1
|
Swaney MH, Henriquez N, Campbell T, Handelsman J, Kalan LR. Skin-associated Corynebacterium amycolatum shares cobamides. mSphere 2025; 10:e0060624. [PMID: 39692507 PMCID: PMC11774034 DOI: 10.1128/msphere.00606-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 12/19/2024] Open
Abstract
The underlying interactions that occur to maintain skin microbiome composition, function, and overall skin health are largely unknown. Often, these types of interactions are mediated by microbial metabolites. Cobamides, the vitamin B12 family of cofactors, are essential for metabolism in many bacteria but are only synthesized by a fraction of prokaryotes, including certain skin-associated species. Therefore, we hypothesize that cobamide sharing mediates skin community dynamics. Preliminary work predicts that several skin-associated Corynebacterium species encode de novo cobamide biosynthesis and that their abundance is associated with skin microbiome diversity. Here, we show that commensal Corynebacterium amycolatum produces cobamides and that this synthesis can be tuned by cobalt limitation. To demonstrate cobamide sharing by C. amycolatum, we employed a co-culture assay using an E. coli cobamide auxotroph and showed that C. amycolatum produces sufficient cobamides to support Escherichia coli growth, both in liquid co-culture and when separated spatially on solid medium. We also generated a C. amycolatum non-cobamide-producing strain (cob-) using UV mutagenesis that contains mutated cobamide biosynthesis genes cobK (precorrin-6X reductase) and cobO (corrinoid adenosyltransferase) and confirm that disruption of cobamide biosynthesis abolishes the support of E. coli growth through cobamide sharing. Our study provides a unique model to study metabolite sharing by microorganisms, which will be critical for understanding the fundamental interactions that occur within complex microbiomes and for developing approaches to target the human microbiota for health advances. IMPORTANCE The human skin serves as a crucial barrier for the body and hosts a diverse community of microbes known as the skin microbiome. The interactions that occur to maintain a healthy skin microbiome are largely unknown but are thought to be driven in part, by nutrient sharing between species in close association. Here we show that the skin-associated bacteria Corynebacterium amycolatum produces and shares cobalamin, a cofactor essential for survival in organisms across all domains of life. This study provides a unique model to study metabolite sharing by skin microorganisms, which will be critical for understanding the fundamental interactions that occur within the skin microbiome and for developing therapeutic approaches aiming to engineer and manipulate the skin microbiota.
Collapse
Affiliation(s)
- M. H. Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - N. Henriquez
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - T. Campbell
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - J. Handelsman
- Wisconsin Institute for Discovery, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - L. R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Atay G, Holyavkin C, Can H, Arslan M, Topaloğlu A, Trotta M, Çakar ZP. Evolutionary engineering and molecular characterization of cobalt-resistant Rhodobacter sphaeroides. Front Microbiol 2024; 15:1412294. [PMID: 38993486 PMCID: PMC11236759 DOI: 10.3389/fmicb.2024.1412294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
With its versatile metabolism including aerobic and anaerobic respiration, photosynthesis, photo-fermentation and nitrogen fixation, Rhodobacter sphaeroides can adapt to diverse environmental and nutritional conditions, including the presence of various stressors such as heavy metals. Thus, it is an important microorganism to study the molecular mechanisms of bacterial stress response and resistance, and to be used as a microbial cell factory for biotechnological applications or bioremediation. In this study, a highly cobalt-resistant and genetically stable R. sphaeroides strain was obtained by evolutionary engineering, also known as adaptive laboratory evolution (ALE), a powerful strategy to improve and characterize genetically complex, desired microbial phenotypes, such as stress resistance. For this purpose, successive batch selection was performed in the presence of gradually increased cobalt stress levels between 0.1-15 mM CoCl2 for 64 passages and without any mutagenesis of the initial population prior to selection. The mutant individuals were randomly chosen from the last population and analyzed in detail. Among these, a highly cobalt-resistant and genetically stable evolved strain called G7 showed significant cross-resistance against various stressors such as iron, magnesium, nickel, aluminum, and NaCl. Growth profiles and flame atomic absorption spectrometry analysis results revealed that in the presence of 4 mM CoCl2 that significantly inhibited growth of the reference strain, the growth of the evolved strain was unaffected, and higher levels of cobalt ions were associated with G7 cells than the reference strain. This may imply that cobalt ions accumulated in or on G7 cells, indicating the potential of G7 for cobalt bioremediation. Whole genome sequencing of the evolved strain identified 23 single nucleotide polymorphisms in various genes that are associated with transcriptional regulators, NifB family-FeMo cofactor biosynthesis, putative virulence factors, TRAP-T family transporter, sodium/proton antiporter, and also in genes with unknown functions, which may have a potential role in the cobalt resistance of R. sphaeroides.
Collapse
Affiliation(s)
- Güneş Atay
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Can Holyavkin
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Hanay Can
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Mevlüt Arslan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Alican Topaloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Massimo Trotta
- IPCF-CNR Istituto per I processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Zeynep Petek Çakar
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| |
Collapse
|
3
|
Swaney MH, Henriquez N, Campbell T, Handelsman J, Kalan LR. Skin-associated Corynebacterium amycolatum shares cobamides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591522. [PMID: 38712214 PMCID: PMC11071462 DOI: 10.1101/2024.04.28.591522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The underlying interactions that occur to maintain skin microbiome composition, function, and overall skin health are largely unknown. Often, these types of interactions are mediated by microbial metabolites. Cobamides, the vitamin B12 family of cofactors, are essential for metabolism in many bacteria, but are only synthesized by a small fraction of prokaryotes, including certain skin-associated species. Therefore, we hypothesize that cobamide sharing mediates skin community dynamics. Preliminary work predicts that several skin-associated Corynebacterium species encode de novo cobamide biosynthesis and that their abundance is associated with skin microbiome diversity. Here, we show that commensal Corynebacterium amycolatum produces cobamides and that this synthesis can be tuned by cobalt limitation. To demonstrate cobamide sharing by C. amycolatum, we employed a co-culture assay using an E. coli cobamide auxotroph and show that C. amycolatum produces sufficient cobamides to support E. coli growth, both in liquid co-culture and when separated spatially on solid medium. We also generated a C. amycolatum non-cobamide-producing strain (cob-) using UV mutagenesis that contains mutated cobamide biosynthesis genes cobK and cobO and confirm that disruption of cobamide biosynthesis abolishes support of E. coli growth through cobamide sharing. Our study provides a unique model to study metabolite sharing by microorganisms, which will be critical for understanding the fundamental interactions that occur within complex microbiomes and for developing approaches to target the human microbiota for health advances.
