1
|
Buechel ER, Dimitrova VS, Karagiaridi A, Kenney LG, Pinkett HW. Structurally diverse C-terminal accessory domains in type I ABC importers reveal distinct regulatory mechanisms. Structure 2025; 33:843-857. [PMID: 40132581 PMCID: PMC12048282 DOI: 10.1016/j.str.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are critical for cellular processes, facilitating the transport of various substrates across membranes by harnessing ATP hydrolysis. These transporters are divided into importers and exporters, with importers playing key roles in nutrient uptake and bacterial virulence. Despite their therapeutic potential as drug targets, the regulatory mechanisms governing ABC importers remain poorly understood. ABC importers often possess additional cytosolic C-terminal accessory domains fused to nucleotide-binding domains (NBDs). These accessory domains, also referred to as C-terminal regulatory domains (CRDs), modulate transport activity by inhibiting NBD dimerization or ATP hydrolysis in response to environmental cues, thus regulating substrate transport. The diversity in CRD folds, architectures, and regulatory mechanisms adds additional complexity to transporter regulation. This review explores the current understanding of C-terminal accessory domains in type I ABC importers, highlighting their contributions to transporter function.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Valentina S Dimitrova
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Alexandra Karagiaridi
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Lydia G Kenney
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
2
|
Boes DM, Schmitz RA, Hagedoorn PL. Tungsten containing aldehyde oxidoreductase (AOR)-family enzymes; past, present and future production strategies. Methods Enzymol 2025; 714:313-336. [PMID: 40288844 DOI: 10.1016/bs.mie.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
The transition metals tungsten and molybdenum are the heaviest metals found in biological systems and are embedded in the cofactor of several metalloenzymes. As a result of their redox activity, they provide great catalytic power in these enzymes and facilitate chemical reactions that would not occur using only the functionalities of natural amino acids. For their functionality these enzymes depend on a metal cofactor, which consists of at least one metal binding pterin (MPT) and a tungsten or molybdenum ion, but the complete make-up of the cofactor differs per enzyme group. One of these enzyme groups comprises the AOR-family enzymes. These enzymes have the ability to oxidize a range of aldehyde substrates into their corresponding carboxylic acid products. Next to this, they are also the only known catalysts able to perform the thermodynamically challenging reduction reaction of carboxylic acids to aldehydes. These enzymes are currently obtained by purification from the hyperthermophilic archaeon Pyrococcus furiosus. This process, however, does not yield a large amount of enzyme, since it is naturally expressed at moderate levels. For that reason, other production methods need to be considered if the enzyme is to be used on a large scale. These alternatives include the use of a recombinant expression system. The recombinant expression of W-dependent enzymes in different host organisms, such as Escherichia coli, has already been attempted for different enzymes, but with varying success. This shows that more research on the production, and especially incorporation of the metal cofactor, is necessary to achieve a successful production and use of recombinant AOR-family enzymes.
Collapse
Affiliation(s)
- Deborah M Boes
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, NL-2629HZ Delft, Netherlands
| | - Rob A Schmitz
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, NL-2629HZ Delft, Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, NL-2629HZ Delft, Netherlands.
