1
|
Liu Z, Jiang W, Kim C, Peng X, Fan C, Wu Y, Xie Z, Peng F. A Pseudomonas Lysogenic Bacteriophage Crossing the Antarctic and Arctic, Representing a New Genus of Autographiviridae. Int J Mol Sci 2023; 24:ijms24087662. [PMID: 37108829 PMCID: PMC10142737 DOI: 10.3390/ijms24087662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Polar regions tend to support simple food webs, which are vulnerable to phage-induced gene transfer or microbial death. To further investigate phage-host interactions in polar regions and the potential linkage of phage communities between the two poles, we induced the release of a lysogenic phage, vB_PaeM-G11, from Pseudomonas sp. D3 isolated from the Antarctic, which formed clear phage plaques on the lawn of Pseudomonas sp. G11 isolated from the Arctic. From permafrost metagenomic data of the Arctic tundra, we found the genome with high-similarity to that of vB_PaeM-G11, demonstrating that vB_PaeM-G11 may have a distribution in both the Antarctic and Arctic. Phylogenetic analysis indicated that vB_PaeM-G11 is homologous to five uncultured viruses, and that they may represent a new genus in the Autographiviridae family, named Fildesvirus here. vB_PaeM-G11 was stable in a temperature range (4-40 °C) and pH (4-11), with latent and rise periods of about 40 and 10 min, respectively. This study is the first isolation and characterization study of a Pseudomonas phage distributed in both the Antarctic and Arctic, identifying its lysogenic host and lysis host, and thus provides essential information for further understanding the interaction between polar phages and their hosts and the ecological functions of phages in polar regions.
Collapse
Affiliation(s)
- Zhenyu Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenhui Jiang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cholsong Kim
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoya Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cong Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhixiong Xie
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Melkina OE, Zavilgelsky GB. N-Domain of ArdA Antirestriction Proteins Inhibits the Repression Activity of the Histone-Like H-NS Protein. Mol Biol 2021. [DOI: 10.1134/s0026893321020266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Bdira FB, Erkelens AM, Qin L, Volkov AN, Lippa A, Bowring N, Boyle A, Ubbink M, Dove S, Dame R. Novel anti-repression mechanism of H-NS proteins by a phage protein. Nucleic Acids Res 2021; 49:10770-10784. [PMID: 34520554 PMCID: PMC8501957 DOI: 10.1093/nar/gkab793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amanda M Erkelens
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Liang Qin
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alexander N Volkov
- VIB-VUB Structural Biology Research Center, Pleinlaan 2, 1050 Brussels, Belgium
- Jean Jeener NMR Centre, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Andrew M Lippa
- Boston Children's Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Bowring
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Aimee L Boyle
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marcellus Ubbink
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Simon L Dove
- Boston Children's Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, MA 02115, USA
| | - Remus T Dame
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
4
|
Son B, Patterson-West J, Arroyo-Mendoza M, Ramachandran R, Iben J, Zhu J, Rao V, Dimitriadis E, Hinton D. A phage-encoded nucleoid associated protein compacts both host and phage DNA and derepresses H-NS silencing. Nucleic Acids Res 2021; 49:9229-9245. [PMID: 34365505 PMCID: PMC8450097 DOI: 10.1093/nar/gkab678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 07/20/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022] Open
Abstract
Nucleoid Associated Proteins (NAPs) organize the bacterial chromosome within the nucleoid. The interaction of the NAP H-NS with DNA also represses specific host and xenogeneic genes. Previously, we showed that the bacteriophage T4 early protein MotB binds to DNA, co-purifies with H-NS/DNA, and improves phage fitness. Here we demonstrate using atomic force microscopy that MotB compacts the DNA with multiple MotB proteins at the center of the complex. These complexes differ from those observed with H-NS and other NAPs, but resemble those formed by the NAP-like proteins CbpA/Dps and yeast condensin. Fluorescent microscopy indicates that expression of motB in vivo, at levels like that during T4 infection, yields a significantly compacted nucleoid containing MotB and H-NS. motB overexpression dysregulates hundreds of host genes; ∼70% are within the hns regulon. In infected cells overexpressing motB, 33 T4 late genes are expressed early, and the T4 early gene repEB, involved in replication initiation, is up ∼5-fold. We postulate that MotB represents a phage-encoded NAP that aids infection in a previously unrecognized way. We speculate that MotB-induced compaction may generate more room for T4 replication/assembly and/or leads to beneficial global changes in host gene expression, including derepression of much of the hns regulon.