Collapse
Affiliation(s)
- M H Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, USA
| | - N Henriquez
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
| | - T Campbell
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
| | - J Handelsman
- Wisconsin Institute for Discovery, Madison, WI, USA
- Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - L R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, CAN
- David Braley Centre for Antibiotic Discovery, Hamilton, ON, CAN
| |
Collapse
|
4
|
Li Y, Liu Q, Zhang DX, Zhang ZY, Xu A, Jiang YL, Chen ZC. Metal nutrition and transport in the process of symbiotic nitrogen fixation. PLANT COMMUNICATIONS 2024; 5:100829. [PMID: 38303509 PMCID: PMC11009365 DOI: 10.1016/j.xplc.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Symbiotic nitrogen fixation (SNF) facilitated by the interaction between legumes and rhizobia is a well-documented and eco-friendly alternative to chemical nitrogen fertilizers. Host plants obtain fixed nitrogen from rhizobia by providing carbon and mineral nutrients. These mineral nutrients, which are mostly in the form of metal ions, are implicated in various stages of the SNF process. This review describes the functional roles played by metal ions in nodule formation and nitrogen fixation and specifically addresses their transport mechanisms and associated transporters within root nodules. Future research directions and potential strategies for enhancing SNF efficiency are also discussed.
Collapse
Affiliation(s)
- Yuan Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dan-Xun Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuo-Yan Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ao Xu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Long Jiang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Chang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Mihelj P, Abreu I, Moreyra T, González-Guerrero M, Raimunda D. Functional Characterization of the Co 2+ Transporter AitP in Sinorhizobium meliloti: A New Player in Fe 2+ Homeostasis. Appl Environ Microbiol 2023; 89:e0190122. [PMID: 36853042 PMCID: PMC10057888 DOI: 10.1128/aem.01901-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
Co2+ induces the increase of the labile-Fe pool (LIP) by Fe-S cluster damage, heme synthesis inhibition, and "free" iron import, which affects cell viability. The N2-fixing bacteria, Sinorhizobium meliloti, is a suitable model to determine the roles of Co2+-transporting cation diffusion facilitator exporters (Co-eCDF) in Fe2+ homeostasis because it has a putative member of this subfamily, AitP, and two specific Fe2+-export systems. An insertional mutant of AitP showed Co2+ sensitivity and accumulation, Fe accumulation and hydrogen peroxide sensitivity, but not Fe2+ sensitivity, despite AitP being a bona fide low affinity Fe2+ exporter as demonstrated by the kinetic analyses of Fe2+ uptake into everted membrane vesicles. Suggesting concomitant Fe2+-dependent induced stress, Co2+ sensitivity was increased in strains carrying mutations in AitP and Fe2+ exporters which did not correlate with the Co2+ accumulation. Growth in the presence of sublethal Fe2+ and Co2+ concentrations suggested that free Fe-import might contribute to Co2+ toxicity. Supporting this, Co2+ induced transcription of Fe-import system and genes associated with Fe homeostasis. Analyses of total protoporphyrin content indicates Fe-S cluster attack as the major source for LIP. AitP-mediated Fe2+-export is likely counterbalanced via a nonfutile Fe2+-import pathway. Two lines of evidence support this: (i) an increased hemin uptake in the presence of Co2+ was observed in wild-type (WT) versus AitP mutant, and (ii) hemin reversed the Co2+ sensitivity in the AitP mutant. Thus, the simultaneous detoxification mediated by AitP aids cells to orchestrate an Fe-S cluster salvage response, avoiding the increase in the LIP caused by the disassembly of Fe-S clusters or free iron uptake. IMPORTANCE Cross-talk between iron and cobalt has been long recognized in biological systems. This is due to the capacity of cobalt to interfere with proper iron utilization. Cells can detoxify cobalt by exporting mechanisms involving membrane proteins known as exporters. Highlighting the cross-talk, the capacity of several cobalt exporters to also export iron is emerging. Although biologically less important than Fe2+, Co2+ induces toxicity by promoting intracellular Fe release, which ultimately causes additional toxic effects. In this work, we describe how the rhizobia cells solve this perturbation by clearing Fe through a Co2+ exporter, in order to reestablish intracellular Fe levels by importing nonfree Fe, heme. This piggyback-ride type of transport may aid bacterial cells to survive in free-living conditions where high anthropogenic Co2+ content may be encountered.
