, Naômé A, Martinet L, Tenconi E, Całusińska M, Delfosse P, Hanikenne M, Baurain D, Compère P, Carnol M, Barton HA, Rigali S. Assessment of the Potential Role of Streptomyces in Cave Moonmilk Formation. Front Microbiol 2017; 8:1181. [PMID: 28706508 PMCID: PMC5489568 DOI: 10.3389/fmicb.2017.01181] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/09/2017] [Indexed: 11/13/2022] Open
Abstract
Moonmilk is a karstic speleothem mainly composed of fine calcium carbonate crystals (CaCO3) with different textures ranging from pasty to hard, in which the contribution of biotic rock-building processes is presumed to involve indigenous microorganisms. The real microbial input in the genesis of moonmilk is difficult to assess leading to controversial hypotheses explaining the origins and the mechanisms (biotic vs. abiotic) involved. In this work, we undertook a comprehensive approach in order to assess the potential role of filamentous bacteria, particularly a collection of moonmilk-originating Streptomyces, in the genesis of this speleothem. Scanning electron microscopy (SEM) confirmed that indigenous filamentous bacteria could indeed participate in moonmilk development by serving as nucleation sites for CaCO3 deposition. The metabolic activities involved in CaCO3 transformation were furthermore assessed in vitro among the collection of moonmilk Streptomyces, which revealed that peptides/amino acids ammonification, and to a lesser extend ureolysis, could be privileged metabolic pathways participating in carbonate precipitation by increasing the pH of the bacterial environment. Additionally, in silico search for the genes involved in biomineralization processes including ureolysis, dissimilatory nitrate reduction to ammonia, active calcium ion transport, and reversible hydration of CO2 allowed to identify genetic predispositions for carbonate precipitation in Streptomyces. Finally, their biomineralization abilities were confirmed by environmental SEM, which allowed to visualize the formation of abundant mineral deposits under laboratory conditions. Overall, our study provides novel evidences that filamentous Actinobacteria could be key protagonists in the genesis of moonmilk through a wide spectrum of biomineralization processes.
Collapse
Affiliation(s)
- Marta Maciejewska
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of LiègeLiège, Belgium
| | - Delphine Adam
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of LiègeLiège, Belgium
| | - Aymeric Naômé
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of LiègeLiège, Belgium
| | - Loïc Martinet
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of LiègeLiège, Belgium
| | - Elodie Tenconi
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of LiègeLiège, Belgium
| | - Magdalena Całusińska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Philippe Delfosse
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Marc Hanikenne
- InBioS-Functional Genomics and Plant Molecular Imaging, University of LiègeLiège, Belgium.,PhytoSYSTEMS, University of LiègeLiège, Belgium
| | - Denis Baurain
- PhytoSYSTEMS, University of LiègeLiège, Belgium.,InBioS-Eukaryotic Phylogenomics, University of LiègeLiège, Belgium
| | - Philippe Compère
- Department of Biology, Ecology and Evolution and Centre of Aid for Research and Education in Microscopy-ULg, Institute of Chemistry B6a University of LiègeLiège, Belgium
| | - Monique Carnol
- InBioS-Plant and Microbial Ecology, Botany B22, University of LiègeLiège, Belgium
| | - Hazel A Barton
- Department of Biology, University of AkronAkron, OH, United States
| | - Sébastien Rigali
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of LiègeLiège, Belgium
| |
Collapse
|
20
|
Millan-Oropeza A, Henry C, Blein-Nicolas M, Aubert-Frambourg A, Moussa F, Bleton J, Virolle MJ. Quantitative Proteomics Analysis Confirmed Oxidative Metabolism Predominates in Streptomyces coelicolor versus Glycolytic Metabolism in Streptomyces lividans. J Proteome Res 2017; 16:2597-2613. [DOI: 10.1021/acs.jproteome.7b00163] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aaron Millan-Oropeza
- Institute
for
Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Céline Henry
- Micalis Institute,
INRA, PAPPSO, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Mélisande Blein-Nicolas
- Génétique