Collapse
Affiliation(s)
- Bokyung Son
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Patterson-West
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James R Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jingen Zhu
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Venigalla Rao
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Emilios K Dimitriadis
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Patterson-West J, Tai CH, Son B, Hsieh ML, Iben JR, Hinton DM. Overexpression of the Bacteriophage T4 motB Gene Alters H-NS Dependent Repression of Specific Host DNA. Viruses 2021; 13:v13010084. [PMID: 33435393 PMCID: PMC7827196 DOI: 10.3390/v13010084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
The bacteriophage T4 early gene product MotB binds tightly but nonspecifically to DNA, copurifies with the host Nucleoid Associated Protein (NAP) H-NS in the presence of DNA and improves T4 fitness. However, the T4 transcriptome is not significantly affected by a motB knockdown. Here we have investigated the phylogeny of MotB and its predicted domains, how MotB and H-NS together interact with DNA, and how heterologous overexpression of motB impacts host gene expression. We find that motB is highly conserved among Tevenvirinae. Although the MotB sequence has no homology to proteins of known function, predicted structure homology searches suggest that MotB is composed of an N-terminal Kyprides-Onzonis-Woese (KOW) motif and a C-terminal DNA-binding domain of oligonucleotide/oligosaccharide (OB)-fold; either of which could provide MotB’s ability to bind DNA. DNase I footprinting demonstrates that MotB dramatically alters the interaction of H-NS with DNA in vitro. RNA-seq analyses indicate that expression of plasmid-borne motB up-regulates 75 host genes; no host genes are down-regulated. Approximately 1/3 of the up-regulated genes have previously been shown to be part of the H-NS regulon. Our results indicate that MotB provides a conserved function for Tevenvirinae and suggest a model in which MotB functions to alter the host transcriptome, possibly by changing the association of H-NS with the host DNA, which then leads to conditions that are more favorable for infection.
Collapse
Affiliation(s)
- Jennifer Patterson-West
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.P.-W.); (B.S.); (M.-L.H.)
| | - Chin-Hsien Tai
- Center for Cancer Research, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Bokyung Son
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.P.-W.); (B.S.); (M.-L.H.)
| | - Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.P.-W.); (B.S.); (M.-L.H.)
| | - James R. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.P.-W.); (B.S.); (M.-L.H.)
- Correspondence: ; Tel.: +1-301-496-9885
| |
Collapse
|
6
|
Jiao J, Tian CF. Ancestral zinc-finger bearing protein MucR in alpha-proteobacteria: A novel xenogeneic silencer? Comput Struct Biotechnol J 2020; 18:3623-3631. [PMID: 33304460 PMCID: PMC7710501 DOI: 10.1016/j.csbj.2020.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
The MucR/Ros family protein is conserved in alpha-proteobacteria and characterized by its zinc-finger motif that has been proposed as the ancestral domain from which the eukaryotic C2H2 zinc-finger structure evolved. In the past decades, accumulated evidences have revealed MucR as a pleiotropic transcriptional regulator that integrating multiple functions such as virulence, symbiosis, cell cycle and various physiological processes. Scattered reports indicate that MucR mainly acts as a repressor, through oligomerization and binding to multiple sites of AT-rich target promoters. The N-terminal region and zinc-finger bearing C-terminal region of MucR mediate oligomerization and DNA-binding, respectively. These features are convergent to those of xenogeneic silencers such as H-NS, MvaT, Lsr2 and Rok, which are mainly found in other lineages. Phylogenetic analysis of MucR homologs suggests an ancestral origin of MucR in alpha- and delta-proteobacteria. Multiple independent duplication and lateral gene transfer events contribute to the diversity and phyletic distribution of MucR. Finally, we posed questions which remain unexplored regarding the putative roles of MucR as a xenogeneic silencer and a general manager in balancing adaptation and regulatory integration in the pangenome context.
Collapse
Affiliation(s)
- Jian Jiao
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China.,MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China.,MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
A bacteriophage mimic of the bacterial nucleoid-associated protein Fis. Biochem J 2020; 477:1345-1362. [PMID: 32207815 PMCID: PMC7166090 DOI: 10.1042/bcj20200146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 11/17/2022]
Abstract
We report the identification and characterization of a bacteriophage λ-encoded protein, NinH. Sequence homology suggests similarity between NinH and Fis, a bacterial nucleoid-associated protein (NAP) involved in numerous DNA topology manipulations, including chromosome condensation, transcriptional regulation and phage site-specific recombination. We find that NinH functions as a homodimer and is able to bind and bend double-stranded DNA in vitro. Furthermore, NinH shows a preference for a 15 bp signature sequence related to the degenerate consensus favored by Fis. Structural studies reinforced the proposed similarity to Fis and supported the identification of residues involved in DNA binding which were demonstrated experimentally. Overexpression of NinH proved toxic and this correlated with its capacity to associate with DNA. NinH is the first example of a phage-encoded Fis-like NAP that likely influences phage excision-integration reactions or bacterial gene expression.
Collapse
|
8
|
McDougall DL, Soutar CD, Perry BJ, Brown C, Alexander D, Yost CK, Stavrinides J. Isolation and Characterization of vB_PagP-SK1, a T7-Like Phage Infecting Pantoea agglomerans. ACTA ACUST UNITED AC 2020; 1:45-56. [DOI: 10.1089/phage.2019.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Craig D. Soutar
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Benjamin J. Perry
- Department of Microbiology and Immunology, University of Otago, North Dunedin, New Zealand
| | - Cheryl Brown
- Roy Romanow Provincial Laboratory, Regina, Saskatchewan, Canada
| | | | | | - John Stavrinides
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
9
|
Qin L, Erkelens AM, Ben Bdira F, Dame RT. The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biol 2019; 9:190223. [PMID: 31795918 PMCID: PMC6936261 DOI: 10.1098/rsob.190223] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Every organism across the tree of life compacts and organizes its genome with architectural chromatin proteins. While eukaryotes and archaea express histone proteins, the organization of bacterial chromosomes is dependent on nucleoid-associated proteins. In Escherichia coli and other proteobacteria, the histone-like nucleoid structuring protein (H-NS) acts as a global genome organizer and gene regulator. Functional analogues of H-NS have been found in other bacterial species: MvaT in Pseudomonas species, Lsr2 in actinomycetes and Rok in Bacillus species. These proteins complement hns- phenotypes and have similar DNA-binding properties, despite their lack of sequence homology. In this review, we focus on the structural and functional characteristics of these four architectural proteins. They are able to bridge DNA duplexes, which is key to genome compaction, gene regulation and their response to changing conditions in the environment. Structurally the domain organization and charge distribution of these proteins are conserved, which we suggest is at the basis of their conserved environment responsive behaviour. These observations could be used to find and validate new members of this protein family and to predict their response to environmental changes.