Collapse
Affiliation(s)
- Paula Mihelj
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Tomás Moreyra
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Daniel Raimunda
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina
| |
Collapse
|
6
|
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
7
|
Bunbury F, Deery E, Sayer AP, Bhardwaj V, Harrison EL, Warren MJ, Smith AG. Exploring the onset of B 12 -based mutualisms using a recently evolved Chlamydomonas auxotroph and B 12 -producing bacteria. Environ Microbiol 2022; 24:3134-3147. [PMID: 35593514 PMCID: PMC9545926 DOI: 10.1111/1462-2920.16035] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022]
Abstract
Cobalamin (vitamin B12 ) is a cofactor for essential metabolic reactions in multiple eukaryotic taxa, including major primary producers such as algae, and yet only prokaryotes can produce it. Many bacteria can colonize the algal phycosphere, forming stable communities that gain preferential access to photosynthate and in return provide compounds such as B12 . Extended coexistence can then drive gene loss, leading to greater algal-bacterial interdependence. In this study, we investigate how a recently evolved B12 -dependent strain of Chlamydomonas reinhardtii, metE7, forms a mutualism with certain bacteria, including the rhizobium Mesorhizobium loti and even a strain of the gut bacterium E. coli engineered to produce cobalamin. Although metE7 was supported by B12 producers, its growth in co-culture was slower than the B12 -independent wild-type, suggesting that high bacterial B12 provision may be necessary to favour B12 auxotrophs and their evolution. Moreover, we found that an E. coli strain that releases more B12 makes a better mutualistic partner, and although this trait may be more costly in isolation, greater B12 release provided an advantage in co-cultures. We hypothesize that, given the right conditions, bacteria that release more B12 may be selected for, particularly if they form close interactions with B12 -dependent algae.
Collapse
Affiliation(s)
- Freddy Bunbury
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Andrew P Sayer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Vaibhav Bhardwaj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Ellen L Harrison
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NH, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
8
|
Abstract
More than 55 distinct classes of riboswitches that respond to small metabolites or elemental ions have been experimentally validated to date. The ligands sensed by these riboswitches are biased in favor of fundamental compounds or ions that are likely to have been relevant to ancient forms of life, including those that might have populated the "RNA World", which is a proposed biochemical era that predates the evolutionary emergence of DNA and proteins. In the following text, I discuss the various types of ligands sensed by some of the most common riboswitches present in modern bacterial cells and consider implications for ancient biological processes centered on the proven capabilities of these RNA-based sensors. Although most major biochemical aspects of metabolism are represented by known riboswitch classes, there are striking sensory gaps in some key areas. These gaps could reveal weaknesses in the performance capabilities of RNA that might have hampered RNA World evolution, or these could highlight opportunities to discover additional riboswitch classes that sense essential metabolites.
Collapse
Affiliation(s)
- Ronald R. Breaker
- Corresponding Author: Ronald R. Breaker - Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, United States; Phone: 203-432-9389; , Twitter: @RonBreaker
| |
Collapse
|
9
|
Jiang Y, Chen X, Chai S, Sheng H, Sha L, Fan X, Zeng J, Kang H, Zhang H, Xiao X, Zhou Y, Vatamaniuk OK, Wang Y. TpIRT1 from Polish wheat (Triticum polonicum L.) enhances the accumulation of Fe, Mn, Co, and Cd in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111058. [PMID: 34620452 DOI: 10.1016/j.plantsci.2021.111058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Uptake and internal transport of micronutrients are essential for plant growth, development, and yield. In this regard, Iron Regulated Transporters (IRTs) from the Zinc Regulated Transporter (ZRT)/IRT-related protein (ZIP) family play an important role in transition metal uptake. Most studies have been focused on IRT1-like proteins in diploid species. Information on IRT1-like proteins in polyploids is limited. Here, we studied the function of TpIRT1A and TpIRT1B homoeologs in a tetraploid crop, Polish wheat (Triticum polonicum L.). Our results highlighted the importance of TpIRT1 in mediating the uptake and translocation of Fe, Mn, Co, and Cd with direct implications for wheat yield potential. Both TpIRT1A and TpIRT1B were located at the plasma membrane and internal vesicle-like organelle in protoplasts of Arabidopsis thaliana L. and increased Cd and Co sensitivity in yeast. The over-expression of TpIRT1B in A. thaliana increased Fe, Mn, Co, and Cd concentration in its tissues and improved plant growth under Fe, Mn, and Co deficiencies, while increased the sensitivity to Cd compared to wild type. Functional analysis of IRT1 homoeologs from tetraploid and diploid ancestral wheat species in yeast disclosed four distinct amino acid residues in TdiIRT1B (T. dicoccum L. (Schrank)) and TtuIRT1B (T. turgidum L.). Together, our results increase the knowledge of IRT1 function in a globally important crop, wheat.
Collapse
Affiliation(s)
- Yulin Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA
| | - Xing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Songyue Chai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Huajin Sheng
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA; Global Institute for Food Security, University of Saskatchewan, Saskatoon, S7N0W9, SK, Canada
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA.
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
10
|
Pipatthana M, Harnvoravongchai P, Pongchaikul P, Likhitrattanapisal S, Phanchana M, Chankhamhaengdecha S, Janvilisri T. The repertoire of ABC proteins in Clostridioides difficile. Comput Struct Biotechnol J 2021; 19:2905-2920. [PMID: 34094001 PMCID: PMC8144104 DOI: 10.1016/j.csbj.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 11/07/2022] Open
Abstract
ATP-binding cassette (ABC) transporters belong to one of the largest membrane protein superfamilies, which function in translocating substrates across biological membranes using energy from ATP hydrolysis. Currently, the classification of ABC transporters in Clostridioides difficile is not complete. Therefore, the sequence-function relationship of all ABC proteins encoded within the C. difficile genome was analyzed. Identification of protein domains associated with the ABC system in the C. difficile 630 reference genome revealed 226 domains: 97 nucleotide-binding domains (NBDs), 98 transmembrane domains (TMDs), 30 substrate-binding domains (SBDs), and one domain with features of an adaptor protein. Gene organization and transcriptional unit analyses indicated the presence of 78 ABC systems comprising 28 importers and 50 exporters. Based on NBD sequence similarity, ABC transporters were classified into 12 sub-families according to their substrates. Interestingly, all ABC exporters, accounting for 64% of the total ABC systems, are involved in antibiotic resistance. Based on analysis of ABC proteins from 49 C. difficile strains, the majority of core NBDs are predicted to be involved in multidrug resistance systems, consistent with the ability of this organism to survive exposure to an array of antibiotics. Our findings herein provide another step toward a better understanding of the function and evolutionary relationships of ABC proteins in this pathogen.