Quantitative et Évolution (GQE) - Le Moulon, INRA, Univ Paris-Sud,
CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Anne Aubert-Frambourg
- Micalis Institute,
INRA, PAPPSO, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Fathi Moussa
- Lip(Sys)2, LETIAM (formerly included in
EA4041 Groupe de Chimie Analytique
de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, IUT
d’Orsay, Plateau de Moulon, F-91400 Orsay, France
| | - Jean Bleton
- Lip(Sys)2, LETIAM (formerly included in
EA4041 Groupe de Chimie Analytique
de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, IUT
d’Orsay, Plateau de Moulon, F-91400 Orsay, France
| | - Marie-Jöelle Virolle
- Institute
for
Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
21
|
Nitrous Oxide Reduction by an Obligate Aerobic Bacterium, Gemmatimonas aurantiaca Strain T-27. Appl Environ Microbiol 2017; 83:AEM.00502-17. [PMID: 28389533 DOI: 10.1128/aem.00502-17] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
N2O-reducing organisms with nitrous oxide reductases (NosZ) are known as the only biological sink of N2O in the environment. Among the most abundant nosZ genes found in the environment are nosZ genes affiliated with the understudied Gemmatimonadetes phylum. In this study, a unique regulatory mechanism of N2O reduction in Gemmatimonas aurantiaca strain T-27, an isolate affiliated with the Gemmatimonadetes phylum, was examined. Strain T-27 was incubated with N2O and/or O2 as the electron acceptor. Significant N2O reduction was observed only when O2 was initially present. When batch cultures of strain T-27 were amended with O2 and N2O, N2O reduction commenced after O2 was depleted. In a long-term incubation with the addition of N2O upon depletion, the N2O reduction rate decreased over time and came to an eventual stop. Spiking of the culture with O2 resulted in the resuscitation of N2O reduction activity, supporting the hypothesis that N2O reduction by strain T-27 required the transient presence of O2 The highest level of nosZ transcription (8.97 nosZ transcripts/recA transcript) was observed immediately after O2 depletion, and transcription decreased ∼25-fold within 85 h, supporting the observed phenotype. The observed difference between responses of strain T-27 cultures amended with and without N2O to O2 starvation suggested that N2O helped sustain the viability of strain T-27 during temporary anoxia, although N2O reduction was not coupled to growth. The findings in this study suggest that obligate aerobic microorganisms with nosZ genes may utilize N2O as a temporary surrogate for O2 to survive periodic anoxia.IMPORTANCE Emission of N2O, a potent greenhouse gas and ozone depletion agent, from the soil environment is largely determined by microbial sources and sinks. N2O reduction by organisms with N2O reductases (NosZ) is the only known biological sink of N2O at environmentally relevant concentrations (up to ∼1,000 parts per million by volume [ppmv]). Although a large fraction of nosZ genes recovered from soil is affiliated with nosZ found in the genomes of the obligate aerobic phylum Gemmatimonadetes, N2O reduction has not yet been confirmed in any of these organisms. This study demonstrates that N2O is reduced by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27, and suggests a novel regulation mechanism for N2O reduction in this organism, which may also be applicable to other obligate aerobic organisms possessing nosZ genes. We expect that these findings will significantly advance the understanding of N2O dynamics in environments with frequent transitions between oxic and anoxic conditions.
Collapse
|
22
|
Abstract
About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for
Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of
Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall
Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for
Streptomyces developmental biology,
Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome immunoprecipitation sequencing (ChIP-seq) analysis and other methods based on “next-generation sequencing” has been the finding that 21% of
Streptomyces mRNA species lack leader sequences and conventional ribosome binding sites. Further technical advances now emerging should lead to continued acceleration of knowledge, and more effective exploitation, of these astonishing and critically important organisms.