Collapse
Affiliation(s)
- L. Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. M. Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - F. Ben Bdira
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - R. T. Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
10
|
Pfeifer E, Hünnefeld M, Popa O, Frunzke J. Impact of Xenogeneic Silencing on Phage-Host Interactions. J Mol Biol 2019; 431:4670-4683. [PMID: 30796986 PMCID: PMC6925973 DOI: 10.1016/j.jmb.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
Phages, viruses that prey on bacteria, are the most abundant and diverse inhabitants of the Earth. Temperate bacteriophages can integrate into the host genome and, as so-called prophages, maintain a long-term association with their host. The close relationship between host and virus has significantly shaped microbial evolution and phage elements may benefit their host by providing new functions. Nevertheless, the strong activity of phage promoters and potentially toxic gene products may impose a severe fitness burden and must be tightly controlled. In this context, xenogeneic silencing (XS) proteins, which can recognize foreign DNA elements, play an important role in the acquisition of novel genetic information and facilitate the evolution of regulatory networks. Currently known XS proteins fall into four classes (H-NS, MvaT, Rok and Lsr2) and have been shown to follow a similar mode of action by binding to AT-rich DNA and forming an oligomeric nucleoprotein complex that silences gene expression. In this review, we focus on the role of XS proteins in phage-host interactions by highlighting the important function of XS proteins in maintaining the lysogenic state and by providing examples of how phages fight back by encoding inhibitory proteins that disrupt XS functions in the host. Sequence analysis of available phage genomes revealed the presence of genes encoding Lsr2-type proteins in the genomes of phages infecting Actinobacteria. These data provide an interesting perspective for future studies to elucidate the impact of phage-encoded XS homologs on the phage life cycle and phage-host interactions.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany.
| | - Max Hünnefeld
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Ovidiu Popa
- Heinrich Heine Universität Düsseldorf, Institute for Quantitative and Theoretical Biology, 40223 Düsseldorf, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany.
| |
Collapse
|
11
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
12
|
Patterson-West J, Arroyo-Mendoza M, Hsieh ML, Harrison D, Walker MM, Knipling L, Hinton DM. The Bacteriophage T4 MotB Protein, a DNA-Binding Protein, Improves Phage Fitness. Viruses 2018; 10:v10070343. [PMID: 29949907 PMCID: PMC6070864 DOI: 10.3390/v10070343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 01/21/2023] Open
Abstract
The lytic bacteriophage T4 employs multiple phage-encoded early proteins to takeover the Escherichia coli host. However, the functions of many of these proteins are not known. In this study, we have characterized the T4 early gene motB, located in a dispensable region of the T4 genome. We show that heterologous production of MotB is highly toxic to E. coli, resulting in cell death or growth arrest depending on the strain and that the presence of motB increases T4 burst size 2-fold. Previous work suggested that motB affects middle gene expression, but our transcriptome analyses of T4 motBam vs. T4 wt infections reveal that only a few late genes are mildly impaired at 5 min post-infection, and expression of early and middle genes is unaffected. We find that MotB is a DNA-binding protein that binds both unmodified host and T4 modified [(glucosylated, hydroxymethylated-5 cytosine, (GHme-C)] DNA with no detectable sequence specificity. Interestingly, MotB copurifies with the host histone-like proteins, H-NS and StpA, either directly or through cobinding to DNA. We show that H-NS also binds modified T4 DNA and speculate that MotB may alter how H-NS interacts with T4 DNA, host DNA, or both, thereby improving the growth of the phage.
Collapse
Affiliation(s)
- Jennifer Patterson-West
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Melissa Arroyo-Mendoza
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Danielle Harrison
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Morgan M Walker
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
13
|
The E. coli Global Regulator DksA Reduces Transcription during T4 Infection. Viruses 2018; 10:v10060308. [PMID: 29882792 PMCID: PMC6024815 DOI: 10.3390/v10060308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/16/2023] Open
Abstract
Bacteriophage T4 relies on host RNA polymerase to transcribe three promoter classes: early (Pe, requires no viral factors), middle (Pm, requires early proteins MotA and AsiA), and late (Pl, requires middle proteins gp55, gp33, and gp45). Using primer extension, RNA-seq, RT-qPCR, single bursts, and a semi-automated method to document plaque size, we investigated how deletion of DksA or ppGpp, two E. coli global transcription regulators, affects T4 infection. Both ppGpp⁰ and ΔdksA increase T4 wild type (wt) plaque size. However, ppGpp⁰ does not significantly alter burst size or latent period, and only modestly affects T4 transcript abundance, while ΔdksA increases burst size (2-fold) without affecting latent period and increases the levels of several Pe transcripts at 5 min post-infection. In a T4motAam infection, ΔdksA increases plaque size and shortens latent period, and the levels of specific middle RNAs increase due to more transcription from Pe’s that extend into these middle genes. We conclude that DksA lowers T4 early gene expression. Consequently, ΔdksA results in a more productive wt infection and ameliorates the poor expression of middle genes in a T4motAam infection. As DksA does not inhibit Pe transcription in vitro, regulation may be indirect or perhaps requires additional factors.