Collapse
Affiliation(s)
- Methinee Pipatthana
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| | - Somsak Likhitrattanapisal
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
12
|
Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B 12. Nat Commun 2018; 9:4917. [PMID: 30464241 PMCID: PMC6249242 DOI: 10.1038/s41467-018-07412-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/01/2018] [Indexed: 11/30/2022] Open
Abstract
The only known source of vitamin B12 (adenosylcobalamin) is from bacteria and archaea. Here, using genetic and metabolic engineering, we generate an Escherichia coli strain that produces vitamin B12 via an engineered de novo aerobic biosynthetic pathway. In vitro and/or in vivo analysis of genes involved in adenosylcobinamide phosphate biosynthesis from Rhodobacter capsulatus suggest that the biosynthetic steps from co(II)byrinic acid a,c-diamide to adocobalamin are the same in both the aerobic and anaerobic pathways. Finally, we increase the vitamin B12 yield of a recombinant E. coli strain by more than ∼250-fold to 307.00 µg g−1 DCW via metabolic engineering and optimization of fermentation conditions. Beyond our demonstration of E. coli as a microbial biosynthetic platform for vitamin B12 production, our study offers an encouraging example of how the several dozen proteins of a complex biosynthetic pathway can be transferred between organisms to facilitate industrial production. Vitamin B12 is an essential nutrient with limited natural sources. Here the authors transfer 28 pathway synthesis genes from several bacteria including R. capsulatus to E. coli and, using metabolic engineering and optimised fermentation conditions, achieve high yields.
Collapse
|
13
|
Inter-replicon Gene Flow Contributes to Transcriptional Integration in the Sinorhizobium meliloti Multipartite Genome. G3-GENES GENOMES GENETICS 2018; 8:1711-1720. [PMID: 29563186 PMCID: PMC5940162 DOI: 10.1534/g3.117.300405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Integration of newly acquired genes into existing regulatory networks is necessary for successful horizontal gene transfer (HGT). Ten percent of bacterial species contain at least two DNA replicons over 300 kilobases in size, with the secondary replicons derived predominately through HGT. The Sinorhizobium meliloti genome is split between a 3.7 Mb chromosome, a 1.7 Mb chromid consisting largely of genes acquired through ancient HGT, and a 1.4 Mb megaplasmid consisting primarily of recently acquired genes. Here, RNA-sequencing is used to examine the transcriptional consequences of massive, synthetic genome reduction produced through the removal of the megaplasmid and/or the chromid. Removal of the pSymA megaplasmid influenced the transcription of only six genes. In contrast, removal of the chromid influenced expression of ∼8% of chromosomal genes and ∼4% of megaplasmid genes. This was mediated in part by the loss of the ETR DNA region whose presence on pSymB is due to a translocation from the chromosome. No obvious functional bias among the up-regulated genes was detected, although genes with putative homologs on the chromid were enriched. Down-regulated genes were enriched in motility and sensory transduction pathways. Four transcripts were examined further, and in each case the transcriptional change could be traced to loss of specific pSymB regions. In particularly, a chromosomal transporter was induced due to deletion of bdhA likely mediated through 3-hydroxybutyrate accumulation. These data provide new insights into the evolution of the multipartite bacterial genome, and more generally into the integration of horizontally acquired genes into the transcriptome.
Collapse
|
14
|
Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti. J Bacteriol 2018; 200:JB.00501-17. [PMID: 29158240 DOI: 10.1128/jb.00501-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Abstract
Sinorhizobium meliloti is a soil-dwelling alphaproteobacterium that engages in a nitrogen-fixing root nodule symbiosis with leguminous plants. Cell surface polysaccharides are important both for adapting to stresses in the soil and for the development of an effective symbiotic interaction. Among the polysaccharides characterized to date, the acidic exopolysaccharides I (EPS-I; succinoglycan) and II (EPS-II; galactoglucan) are particularly important for protection from abiotic stresses, biofilm formation, root colonization, and infection of plant roots. Previous genetic screens discovered mutants with impaired EPS production, allowing the delineation of EPS biosynthetic pathways. Here we report on a genetic screen to isolate mutants with mucoid colonial morphologies that suggest EPS overproduction. Screening with Tn5-110, which allows the recovery of both null and upregulation mutants, yielded 47 mucoid mutants, most of which overproduce EPS-I; among the 30 unique genes and intergenic regions identified, 14 have not been associated with EPS production previously. We identified a new protein-coding gene, emmD, which may be involved in the regulation of EPS-I production as part of the EmmABC three-component regulatory circuit. We also identified a mutant defective in EPS-I production, motility, and symbiosis, where Tn5-110 was not responsible for the mutant phenotypes; these phenotypes result from a missense mutation in rpoA corresponding to the domain of the RNA polymerase alpha subunit known to interact with transcription regulators.IMPORTANCE The alphaproteobacterium Sinorhizobium meliloti converts dinitrogen to ammonium while inhabiting specialized plant organs termed root nodules. The transformation of S. meliloti from a free-living soil bacterium to a nitrogen-fixing plant symbiont is a complex developmental process requiring close interaction between the two partners. As the interface between the bacterium and its environment, the S. meliloti cell surface plays a critical role in adaptation to varied soil environments and in interaction with plant hosts. We isolated and characterized S. meliloti mutants with increased production of exopolysaccharides, key cell surface components. Our diverse set of mutants suggests roles for exopolysaccharide production in growth, metabolism, cell division, envelope homeostasis, biofilm formation, stress response, motility, and symbiosis.