| |
Collapse
|
3
|
Jung H, Jiang V, Su Z, Inaba Y, Khoury FF, Banta S. Overexpression of a Designed Mutant Oxyanion Binding Protein ModA/WtpA in Acidithiobacillus ferrooxidans for the Low pH Recovery of Molybdenum and Rhenium. JACS AU 2024; 4:2957-2965. [PMID: 39211588 PMCID: PMC11350598 DOI: 10.1021/jacsau.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 09/04/2024]
Abstract
Molybdenum and rhenium are critically important metals for a number of emerging technologies. We identified and characterized a molybdenum/tungsten transport protein (ModA/WtpA) of Acidithiobacillus ferrooxidans and demonstrated the binding of tungstate, molybdate, and chromate. We used computational design to expand the binding capabilities of the protein to include perrhenate. A disulfide bond was engineered into the binding pocket of ModA/WtpA to introduce a more favorable geometric coordination and surface charge distribution for oxyanion binding. The mutant protein experimentally demonstrated a 2-fold higher binding affinity for molybdate and 6-fold higher affinity for perrhenate. The overexpression of the wild-type and mutant ModA/WtpA proteins in A. ferrooxidans cells enhanced the innate tungstate, molybdate, and chromate binding capacities of the cells to up to 2-fold higher. In addition, the engineered cells expressing the mutant protein exhibited enhanced perrhenate binding, showing 5-fold and 2-fold higher binding capacities compared to the wild-type and ModA/WtpA-overexpressing cells, respectively. Furthermore, the engineered cell lines enhanced biocorrosion of stainless steel as well as the recovered valuable metals from an acidic wastewater generated from molybdenite processing. The improved binding efficiency for the oxyanion metals, along with the high selectivity over nontargeted metals under mixed metal environments, highlights the potential value of the engineered strains for practical microbial metal reclamation under low pH conditions.
Collapse
Affiliation(s)
- Heejung Jung
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New
York, New York 10027, United States
| | - Virginia Jiang
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New
York, New York 10027, United States
| | - Zihang Su
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New
York, New York 10027, United States
| | - Yuta Inaba
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New
York, New York 10027, United States
| | - Farid F. Khoury
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New
York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New
York, New York 10027, United States
| |
Collapse
|
4
|
Hagen WR. The Development of Tungsten Biochemistry-A Personal Recollection. Molecules 2023; 28:molecules28104017. [PMID: 37241758 DOI: 10.3390/molecules28104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The development of tungsten biochemistry is sketched from the viewpoint of personal participation. Following its identification as a bio-element, a catalogue of genes, enzymes, and reactions was built up. EPR spectroscopic monitoring of redox states was, and remains, a prominent tool in attempts to understand tungstopterin-based catalysis. A paucity of pre-steady-state data remains a hindrance to overcome to this day. Tungstate transport systems have been characterized and found to be very specific for W over Mo. Additional selectivity is presented by the biosynthetic machinery for tungstopterin enzymes. Metallomics analysis of hyperthermophilic archaeon Pyrococcus furiosus indicates a comprehensive inventory of tungsten proteins.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Building 58, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
5
|
Mayr SJ, Mendel RR, Schwarz G. Molybdenum cofactor biology, evolution and deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118883. [PMID: 33017596 DOI: 10.1016/j.bbamcr.2020.118883] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
The molybdenum cofactor (Moco) represents an ancient metal‑sulfur cofactor, which participates as catalyst in carbon, nitrogen and sulfur cycles, both on individual and global scale. Given the diversity of biological processes dependent on Moco and their evolutionary age, Moco is traced back to the last universal common ancestor (LUCA), while Moco biosynthetic genes underwent significant changes through evolution and acquired additional functions. In this review, focused on eukaryotic Moco biology, we elucidate the benefits of gene fusions on Moco biosynthesis and beyond. While originally the gene fusions were driven by biosynthetic advantages such as coordinated expression of functionally related proteins and product/substrate channeling, they also served as origin for the development of novel functions. Today, Moco biosynthetic genes are involved in a multitude of cellular processes and loss of the according gene products result in severe disorders, both related to Moco biosynthesis and secondary enzyme functions.