Collapse
|
14
|
Santiago AE, Yan MB, Hazen TH, Sauder B, Meza-Segura M, Rasko DA, Kendall MM, Ruiz-Perez F, Nataro JP. The AraC Negative Regulator family modulates the activity of histone-like proteins in pathogenic bacteria. PLoS Pathog 2017; 13:e1006545. [PMID: 28806780 PMCID: PMC5570504 DOI: 10.1371/journal.ppat.1006545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/24/2017] [Accepted: 07/20/2017] [Indexed: 02/04/2023] Open
Abstract
The AraC Negative Regulators (ANR) comprise a large family of virulence regulators distributed among diverse clinically important Gram-negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., and pathogenic E. coli strains. We have previously reported broad effects of the ANR members on regulators of the AraC/XylS family. Here, we interrogate possible broader effects of the ANR members on the bacterial transcriptome. Our studies focused on Aar (AggR-activated regulator), an ANR family archetype in enteroaggregative E. coli (EAEC) isolate 042. Transcriptome analysis of EAEC strain 042, 042aar and 042aar(pAar) identified more than 200 genes that were differentially expressed (+/- 1.5 fold, p<0.05). Most of those genes are located on the bacterial chromosome (195 genes, 92.85%), and are associated with regulation, transport, metabolism, and pathogenesis, based on the predicted annotation; a considerable number of Aar-regulated genes encoded for hypothetical proteins (46 genes, 21.9%) and regulatory proteins (25, 11.9%). Notably, the transcriptional expression of three histone-like regulators, H-NS (orf1292), H-NS homolog (orf2834) and StpA, was down-regulated in the absence of aar and may explain some of the effects of Aar on gene expression. By employing a bacterial two-hybrid system, LacZ reporter assays, pull-down and electrophoretic mobility shift assay (EMSA) analysis, we demonstrated that Aar binds directly to H-NS and modulates H-NS-induced gene silencing. Importantly, Aar was highly expressed in the mouse intestinal tract and was found to be necessary for maximal H-NS expression. In conclusion, this work further extends our knowledge of genes under the control of Aar and its biological relevance in vivo. The AraC Negative Regulators (ANR) is a large family of negative regulators distributed in several clinically relevant Gram-negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., pathogenic E. coli, and members of the Pasteurellaceae. Previously, we showed that the ANR family suppresses transcriptional expression of virulence factors such as fimbriae, toxins, and the type VI secretion system by directly down-regulating AraC/XylS master regulators. Transcriptome and biochemical analysis of Aar (AggR-activated regulator), an ANR family archetype in enteroaggregative E. coli (EAEC) 042, demonstrated that Aar binds directly to H-NS and modulates the H-NS-induced gene expression. Accordingly, mutation of aar decreased expression of the H-NS-regulated Lpf fimbriae, LPS-related enzymes, GadXW operon and porins. Importantly, Aar was highly expressed in the mouse intestinal tract and was found to be necessary for maximal H-NS expression. These findings unveil an exquisite regulatory network in pathogenic bacteria, which operates by concomitant control of master transcriptional regulators of the AraC family and global negative H-NS regulators.
Collapse
Affiliation(s)
- Araceli E. Santiago
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| | - Michael B. Yan
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Tracy H. Hazen
- Institute for Genome Sciences, Department of Microbiology and Immunology. University of Maryland, Baltimore, Maryland, United States of America
| | - Brooke Sauder
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mario Meza-Segura
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - David A. Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology. University of Maryland, Baltimore, Maryland, United States of America
| | - Melissa M. Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - James P. Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|
15
|
Ramisetty SK, Langlete P, Lale R, Dias RS. In vitro studies of DNA condensation by bridging protein in a crowding environment. Int J Biol Macromol 2017; 103:845-853. [PMID: 28536019 DOI: 10.1016/j.ijbiomac.2017.05.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/02/2017] [Accepted: 05/15/2017] [Indexed: 11/15/2022]
Abstract
The macromolecules of the bacterial cell occupy 20-40% of the total cytosol volume, and crowded environments have long been known to compact and stabilize DNA. Nevertheless, investigations on DNA-protein binding are generally performed in the absence of crowding, which may yield an incomplete understanding of how nucleoid-assembling proteins work. A family of such proteins, abundant in Gram-negative bacteria, is the histone-like nucleoid structuring proteins (H-NS). Herein, the synergistic role of macromolecular crowding (mimicked using polyethylene glycol, PEG) and H-NS was investigated using fluorescence correlation spectroscopy (FCS) and enzyme protection assays. We show that crowding enhances the binding of H-NS to the AT-rich tracks of the DNA, where it preferentially binds to, protecting these tracks towards enzyme digestion, inducing some DNA condensation, and inhibiting the biological function of DNA. We further suggest that the looping of DNA chains, induced by H-NS, contributes to the synergistic effect of DNA-binding protein and crowding agents, on DNA condensation.