Collapse
|
15
|
diCenzo GC, Finan TM. Techniques for Large-Scale Bacterial Genome Manipulation and Characterization of the Mutants with Respect to In Silico Metabolic Reconstructions. Methods Mol Biol 2018; 1716:291-314. [PMID: 29222759 DOI: 10.1007/978-1-4939-7528-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The rate at which all genes within a bacterial genome can be identified far exceeds the ability to characterize these genes. To assist in associating genes with cellular functions, a large-scale bacterial genome deletion approach can be employed to rapidly screen tens to thousands of genes for desired phenotypes. Here, we provide a detailed protocol for the generation of deletions of large segments of bacterial genomes that relies on the activity of a site-specific recombinase. In this procedure, two recombinase recognition target sequences are introduced into known positions of a bacterial genome through single cross-over plasmid integration. Subsequent expression of the site-specific recombinase mediates recombination between the two target sequences, resulting in the excision of the intervening region and its loss from the genome. We further illustrate how this deletion system can be readily adapted to function as a large-scale in vivo cloning procedure, in which the region excised from the genome is captured as a replicative plasmid. We next provide a procedure for the metabolic analysis of bacterial large-scale genome deletion mutants using the Biolog Phenotype MicroArray™ system. Finally, a pipeline is described, and a sample Matlab script is provided, for the integration of the obtained data with a draft metabolic reconstruction for the refinement of the reactions and gene-protein-reaction relationships in a metabolic reconstruction.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
16
|
Sheehan LM, Caswell CC. An account of evolutionary specialization: the AbcR small RNAs in the Rhizobiales. Mol Microbiol 2017; 107:24-33. [PMID: 29076560 DOI: 10.1111/mmi.13869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 01/26/2023]
Abstract
The AbcR small RNAs (sRNAs) are a fascinating example of two highly conserved sRNAs that differ tremendously at the functional level among organisms. From their transcriptional activation to their regulatory capabilities, the AbcR sRNAs exhibit varying characteristics in three well-studied bacteria belonging to the Rhizobiales order: the plant symbiont Sinorhizobium meliloti, the plant pathogen Agrobacterium tumefaciens, and the animal pathogen Brucella abortus. This review outlines the similarities and differences of the AbcR sRNAs between each of these organisms, and discusses reasons as to why this group of sRNAs has diverged in their genetic organization and regulatory functions across species. In the end, this review will shed light on how regulatory systems, although seemingly conserved among bacteria, can vary based on the environmental niche and lifestyle of an organism.
Collapse
Affiliation(s)
- Lauren M Sheehan
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
17
|
Zhang Y, Smallbone LA, diCenzo GC, Morton R, Finan TM. Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti. BMC Microbiol 2016; 16:163. [PMID: 27456220 PMCID: PMC4960864 DOI: 10.1186/s12866-016-0780-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malic enzymes decarboxylate the tricarboxylic acid (TCA) cycle intermediate malate to the glycolytic end-product pyruvate and are well positioned to regulate metabolic flux in central carbon metabolism. Despite the wide distribution of these enzymes, their biological roles are unclear in part because the reaction catalyzed by these enzymes can be by-passed by other pathways. The N2-fixing alfalfa symbiont Sinorhizobium meliloti contains both a NAD(P)-malic enzyme (DME) and a separate NADP-malic enzyme (TME) and to help understand the role of these enzymes, we investigated growth, metabolomic, and transcriptional consequences resulting from loss of these enzymes in free-living cells. RESULTS Loss of DME, TME, or both enzymes had no effect on growth with the glycolytic substrate, glucose. In contrast, the dme mutants, but not tme, grew slowly on the gluconeogenic substrate succinate and this slow growth was further reduced upon the addition of glucose. The dme mutant strains incubated with succinate accumulated trehalose and hexose sugar phosphates, secreted malate, and relative to wild-type, these cells had moderately increased transcription of genes involved in gluconeogenesis and pathways that divert metabolites away from the TCA cycle. While tme mutant cells grew at the same rate as wild-type on succinate, they accumulated the compatible solute putrescine. CONCLUSIONS NAD(P)-malic enzyme (DME) of S. meliloti is required for efficient metabolism of succinate via the TCA cycle. In dme mutants utilizing succinate, malate accumulates and is excreted and these cells appear to increase metabolite flow via gluconeogenesis with a resulting increase in the levels of hexose-6-phosphates and trehalose. For cells utilizing succinate, TME activity alone appeared to be insufficient to produce the levels of pyruvate required for efficient TCA cycle metabolism. Putrescine was found to accumulate in tme cells growing with succinate, and whether this is related to altered levels of NADPH requires further investigation.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Laura Anne Smallbone
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - Richard Morton
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
18
|
diCenzo GC, Checcucci A, Bazzicalupo M, Mengoni A, Viti C, Dziewit L, Finan TM, Galardini M, Fondi M. Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti. Nat Commun 2016; 7:12219. [PMID: 27447951 PMCID: PMC4961836 DOI: 10.1038/ncomms12219] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/10/2016] [Indexed: 12/14/2022] Open
Abstract
The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes. The genome of some bacteria consists of two or more chromosomes or replicons. Here, diCenzo et al. integrate genome-scale metabolic modelling and growth data from a collection of mutants of the plant symbiont Sinorhizobium meliloti to estimate the fitness contribution of each replicon in three environments.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 1A1
| | - Alice Checcucci
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Bazzicalupo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agri-food Production and Environmental Sciences, University of Florence, 50144 Sesto Fiorentino, Italy
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 1A1
| | - Marco Galardini
- EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Marco Fondi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
19
|
diCenzo GC, Zamani M, Milunovic B, Finan TM. Genomic resources for identification of the minimal N2 -fixing symbiotic genome. Environ Microbiol 2016; 18:2534-47. [PMID: 26768651 DOI: 10.1111/1462-2920.13221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/17/2015] [Accepted: 01/09/2016] [Indexed: 12/11/2022]
Abstract
The lack of an appropriate genomic platform has precluded the use of gain-of-function approaches to study the rhizobium-legume symbiosis, preventing the establishment of the genes necessary and sufficient for symbiotic nitrogen fixation (SNF) and potentially hindering synthetic biology approaches aimed at engineering this process. Here, we describe the development of an appropriate system by reverse engineering Sinorhizobium meliloti. Using a novel in vivo cloning procedure, the engA-tRNA-rmlC (ETR) region, essential for cell viability and symbiosis, was transferred from Sinorhizobium fredii to the ancestral location on the S. meliloti chromosome, rendering the ETR region on pSymB redundant. A derivative of this strain lacking both the large symbiotic replicons (pSymA and pSymB) was constructed. Transfer of pSymA and pSymB back into this strain restored symbiotic capabilities with alfalfa. To delineate the location of the single-copy genes essential for SNF on these replicons, we screened a S. meliloti deletion library, representing > 95% of the 2900 genes of the symbiotic replicons, for their phenotypes with alfalfa. Only four loci, accounting for < 12% of pSymA and pSymB, were essential for SNF. These regions will serve as our preliminary target of the minimal set of horizontally acquired genes necessary and sufficient for SNF.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Branislava Milunovic