Collapse
Affiliation(s)
- Simon J Mayr
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zuelpicher Str. 47, 50674 Koeln, Germany
| | - Ralf-R Mendel
- Institute of Plant Biology, Braunschweig University of Technology, Humboldtstr. 1, 38106 Braunschweig, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zuelpicher Str. 47, 50674 Koeln, Germany.
| |
Collapse
|
6
|
Coimbra C, Branco R, Morais PV. Efficient bioaccumulation of tungsten by Escherichia coli cells expressing the Sulfitobacter dubius TupBCA system. Syst Appl Microbiol 2019; 42:126001. [PMID: 31326140 DOI: 10.1016/j.syapm.2019.126001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 01/30/2023]
Abstract
Tungsten (W) is a valuable element with considerable industrial and economic importance that belongs to the European Union list of critical metals with a high supply risk. Therefore, the development of effective and new methods for W recovery is essential to ensure a sustainable supply. In the present study, the Sulfitobacter dubius W transport system TupABC was explored in order to demonstrate both its functionality in Escherichia coli cells and to construct a bioaccumulator (EcotupW). The complete gene cluster tupBCA or partial gene cluster tupBC were cloned in an expression vector and transformed into E. coli. Metal accumulation was evaluated when each construct strain was grown with three separate metal oxyanions (tungstate, molybdate or chromate). The specificity of the bioaccumulator was determined by competition assays using cells grown with mixed solutions of metal oxyanions (W/Mo and W/Cr). The results showed the relevance of the TupA protein in the TupABC transporter system to W-uptake and also allowed Mo and Cr accumulations, although with amounts 1.7 and 2.9-fold lower than W, respectively. To identify the importance of the valine residue in the accumulation efficiency of the VTTS motif, site-directed mutagenesis of tupA was performed. A mutant with a threonine residue, instead of the respective valine, confirmed that W was internalized by nearly double the amount compared to the native form. The findings indicated that cells carrying the native S. dubius TupABC system were great W-bioaccumulators and could be promising tools for W recovery.
Collapse
Affiliation(s)
- C Coimbra
- CEMMPRE - Center of Mechanical Engineering, Materials and Processes, University of Coimbra, Coimbra, 3030-788, Portugal
| | - R Branco
- CEMMPRE - Center of Mechanical Engineering, Materials and Processes, University of Coimbra, Coimbra, 3030-788, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, 3001-401, Portugal.
| | - P V Morais
- CEMMPRE - Center of Mechanical Engineering, Materials and Processes, University of Coimbra, Coimbra, 3030-788, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, 3001-401, Portugal
| |
Collapse
|
7
|
Otrelo-Cardoso AR, Nair RR, Correia MAS, Cordeiro RSC, Panjkovich A, Svergun DI, Santos-Silva T, Rivas MG. Highly selective tungstate transporter protein TupA from Desulfovibrio alaskensis G20. Sci Rep 2017; 7:5798. [PMID: 28724964 PMCID: PMC5517513 DOI: 10.1038/s41598-017-06133-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/25/2017] [Indexed: 12/22/2022] Open
Abstract
Molybdenum and tungsten are taken up by bacteria and archaea as their soluble oxyanions through high affinity transport systems belonging to the ATP-binding cassette (ABC) transporters. The component A (ModA/TupA) of these transporters is the first selection gate from which the cell differentiates between MoO42−, WO42− and other similar oxyanions. We report the biochemical characterization and the crystal structure of the apo-TupA from Desulfovibrio desulfuricans G20, at 1.4 Å resolution. Small Angle X-ray Scattering data suggests that the protein adopts a closed and more stable conformation upon ion binding. The role of the arginine 118 in the selectivity of the oxyanion was also investigated and three mutants were constructed: R118K, R118E and R118Q. Isothermal titration calorimetry clearly shows the relevance of this residue for metal discrimination and oxyanion binding. In this sense, the three variants lost the ability to coordinate molybdate and the R118K mutant keeps an extremely high affinity for tungstate. These results contribute to an understanding of the metal-protein interaction, making it a suitable candidate for a recognition element of a biosensor for tungsten detection.