Collapse
Affiliation(s)
- Sravani K Ramisetty
- Biophysics and Medical Technology, Department of Physics, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Petter Langlete
- Biophysics and Medical Technology, Department of Physics, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Rahmi Lale
- Department of Biotechnology, PhotoSynLab, Faculty of Natural Sciences and Technology, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Rita S Dias
- Biophysics and Medical Technology, Department of Physics, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
16
|
Abstract
The H-NS family of DNA-binding proteins is the subject of intense study due to its important roles in the regulation of horizontally acquired genes critical for virulence, antibiotic resistance, and metabolism. Xenogeneic silencing proteins, typified by the H-NS protein of Escherichia coli, specifically target and downregulate expression from AT-rich genes by selectively recognizing specific structural features unique to the AT-rich minor groove. In doing so, these proteins facilitate bacterial evolution; enabling these cells to engage in horizontal gene transfer while buffering potential any detrimental fitness consequences that may result from it. Xenogeneic silencing and counter-silencing explain how bacterial cells can evolve effective gene regulatory strategies in the face of rampant gene gain and loss and it has extended our understanding of bacterial gene regulation beyond the classic operon model. Here we review the structures and mechanisms of xenogeneic silencers as well as their impact on bacterial evolution. Several H-NS-like proteins appear to play a role in facilitating gene transfer by other mechanisms including by regulating transposition, conjugation, and participating in the activation of virulence loci like the locus of enterocyte effacement pathogenicity island of pathogenic strains of E. coli. Evidence suggests that the critical determinants that dictate whether an H-NS-like protein will be a silencer or will perform a different function do not lie in the DNA-binding domain but, rather, in the domains that control oligomerization. This suggests that H-NS-like proteins are transcription factors that both recognize and alter the shape of DNA to exert specific effects that include but are not limited to gene silencing.
Collapse
|
17
|
Winardhi RS, Yan J, Kenney LJ. H-NS Regulates Gene Expression and Compacts the Nucleoid: Insights from Single-Molecule Experiments. Biophys J 2016; 109:1321-9. [PMID: 26445432 DOI: 10.1016/j.bpj.2015.08.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022] Open
Abstract
A set of abundant nucleoid-associated proteins (NAPs) play key functions in organizing the bacterial chromosome and regulating gene transcription globally. Histone-like nucleoid structuring protein (H-NS) is representative of a family of NAPs that are widespread across bacterial species. They have drawn extensive attention due to their crucial function in gene silencing in bacterial pathogens. Recent rapid progress in single-molecule manipulation and imaging technologies has made it possible to directly probe DNA binding by H-NS, its impact on DNA conformation and topology, and its competition with other DNA-binding proteins at the single-DNA-molecule level. Here, we review recent findings from such studies, and provide our views on how these findings yield new insights into the understanding of the roles of H-NS family members in DNA organization and gene silencing.
Collapse
Affiliation(s)
- Ricksen S Winardhi
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physics, National University of Singapore, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physics, National University of Singapore, Singapore.
| | - Linda J Kenney
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
18
|
Chen M, Xu J, Yao H, Lu C, Zhang W. Isolation, genome sequencing and functional analysis of two T7-like coliphages of avian pathogenic Escherichia coli. Gene 2016; 582:47-58. [PMID: 26828615 DOI: 10.1016/j.gene.2016.01.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/09/2016] [Accepted: 01/28/2016] [Indexed: 01/21/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which results in significant economic losses to the poultry industry worldwide. Due to the drug residues and increased antibiotic resistance caused by antibiotic use, bacteriophages and other alternative therapeutic agents are expected to control APEC infection in poultry. Two APEC phages, named P483 and P694, were isolated from the feces from the farmers market in China. We then studied their biological properties, and carried out high-throughput genome sequencing and homology analyses of these phages. Assembly results of high-throughput sequencing showed that the structures of both P483 and P694 genomes consist of linear and double-stranded DNA. Results of the electron microscopy and homology analysis revealed that both P483 and P694 belong to T7-like virus which is a member of the Podoviridae family of the Caudovirales order. Comparative genomic analysis showed that most of the predicted proteins of these two phages showed strongest sequence similarity to the Enterobacteria phages BA14 and 285P, Erwinia phage FE44, and Kluyvera phage Kvp1; however, some proteins such as gp0.6a, gp1.7 and gp17 showed lower similarity (<85%) with the homologs of other phages in the T7 subgroup. We also found some unique characteristics of P483 and P694, such as the two types of the genes of P694 and no lytic activity of P694 against its host bacteria in liquid medium. Our results serve to further our understanding of phage evolution of T7-like coliphages and provide the potential application of the phages as therapeutic agents for the treatment of diseases.