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
20
|
diCenzo GC, Finan TM. Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome. Mol Genet Genomics 2015; 290:1345-56. [PMID: 25638282 DOI: 10.1007/s00438-015-0998-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/17/2015] [Indexed: 01/09/2023]
Abstract
Biological pathways are frequently identified via a genetic loss-of-function approach. While this approach has proven to be powerful, it is imperfect as illustrated by well-studied pathways continuing to have missing steps. One potential limiting factor is the masking of phenotypes through genetic redundancy. The prevalence of genetic redundancy in bacterial species has received little attention, although isolated examples of functionally redundant gene pairs exist. Here, we made use of a strain of Sinorhizobium meliloti whose genome was reduced by 45 % through the complete removal of a megaplasmid and a chromid (3 Mb of the 6.7 Mb genome was removed) to begin quantifying the level of genetic redundancy within a large bacterial genome. A mutagenesis of the strain with the reduced genome identified a set of transposon insertions precluding growth of this strain on minimal medium. Transfer of these mutations to the wild-type background revealed that 10-15 % of these chromosomal mutations were located within duplicated genes, as they did not prevent growth of cells with the full genome. The functionally redundant genes were involved in a variety of metabolic pathways, including central carbon metabolism, transport, and amino acid biosynthesis. These results indicate that genetic redundancy may be prevalent within large bacterial genomes. Failing to account for redundantly encoded functions in loss-of-function studies will impair our understanding of a broad range of biological processes and limit our ability to use synthetic biology in the construction of designer cell factories.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | | |
Collapse
|
21
|
Takemoto N, Tanaka Y, Inui M. Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum. Nucleic Acids Res 2014; 43:520-9. [PMID: 25477389 PMCID: PMC4288175 DOI: 10.1093/nar/gku1281] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Riboswitches are RNA elements that regulate gene expression in response to their ligand. Although these regulations are thought to be performed without any aid of other factors, recent studies suggested the participation of protein factors such as transcriptional termination factor Rho and RNase in some riboswitch regulations. However, to what extent these protein factors contribute to the regulation was unclear. Here, we studied the regulatory mechanism of the flavin mononucleotide (FMN) riboswitch of Corynebacterium glutamicum which controls the expression of downstream ribM gene. Our results showed that this riboswitch downregulates both ribM mRNA and RibM protein levels in FMN-rich cells. Analysis of mRNA stability and chromatin immunoprecipitation–real-time PCR analysis targeting RNA polymerase suggested the involvement of the mRNA degradation and premature transcriptional termination in this regulation, respectively. Simultaneous disruption of RNase E/G and Rho function completely abolished the regulation at the mRNA level. Also, the regulation at the protein level was largely diminished. However, some FMN-dependent regulation at the protein level remained, suggesting the presence of other minor regulatory mechanisms. Altogether, we demonstrated for the first time that two protein factors, Rho and RNase E/G, play a central role in the riboswitch-mediated gene expression control.
Collapse
Affiliation(s)
- Norihiko Takemoto
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Yuya Tanaka
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
22
|
diCenzo GC, MacLean AM, Milunovic B, Golding GB, Finan TM. Examination of prokaryotic multipartite genome evolution through experimental genome reduction. PLoS Genet 2014; 10:e1004742. [PMID: 25340565 PMCID: PMC4207669 DOI: 10.1371/journal.pgen.1004742] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/08/2014] [Indexed: 01/12/2023] Open
Abstract
Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. pSymB). Rhizobia are free-living bacteria of agricultural and environmental importance that form root-nodules on leguminous plants and provide these plants with fixed nitrogen. Many of the rhizobia have a multipartite genome, as do several plant and animal pathogens. All isolates of the alfalfa symbiont, Sinorhizobium meliloti, carry three large replicons, the chromosome (∼3.7 Mb), pSymA megaplasmid (∼1.4 Mb), and pSymB chromid (∼1.7 Mb). To gain insight into the role and evolutionary history of these replicons, we have ‘reversed evolution’ by constructing a S. meliloti strain consisting solely of the chromosome and lacking the pSymB chromid and pSymA megaplasmid. As the resulting strain was viable, we could perform a detailed phenotypic analysis and these data provided significant insight into the biology and metabolism of S. meliloti. The data lend direct experimental evidence in understanding the evolution and role of the multipartite genome. Specifically the large secondary replicons increase the organism's niche range, and this advantage offsets the metabolic burden of these replicons on the cell. Additionally, the single-chromosome strain offers a useful platform to facilitate future forward genetic approaches to understanding and manipulating the symbiosis and plant-microbe interactions.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | - G. Brian Golding
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
23
|
Chivers PT. Cobalt and Nickel. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cobalt and nickel play key roles in biological systems as cofactors in a small number of important enzymes. The majority of these are found in microbes. Evidence for direct roles for Ni(II) and Co(II) enzymes in higher organisms is limited, with the exception of the well-known requirement for the cobalt-containing vitamin B12 cofactor and the Ni-dependent urease in plants. Nonetheless, nickel in particular plays a key role in human health because of its essential role in microbes that inhabit various growth niches within the body. These roles can be beneficial, as can be seen with the anaerobic production and consumption of H2 in the digestive tract by bacteria and archaea that results in increased yields of short-chain fatty acids. In other cases, nickel has an established role in the establishment of pathogenic infection (Helicobacter pylori urease and colonization of the stomach). The synthesis of Co- and Ni-containing enzymes requires metal import from the extracellular milieu followed by the targeting of these metals to the appropriate protein and enzymes involved in metallocluster or cofactor biosynthesis. These metals are toxic in excess so their levels must be regulated carefully. This complex pathway of metalloenzyme synthesis and intracellular homeostasis requires proteins that can specifically recognize these metals in a hierarchical manner. This chapter focuses on quantitative and structural details of the cobalt and nickel binding sites in transport, trafficking and regulatory proteins involved in cobalt and nickel metabolism in microbes.