Collapse
Affiliation(s)
- Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| |
Collapse
|
23
|
Tierrafría VH, Licona-Cassani C, Maldonado-Carmona N, Romero-Rodríguez A, Centeno-Leija S, Marcellin E, Rodríguez-Sanoja R, Ruiz-Villafán B, Nielsen LK, Sánchez S. Deletion of the hypothetical protein SCO2127 of Streptomyces coelicolor allowed identification of a new regulator of actinorhodin production. Appl Microbiol Biotechnol 2016; 100:9229-9237. [PMID: 27604626 DOI: 10.1007/s00253-016-7811-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/10/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023]
Abstract
Although the specific function of SCO2127 remains elusive, it has been assumed that this hypothetical protein plays an important role in carbon catabolite regulation and therefore in antibiotic biosynthesis in Streptomyces coelicolor. To shed light on the functional relationship of SCO2127 to the biosynthesis of actinorhodin, a detailed analysis of the proteins differentially produced between the strain M145 and the Δsco2127 mutant of S. coelicolor was performed. The delayed morphological differentiation and impaired production of actinorhodin showed by the deletion strain were accompanied by increased abundance of gluconeogenic enzymes, as well as downregulation of both glycolysis and acetyl-CoA carboxylase. Repression of mycothiol biosynthetic enzymes was further observed in the absence of SCO2127, in addition to upregulation of hydroxyectoine biosynthetic enzymes and SCO0204, which controls nitrite formation. The data generated in this study reveal that the response regulator SCO0204 greatly contributes to prevent the formation of actinorhodin in the ∆sco2127 mutant, likely through the activation of some proteins associated with oxidative stress that include the nitrite producer SCO0216.
Collapse
Affiliation(s)
- Víctor H Tierrafría
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Cuauhtemoc Licona-Cassani
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, Australia
| | - Nidia Maldonado-Carmona
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Alba Romero-Rodríguez
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Sara Centeno-Leija
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, Australia
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Lars K Nielsen
- Laboratorio de Bioingeniería, Universidad de Colima, Coquimatlán-, 28400, Colima, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas. 3er Circuito Exterior s/n, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico.
| |
Collapse
|
24
|
Falke D, Fischer M, Sawers RG. Phosphate and oxygen limitation induce respiratory nitrate reductase 3 synthesis in stationary-phase mycelium of Streptomyces coelicolor A3(2). MICROBIOLOGY-SGM 2016; 162:1689-1697. [PMID: 27499000 DOI: 10.1099/mic.0.000349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The saprophytic actinobacterium Streptomyces coelicolor A3(2) requires oxygen for filamentous growth. Surprisingly, the bacterium also synthesizes three active respiratory nitrate reductases (Nar), which are believed to contribute to survival, or general fitness, of the bacterium in soil when oxygen becomes limiting. In this study, we analysed Nar3 and showed that activity of the enzyme is restricted to stationary-phase mycelium of S. coelicolor. Phosphate limitation was shown to be necessary for induction of enzyme synthesis. Nar3 synthesis was inhibited by inclusion of 20 mM phosphate in a defined 'switch assay' in which highly dispersed mycelium from exponentially growing cultures was shifted to neutral MOPS-glucose buffer to induce Nar3 synthesis and activity. Quantitative assessment of nar3 transcripts revealed a 30-fold induction of gene expression in stationary-phase mycelium. Transcript levels in stationary-phase mycelium incubated with phosphate were reduced by a little more than twofold, suggesting that the negative influence of phosphate on Nar3 synthesis was mainly at the post-transcriptional level. Furthermore, it was demonstrated that oxygen limitation was necessary to induce high levels of Nar3 activity. However, an abrupt shift from aerobic to anaerobic conditions prevented appearance of Nar3 activity. This suggests that the bacterium regulates Nar3 synthesis in response to the energy status of the mycelium. Nitrate had little impact on regulation of the Nar3 level. Together, these data identify Nar3 as a stationary-phase nitrate reductase in S. coelicolor and demonstrate that enzyme synthesis is induced in response to both phosphate limitation and hypoxia.