Collapse
Affiliation(s)
- Mianmian Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Juntian Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
19
|
|
20
|
Wagemans J, Delattre AS, Uytterhoeven B, De Smet J, Cenens W, Aertsen A, Ceyssens PJ, Lavigne R. Antibacterial phage ORFans of Pseudomonas aeruginosa phage LUZ24 reveal a novel MvaT inhibiting protein. Front Microbiol 2015; 6:1242. [PMID: 26594207 PMCID: PMC4635203 DOI: 10.3389/fmicb.2015.01242] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
The functional elucidation of small unknown phage proteins (‘ORFans’) presents itself as one of the major challenges of bacteriophage molecular biology. In this work, we mined the Pseudomonas aeruginosa-infecting phage LUZ24 proteome for antibacterial and antibiofilm proteins against its host. Subsequently, their putative host target was identified. In one example, we observed an interaction between LUZ24 gp4 and the host transcriptional regulator MvaT. The polymerization of MvaT across AT-rich DNA strands permits gene silencing of foreign DNA, thereby limiting any potentially adverse effects of such DNA. Gel shift assays proved the inhibitory effect of LUZ24 gp4 on MvaT DNA binding activity. Therefore, we termed this gene product as Mip, the MvaT inhibiting protein. We hypothesize Mip prevents the AT-rich LUZ24 DNA from being physically blocked by MvaT oligomers right after its injection in the host cell, thereby allowing phage transcription and thus completion of the phage infection cycle.
Collapse
Affiliation(s)
- Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - Anne-Sophie Delattre
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - Birgit Uytterhoeven
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - William Cenens
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven Leuven, Belgium
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| |
Collapse
|
21
|
Ramisetty SK, Dias RS. Synergistic role of DNA-binding protein and macromolecular crowding on DNA condensation. An experimental and theoretical approach. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.04.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
van der Valk RA, Vreede J, Crémazy F, Dame RT. Genomic Looping: A Key Principle of Chromatin Organization. J Mol Microbiol Biotechnol 2015; 24:344-59. [DOI: 10.1159/000368851] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
H-NS and RNA polymerase: a love-hate relationship? Curr Opin Microbiol 2015; 24:53-9. [PMID: 25638302 DOI: 10.1016/j.mib.2015.01.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/24/2014] [Accepted: 01/10/2015] [Indexed: 01/23/2023]
Abstract
Histone-like nucleoid structuring (H-NS) protein is a component of bacterial chromatin and influences gene expression both locally and on a global scale. Although H-NS is broadly considered a silencer of transcription, the mechanisms by which H-NS inhibits gene expression remain poorly understood. Here we discuss recent advances in the context of a 'love-hate' relationship between H-NS and RNA polymerase, in which these factors recognise similar DNA sequences but interfere with each other's activity. Understanding the complex relationship between H-NS and RNA polymerase may unite the multiple models that have been proposed to describe gene silencing by H-NS.
Collapse
|
24
|
Ho CH, Wang HC, Ko TP, Chang YC, Wang AHJ. The T4 phage DNA mimic protein Arn inhibits the DNA binding activity of the bacterial histone-like protein H-NS. J Biol Chem 2014; 289:27046-27054. [PMID: 25118281 DOI: 10.1074/jbc.m114.590851] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The T4 phage protein Arn (Anti restriction nuclease) was identified as an inhibitor of the restriction enzyme McrBC. However, until now its molecular mechanism remained unclear. In the present study we used structural approaches to investigate biological properties of Arn. A structural analysis of Arn revealed that its shape and negative charge distribution are similar to dsDNA, suggesting that this protein could act as a DNA mimic. In a subsequent proteomic analysis, we found that the bacterial histone-like protein H-NS interacts with Arn, implying a new function. An electrophoretic mobility shift assay showed that Arn prevents H-NS from binding to the Escherichia coli hns and T4 p8.1 promoters. In vitro gene expression and electron microscopy analyses also indicated that Arn counteracts the gene-silencing effect of H-NS on a reporter gene. Because McrBC and H-NS both participate in the host defense system, our findings suggest that T4 Arn might knock down these mechanisms using its DNA mimicking properties.
Collapse
Affiliation(s)
- Chun-Han Ho
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan,; Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Hao-Ching Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Core Facilities for Protein Structural Analysis, and Academia Sinica, Taipei 115, Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, and
| | - Andrew H-J Wang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan,; Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Core Facilities for Protein Structural Analysis, and Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
25
|
Functional dissection of intersubunit interactions in the EspR virulence regulator of Mycobacterium tuberculosis. J Bacteriol 2014; 196:1889-900. [PMID: 24633871 DOI: 10.1128/jb.00039-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The nucleoid-associated protein EspR, a chromosome organizer, has pleiotropic effects on expression of genes associated with cell wall function and pathogenesis in Mycobacterium tuberculosis. In particular, EspR binds to several sites upstream of the espACD locus to promote its expression, thereby ensuring full function of the ESX-1 secretion system, a major virulence determinant. The N terminus of EspR contains the helix-turn-helix DNA-binding domain, whereas the C-terminal dimerization domain harbors residues involved in intersubunit interactions. While direct binding to DNA appears to be mediated by an EspR dimer-of-dimers, where two helix-turn-helix motifs remain free for long-range interactions, the mechanism of EspR higher-order organization and its impact on chromosome structure and gene expression are not understood. To investigate these processes, we identified seven amino acid residues using molecular dynamics and replaced them with Ala in order to probe interactions at either the dimer or the dimer-of-dimers interfaces. Arg70, Lys72, and Arg101 were important for protein stability and optimal DNA-binding activity. Moreover, the Arg70 mutant showed decreased dimerization in a mycobacterial two-hybrid system. To correlate these defects with higher-order organization and transcriptional activity, we used atomic force microscopy to observe different EspR mutant proteins in complex with the espACD promoter region. In addition, complementation of an M. tuberculosis espR knockout mutant was performed to measure their impact on EspA expression. Our results pinpoint key residues required for EspR function at the dimer (Arg70) and the dimer-of-dimers (Lys72) interface and demonstrate that EspR dimerization and higher-order oligomerization modulate espACD transcriptional activity and hence pathogenesis.