Collapse
Affiliation(s)
- Peter T. Chivers
- Department of Chemistry, School of Biological and Biomedical Sciences, and Biophysical Sciences Institute, Durham University Durham UK
| |
Collapse
|
24
|
Gopinath K, Moosa A, Mizrahi V, Warner DF. Vitamin B(12) metabolism in Mycobacterium tuberculosis. Future Microbiol 2014; 8:1405-18. [PMID: 24199800 DOI: 10.2217/fmb.13.113] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis is included among a select group of bacteria possessing the capacity for de novo biosynthesis of vitamin B12, the largest and most complex natural organometallic cofactor. The bacillus is also able to scavenge B12 and related corrinoids utilizing an ATP-binding cassette-type protein that is distinct from the only known bacterial B12-specific transporter, BtuFCD. Consistent with the inferred requirement for vitamin B12 for metabolic function, the M. tuberculosis genome encodes two B12 riboswitches and three B12-dependent enzymes. Two of these enzymes have been shown to operate in methionine biosynthesis (MetH) and propionate utilization (MutAB), while the function of the putative nrdZ-encoded ribonucleotide reductase remains unknown. Taken together, these observations suggest that M. tuberculosis has the capacity to regulate core metabolic functions according to B12 availability - whether acquired via endogenous synthesis or through uptake from the host environment - and, therefore, imply that there is a role for vitamin B12 in pathogenesis, which remains poorly understood.
Collapse
Affiliation(s)
- Krishnamoorthy Gopinath
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Center of Excellence for Biomedical TB Research, Institute of Infectious Disease & Molecular Medicine & Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | | | | | | |
Collapse
|
25
|
Sun X, Yu G, Xu Q, Li N, Xiao C, Yin X, Cao K, Han J, He QY. Putative cobalt- and nickel-binding proteins and motifs in Streptococcus pneumoniae. Metallomics 2014; 5:928-35. [PMID: 23775531 DOI: 10.1039/c3mt00126a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cobalt and nickel play important roles in various biological processes. The present work focuses on the enrichment and identification of Co- and Ni-binding motifs and proteins in Gram-positive bacteria. Immobilized metal affinity column (IMAC) was used to partially enrich putative metal-binding proteins and peptides from Streptococcus pneumoniae, and then LTQ-Orbitrap mass spectrometry (MS) was applied to identify and characterize the metal-binding motifs and proteins. In total, 208 and 223 proteins were isolated by Co- and Ni-IMAC columns respectively, in which 129 proteins were present in both preparations. Based on the gene ontology (GO) analysis, the putative metal-binding proteins were found to be mainly involved in protein metabolism, gene expression regulation and carbohydrate metabolism. These putative metal-binding proteins form a highly connected network, indicating that they may synergistically work together to achieve specific biological functions. Putative Co- and Ni-binding motifs were identified with H(X)nH, M(X)nH and H(X)nM derived from the identified 51 Co-binding peptides and 66 Ni-binding peptides. Statistics of frequency of amino acids in the metal-binding motifs showed that cobalt and nickel prefer to bind histidine and methionine, but not cysteine. These results obtained by a systematic metalloproteomic approach provide important clues for the further investigation of metal homeostasis and metal-related virulence of bacteria.
Collapse
Affiliation(s)
- Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Degnan PH, Barry NA, Mok KC, Taga ME, Goodman AL. Human gut microbes use multiple transporters to distinguish vitamin B₁₂ analogs and compete in the gut. Cell Host Microbe 2014; 15:47-57. [PMID: 24439897 PMCID: PMC3923405 DOI: 10.1016/j.chom.2013.12.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/13/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022]
Abstract
Genomic and metagenomic sequencing efforts, including human microbiome projects, reveal that microbes often encode multiple systems that appear to accomplish the same task. Whether these predictions reflect actual functional redundancies is unclear. We report that the prominent human gut symbiont Bacteroides thetaiotaomicron employs three functional, homologous vitamin B₁₂ transporters that in at least two cases confer a competitive advantage in the presence of distinct B₁₂ analogs (corrinoids). In the mammalian gut, microbial fitness can be determined by the presence or absence of a single transporter. The total number of distinct corrinoid transporter families in the human gut microbiome likely exceeds those observed in B. thetaiotaomicron by an order of magnitude. These results demonstrate that human gut microbes use elaborate mechanisms to capture and differentiate corrinoids in vivo and that apparent redundancies observed in these genomes can instead reflect hidden specificities that determine whether a microbe will colonize its host.