Collapse
Affiliation(s)
- Ana Rita Otrelo-Cardoso
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Rashmi R Nair
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Márcia A S Correia
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Raquel S Correia Cordeiro
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.,Ruhr-Universität Bochum, Universitätsstraße, 150/44780, Bochum, Germany
| | - Alejandro Panjkovich
- European Molecular Biology Laboratory-Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory-Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Teresa Santos-Silva
- UCIBIO/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | - Maria G Rivas
- Department of Physics, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina.
| |
Collapse
|
8
|
Tejada-Jiménez M, Schwarz G. Molybdenum and Tungsten. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for the majority of organisms ranging from bacteria to animals. To fulfil its biological role, it is incorporated into a pterin-based Mo-cofactor (Moco) and can be found in the active centre of more than 50 enzymes that are involved in key reactions of carbon, nitrogen and sulfur metabolism. Five of the Mo-enzymes are present in eukaryotes: nitrate reductase (NR), sulfite oxidase (SO), aldehyde oxidase (AO), xanthine oxidase (XO) and the amidoxime-reducing component (mARC). Cells acquire Mo in form of the oxyanion molybdate using specific molybdate transporters. In bacteria, molybdate transport is an extensively studied process and is mediated mainly by the ATP-binding cassette system ModABC. In contrast, in eukaryotes, molybdate transport is poorly understood since specific molybdate transporters remained unknown until recently. Two rather distantly related families of proteins, MOT1 and MOT2, are involved in eukaryotic molybdate transport. They each feature high-affinity molybdate transporters that regulate the intracellular concentration of Mo and thus control activity of Mo-enzymes. The present chapter presents an overview of the biological functions of Mo with special focus on recent data related to its uptake, binding and storage.
Collapse
Affiliation(s)
- Manuel Tejada-Jiménez
- Institute of Biochemistry, Department of Chemistry, University of Cologne Zuelpicher Str. 47 Cologne 50674 Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne Zuelpicher Str. 47 Cologne 50674 Germany
- Center for Molecular Medicine Cologne, University of Cologne Robert-Koch Str. 21 Cologne 50931 Germany
- Cluster of Excellence in Ageing Research, CECAD Research Center Joseph-Stelzmann-Str. 26 Cologne 50931 Germany
| |
Collapse
|
9
|
TupA: a tungstate binding protein in the periplasm of Desulfovibrio alaskensis G20. Int J Mol Sci 2014; 15:11783-98. [PMID: 24992597 PMCID: PMC4139814 DOI: 10.3390/ijms150711783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 11/17/2022] Open
Abstract
The TupABC system is involved in the cellular uptake of tungsten and belongs to the ABC (ATP binding cassette)-type transporter systems. The TupA component is a periplasmic protein that binds tungstate anions, which are then transported through the membrane by the TupB component using ATP hydrolysis as the energy source (the reaction catalyzed by the ModC component). We report the heterologous expression, purification, determination of affinity binding constants and crystallization of the Desulfovibrio alaskensis G20 TupA. The tupA gene (locus tag Dde_0234) was cloned in the pET46 Enterokinase/Ligation-Independent Cloning (LIC) expression vector, and the construct was used to transform BL21 (DE3) cells. TupA expression and purification were optimized to a final yield of 10 mg of soluble pure protein per liter of culture medium. Native polyacrylamide gel electrophoresis was carried out showing that TupA binds both tungstate and molybdate ions and has no significant interaction with sulfate, phosphate or perchlorate. Quantitative analysis of metal binding by isothermal titration calorimetry was in agreement with these results, but in addition, shows that TupA has higher affinity to tungstate than molybdate. The protein crystallizes in the presence of 30% (w/v) polyethylene glycol 3350 using the hanging-drop vapor diffusion method. The crystals diffract X-rays beyond 1.4 Å resolution and belong to the P21 space group, with cell parameters a = 52.25 Å, b = 42.50 Å, c = 54.71 Å, β = 95.43°. A molecular replacement solution was found, and the structure is currently under refinement.
Collapse
|
10
|
Gonzalez PJ, Rivas MG, Mota CS, Brondino CD, Moura I, Moura JJ. Periplasmic nitrate reductases and formate dehydrogenases: Biological control of the chemical properties of Mo and W for fine tuning of reactivity, substrate specificity and metabolic role. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|