Collapse
|
26
|
Levine JA, Hansen AM, Michalski JM, Hazen TH, Rasko DA, Kaper JB. H-NST induces LEE expression and the formation of attaching and effacing lesions in enterohemorrhagic Escherichia coli. PLoS One 2014; 9:e86618. [PMID: 24466172 PMCID: PMC3897749 DOI: 10.1371/journal.pone.0086618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli are important causes of morbidity and mortality worldwide. These enteric pathogens contain a type III secretion system (T3SS) responsible for the attaching and effacing (A/E) lesion phenotype. The T3SS is encoded by the locus of enterocyte effacement (LEE) pathogenicity island. The H-NS-mediated repression of LEE expression is counteracted by Ler, the major activator of virulence gene expression in A/E pathogens. A regulator present in EPEC, H-NST, positively affects expression of H-NS regulon members in E. coli K-12, although the effect of H-NST on LEE expression and virulence of A/E pathogens has yet-to-be determined. Results We examine the effect of H-NST on LEE expression and A/E lesion formation on intestinal epithelial cells. We find that H-NST positively affects the levels of LEE-encoded proteins independently of ler and induces A/E lesion formation. We demonstrate H-NST binding to regulatory regions of LEE1 and LEE3, the first report of DNA-binding by H-NST. We characterize H-NST mutants substituted at conserved residues including Ala16 and residues Arg60 and Arg63, which are part of a potential DNA-binding domain. The single mutants A16V, A16L, R60Q and the double mutant R60Q/R63Q exhibit a decreased effect on LEE expression and A/E lesion formation. DNA mobility shift assays reveal that these residues are important for H-NST to bind regulatory LEE DNA targets. H-NST positively affects Ler binding to LEE DNA in the presence of H-NS, and thereby potentially helps Ler displace H-NS bound to DNA. Conclusions H-NST induces LEE expression and A/E lesion formation likely by counteracting H-NS-mediated repression. We demonstrate that H-NST binds to DNA and identify arginine residues that are functionally important for DNA-binding. Our study suggests that H-NST provides an additional means for A/E pathogens to alleviate repression of virulence gene expression by H-NS to promote virulence capabilities.
Collapse
Affiliation(s)
- Jonathan A. Levine
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Graduate Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, United States of America
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jane M. Michalski
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tracy H. Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David A. Rasko
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James B. Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Ueda T, Takahashi H, Uyar E, Ishikawa S, Ogasawara N, Oshima T. Functions of the Hha and YdgT proteins in transcriptional silencing by the nucleoid proteins, H-NS and StpA, in Escherichia coli. DNA Res 2013; 20:263-71. [PMID: 23543115 PMCID: PMC3686432 DOI: 10.1093/dnares/dst008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Hha and YdgT proteins are suggested to modulate the expression of horizontally acquired genes by interacting with H-NS and StpA, which play central roles in the transcriptional silencing of such genes. However, it is also possible that Hha/YdgT repress gene expression independently of H-NS/StpA, as we have not fully understood the molecular mechanism through which Hha/YdgT modulate H-NS/StpA activity. To gain further insight into the basic functions of Hha/YdgT, we analysed the impact of hha/ydgT double inactivation on the transcriptome profile of Escherichia coli K-12, and compared the effects with that of hns/stpA double inactivation. In addition, we examined the effects of hha/ydgT inactivation on the chromosomal binding of H-NS, and conversely the effects of hns/stpA inactivation on the chromosomal binding of Hha. Our results demonstrated that the chromosomal binding of Hha requires H-NS/StpA, and is necessary for the repression of a subset of genes in the H-NS/StpA regulon. Furthermore, the distribution of H-NS binding around Hha/YdgT-dependent and -independent genes suggests that Hha/YdgT proteins modulate formation of the H-NS/StpA-DNA complex.