Collapse
Affiliation(s)
- Patrick H Degnan
- Department of Microbial Pathogenesis and Microbial Diversity Institute, Yale University, New Haven, CT 06536, USA
| | - Natasha A Barry
- Department of Microbial Pathogenesis and Microbial Diversity Institute, Yale University, New Haven, CT 06536, USA
| | - Kenny C Mok
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michiko E Taga
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Diversity Institute, Yale University, New Haven, CT 06536, USA.
| |
Collapse
|
27
|
Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti. J Bacteriol 2013; 196:811-24. [PMID: 24317400 DOI: 10.1128/jb.01104-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toxin and antitoxin (TA) gene pairs are addiction systems that are present in many microbial genomes. Sinorhizobium meliloti is an N2-fixing bacterial symbiont of alfalfa and other leguminous plants, and its genome consists of three large replicons, a circular chromosome (3.7 Mb) and the megaplasmids pSymA (1.4 Mb) and pSymB (1.7 Mb). S. meliloti carries 211 predicted type II TA genes, each encoding a toxin or an antitoxin. We constructed defined deletion strains that collectively removed the entire pSymA and pSymB megaplasmids except for their oriV regions. Of approximately 100 TA genes on pSymA and pSymB, we identified four whose loss was associated with cell death or stasis unless copies of the genes were supplied in trans. Orthologs of three of these loci have been characterized in other organisms (relB/E [sma0471/sma0473], Fic [DOC] [sma2105], and VapC [PIN] [orf2230/sma2231]), and this report contains the first experimental proof that RES/Xre (smb21127/smb21128) loci can function as a TA system. Transcriptome sequencing (RNA-seq) analysis did not reveal transcriptional differences between the TA systems to account for why deletion of the four "active" systems resulted in cell toxicity. These data suggest that severe cell growth phenotypes result from the loss of a few TA systems and that loss of most TA systems may result in more subtle phenotypes. These four TA systems do not appear to play a direct role in the S. meliloti-alfalfa symbiosis, as strains lacking these TA systems had a symbiotic N2 fixation phenotype that was indistinguishable from the wild type.
Collapse
|
28
|
The tRNAarg gene and engA are essential genes on the 1.7-Mb pSymB megaplasmid of Sinorhizobium meliloti and were translocated together from the chromosome in an ancestral strain. J Bacteriol 2012; 195:202-12. [PMID: 23123907 DOI: 10.1128/jb.01758-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial genomes with two (or more) chromosome-like replicons are known, and these appear to be particularly frequent in alphaproteobacteria. The genome of the N(2)-fixing alfalfa symbiont Sinorhizobium meliloti 1021 contains a 3.7-Mb chromosome and 1.4-Mb (pSymA) and 1.7-Mb (pSymB) megaplasmids. In this study, the tRNA(arg) and engA genes, located on the pSymB megaplasmid, are shown to be essential for growth. These genes could be deleted from pSymB when copies were previously integrated into the chromosome. However, in the closely related strain Sinorhizobium fredii NGR234, the tRNA(arg) and engA genes are located on the chromosome, in a 69-kb region designated the engA-tRNA(arg)-rmlC region. This region includes bacA, a gene that is important for intracellular survival during host-bacterium interactions for S. meliloti and the related alphaproteobacterium Brucella abortus. The engA-tRNA(arg)-rmlC region lies between the kdgK and dppF2 (NGR_c24410) genes on the S. fredii chromosome. Synteny analysis showed that kdgK and dppF2 orthologues are adjacent to each other on the chromosomes of 15 sequenced strains of S. meliloti and Sinorhizobium medicae, whereas the 69-kb engA-tRNA(arg)-rmlC region is present on the pSymB-equivalent megaplasmids. This and other evidence strongly suggests that the engA-tRNA(arg)-rmlC region translocated from the chromosome to the progenitor of pSymB in an ancestor common to S. meliloti and S. medicae. To our knowledge, this work represents one of the first experimental demonstrations that essential genes are present on a megaplasmid.
Collapse
|
29
|
Swithers KS, Petrus AK, Secinaro MA, Nesbø CL, Gogarten JP, Noll KM, Butzin NC. Vitamin B(12) synthesis and salvage pathways were acquired by horizontal gene transfer to the Thermotogales. Genome Biol Evol 2012; 4:730-9. [PMID: 22798452 PMCID: PMC3509894 DOI: 10.1093/gbe/evs057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2012] [Indexed: 12/28/2022] Open
Abstract
The availability of genome sequences of Thermotogales species from across the order allows an examination of the evolutionary origins of phenotypic characteristics in this lineage. Several studies have shown that the Thermotogales have acquired large numbers of genes from distantly related lineages, particularly Firmicutes and Archaea. Here, we report the finding that some Thermotogales acquired the ability to synthesize vitamin B(12) by acquiring the requisite genes from these distant lineages. Thermosipho species, uniquely among the Thermotogales, contain genes that encode the means to synthesize vitamin B(12) de novo from glutamate. These genes are split into two gene clusters: the corrinoid synthesis gene cluster, that is unique to the Thermosipho and the cobinamide salvage gene cluster. The corrinoid synthesis cluster was acquired from the Firmicutes lineage, whereas the salvage pathway is an amalgam of bacteria- and archaea-derived proteins. The cobinamide salvage gene cluster has a patchy distribution among Thermotogales species, and ancestral state reconstruction suggests that this pathway was present in the common Thermotogales ancestor. We show that Thermosipho africanus can grow in the absence of vitamin B(12), so its de novo pathway is functional. We detected vitamin B(12) in the extracts of T. africanus cells to verify the synthetic pathway. Genes in T. africanus with apparent B(12) riboswitches were found to be down-regulated in the presence of vitamin B(12) consistent with their roles in B(12) synthesis and cobinamide salvage.
Collapse
Affiliation(s)
| | - Amanda K. Petrus
- Department of Molecular and Cell Biology, University of Connecticut
| | | | - Camilla L. Nesbø
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Blindern, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | - Kenneth M. Noll
- Department of Molecular and Cell Biology, University of Connecticut
| | | |
Collapse
|
30
|
Barras F, Fontecave M. Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance. Metallomics 2011; 3:1130-4. [DOI: 10.1039/c1mt00099c] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|