Collapse
Affiliation(s)
- Dörte Falke
- Institute of Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Marco Fischer
- Institute of Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| |
Collapse
|
25
|
OsdR of Streptomyces coelicolor and the Dormancy Regulator DevR of Mycobacterium tuberculosis Control Overlapping Regulons. mSystems 2016; 1:mSystems00014-16. [PMID: 27822533 PMCID: PMC5069765 DOI: 10.1128/msystems.00014-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
Dormancy is a state of growth cessation that allows bacteria to escape the host defense system and antibiotic challenge. Understanding the mechanisms that control dormancy is of key importance for the treatment of latent infections, such as those from Mycobacterium tuberculosis. In mycobacteria, dormancy is controlled by the response regulator DevR, which responds to conditions of hypoxia. Here, we show that OsdR of Streptomyces coelicolor recognizes the same regulatory element and controls a regulon that consists of genes involved in the control of stress and development. Only the core regulon in the direct vicinity of dosR and osdR is conserved between M. tuberculosis and S. coelicolor, respectively. Thus, we show how the system has diverged from allowing escape from the host defense system by mycobacteria to the control of sporulation by complex multicellular streptomycetes. This provides novel insights into how bacterial growth and development are coordinated with the environmental conditions. Two-component regulatory systems allow bacteria to respond adequately to changes in their environment. In response to a given stimulus, a sensory kinase activates its cognate response regulator via reversible phosphorylation. The response regulator DevR activates a state of dormancy under hypoxia in Mycobacterium tuberculosis, allowing this pathogen to escape the host defense system. Here, we show that OsdR (SCO0204) of the soil bacterium Streptomyces coelicolor is a functional orthologue of DevR. OsdR, when activated by the sensory kinase OsdK (SCO0203), binds upstream of the DevR-controlled dormancy genes devR, hspX, and Rv3134c of M. tuberculosis. In silico analysis of the S. coelicolor genome combined with in vitro DNA binding studies identified many binding sites in the genomic region around osdR itself and upstream of stress-related genes. This binding correlated well with transcriptomic responses, with deregulation of developmental genes and genes related to stress and hypoxia in the osdR mutant. A peak in osdR transcription in the wild-type strain at the onset of aerial growth correlated with major changes in global gene expression. Taken together, our data reveal the existence of a dormancy-related regulon in streptomycetes which plays an important role in the transcriptional control of stress- and development-related genes. IMPORTANCE Dormancy is a state of growth cessation that allows bacteria to escape the host defense system and antibiotic challenge. Understanding the mechanisms that control dormancy is of key importance for the treatment of latent infections, such as those from Mycobacterium tuberculosis. In mycobacteria, dormancy is controlled by the response regulator DevR, which responds to conditions of hypoxia. Here, we show that OsdR of Streptomyces coelicolor recognizes the same regulatory element and controls a regulon that consists of genes involved in the control of stress and development. Only the core regulon in the direct vicinity of dosR and osdR is conserved between M. tuberculosis and S. coelicolor, respectively. Thus, we show how the system has diverged from allowing escape from the host defense system by mycobacteria to the control of sporulation by complex multicellular streptomycetes. This provides novel insights into how bacterial growth and development are coordinated with the environmental conditions.
Collapse
|
26
|
Sawers RG, Falke D, Fischer M. Oxygen and Nitrate Respiration in Streptomyces coelicolor A3(2). Adv Microb Physiol 2016; 68:1-40. [PMID: 27134020 DOI: 10.1016/bs.ampbs.2016.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Streptomyces species belong to the phylum Actinobacteria and can only grow with oxygen as a terminal electron acceptor. Like other members of this phylum, such as corynebacteria and mycobacteria, the aerobic respiratory chain lacks a soluble cytochrome c. It is therefore implicit that direct electron transfer between the cytochrome bc1 and the cytochrome aa3 oxidase complexes occurs. The complex developmental cycle of streptomycetes manifests itself in the production of spores, which germinate in the presence of oxygen into a substrate mycelium that greatly facilitates acquisition of nutrients necessary to support their saprophytic lifestyle in soils. Due to the highly variable oxygen levels in soils, streptomycetes have developed means of surviving long periods of hypoxia or even anaerobiosis but they fail to grow under these conditions. Little to nothing is understood about how they maintain viability under conditions of oxygen limitation. It is assumed that they can utilise a number of different electron acceptors to help them maintain a membrane potential, one of which is nitrate. The model streptomycete remains Streptomyces coelicolor A3(2), and it synthesises three nonredundant respiratory nitrate reductases (Nar). These Nar enzymes are synthesised during different phases of the developmental cycle and they are functional only under oxygen-limiting (<5% oxygen in air) conditions. Nevertheless, the regulation of their synthesis does not appear to be responsive to nitrate and in the case of Nar1, it appears to be developmentally regulated. This review highlights some of the novel aspects of our current, but somewhat limited, knowledge of respiration in these fascinating bacteria.
Collapse
Affiliation(s)
- R G Sawers
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - D Falke
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - M Fischer
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|