Collapse
Affiliation(s)
- Takeshi Ueda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Ali SS, Whitney JC, Stevenson J, Robinson H, Howell PL, Navarre WW. Structural insights into the regulation of foreign genes in Salmonella by the Hha/H-NS complex. J Biol Chem 2013; 288:13356-69. [PMID: 23515315 DOI: 10.1074/jbc.m113.455378] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hha facilitates H-NS-mediated silencing of foreign genes in bacteria. RESULTS Two Hha monomers bind opposing faces of the H-NS N-terminal dimerization domain. CONCLUSION Hha binds the dimerization domain of H-NS and may contact DNA via positively charged surface residues. SIGNIFICANCE The structure of Hha and H-NS in complex provides a mechanistic model of how Hha may affect gene regulation. The bacterial nucleoid-associated proteins Hha and H-NS jointly repress horizontally acquired genes in Salmonella, including essential virulence loci encoded within Salmonella pathogenicity islands. Hha is known to interact with the N-terminal dimerization domain of H-NS; however, the manner in which this interaction enhances transcriptional silencing is not understood. To further understand this process, we solved the x-ray crystal structure of Hha in complex with the N-terminal dimerization domain of H-NS (H-NS(1-46)) to 3.2 Å resolution. Two monomers of Hha bind to symmetrical sites on either side of the H-NS(1-46) dimer. Disruption of the Hha/H-NS interaction by the H-NS site-specific mutation I11A results in increased expression of the Hha/H-NS co-regulated gene hilA without affecting the expression levels of proV, a target gene repressed by H-NS in an Hha-independent fashion. Examination of the structure revealed a cluster of conserved basic amino acids that protrude from the surface of Hha on the opposite side of the Hha/H-NS(1-46) interface. Hha mutants with a diminished positively charged surface maintain the ability to interact with H-NS but can no longer regulate hilA. Increased expression of the hilA locus did not correspond to significant depletion of H-NS at the promoter region in chromatin immunoprecipitation assays. However, in vitro, we find Hha improves H-NS binding to target DNA fragments. Taken together, our results show for the first time how Hha and H-NS interact to direct transcriptional repression and reveal that a positively charged surface of Hha enhances the silencing activity of H-NS nucleoprotein filaments.
Collapse
Affiliation(s)
- Sabrina S Ali
- Departments of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Gene 5.5 protein of bacteriophage T7 in complex with Escherichia coli nucleoid protein H-NS and transfer RNA masks transfer RNA priming in T7 DNA replication. Proc Natl Acad Sci U S A 2012; 109:8050-5. [PMID: 22566619 DOI: 10.1073/pnas.1205990109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA primases provide oligoribonucleotides for DNA polymerase to initiate lagging strand synthesis. A deficiency in the primase of bacteriophage T7 to synthesize primers can be overcome by genetic alterations that decrease the expression of T7 gene 5.5, suggesting an alternative mechanism to prime DNA synthesis. The product of gene 5.5 (gp5.5) forms a stable complex with the Escherichia coli histone-like protein H-NS and transfer RNAs (tRNAs). The 3'-terminal sequence (5'-ACCA-3') of tRNAs is identical to that of a functional primer synthesized by T7 primase. Mutations in T7 that suppress the inability of primase reduce the amount of gp5.5 and thus increase the pool of tRNA to serve as primers. Alterations in T7 gene 3 facilitate tRNA priming by reducing its endonuclease activity that cleaves at the tRNA-DNA junction. The tRNA bound to gp5.5 recruits H-NS. H-NS alone inhibits reactions involved in DNA replication, but the binding to gp5.5-tRNA complex abolishes this inhibition.
Collapse
|
30
|
Whitfield CR, Shilton BH, Haniford DB. Identification of basepairs within Tn5 termini that are critical sfor H-NS binding to the transpososome and regulation of Tn5 transposition. Mob DNA 2012; 3:7. [PMID: 22503096 PMCID: PMC3347997 DOI: 10.1186/1759-8753-3-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/13/2012] [Indexed: 02/07/2023] Open
Abstract
Background The H-NS protein is a global regulator of gene expression in bacteria and can also bind transposition complexes (transpososomes). In Tn5 transposition H-NS promotes transpososome assembly in vitro and disruption of the hns gene causes a modest decrease in Tn5 transposition (three- to five-fold). This is consistent with H-NS acting as a positive regulator of Tn5 transposition. Molecular determinants for H-NS binding to the Tn5 transpososome have not been determined, nor has the strength of the interaction been established. There is also uncertainty as to whether H-NS regulates Tn5 transposition in vivo through an interaction with the transposition machinery as disruption of the hns gene has pleiotropic effects on Escherichia coli, the organism used in this study. Results In the current work we have further examined determinants for H-NS binding to the Tn5 transpososome through both mutational studies on Tn5 termini (or 'transposon ends') and protein-protein cross-linking analysis. We identify mutations in two different segments of the transposon ends that abrogate H-NS binding and characterize the affinity of H-NS for wild type transposon ends in the context of the transpososome. We also show that H-NS forms cross-links with the Tn5 transposase protein specifically in the transpososome, an observation consistent with the two proteins occupying overlapping binding sites in the transposon ends. Finally, we make use of the end mutations to test the idea that H-NS exerts its impact on Tn5 transposition in vivo by binding directly to the transpososome. Consistent with this possibility, we show that two different end mutations reduce the sensitivity of the Tn5 system to H-NS regulation. Conclusions H-NS typically regulates cellular functions through its potent transcriptional repressor function. Work presented here provides support for an alternative mechanism of H-NS-based regulation, and adds to our understanding of how bacterial transposition can be regulated.
Collapse
Affiliation(s)
- Crystal R Whitfield
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | | | | |
Collapse
|
31
|
Ali SS, Xia B, Liu J, Navarre WW. Silencing of foreign DNA in bacteria. Curr Opin Microbiol 2012; 15:175-81. [DOI: 10.1016/j.mib.2011.12.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/20/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
|
32
|
Nguyen TM, Sparks-Thissen RL. The inner membrane protein, YhiM, is necessary for Escherichia coli (E. coli) survival in acidic conditions. Arch Microbiol 2012; 194:637-41. [DOI: 10.1007/s00203-012-0798-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/18/2012] [Accepted: 01/27/2012] [Indexed: 10/14/2022]
|
33
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|