1
|
Schultz BJ, Walker S. Acyltransferases that Modify Cell Surface Polymers Across the Membrane. Biochemistry 2025; 64:1728-1749. [PMID: 40171682 PMCID: PMC12021268 DOI: 10.1021/acs.biochem.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cell surface oligosaccharides and related polymers are commonly decorated with acyl esters that alter their structural properties and influence their interactions with other molecules. In many cases, these esters are added to polymers that are already positioned on the extracytoplasmic side of a membrane, presenting cells with a chemical challenge because the high-energy acyl donors used for these modifications are made in the cytoplasm. How activated acyl groups are passed from the cytoplasm to extra-cytoplasmic polymers has been a longstanding question. Recent mechanistic work has shown that many bacterial acyl transfer pathways operate by shuttling acyl groups through two covalent intermediates to their final destination on an extracellular polymer. Key to these and other pathways are cross-membrane acyltransferases─enzymes that catalyze transfer of acyl groups from a donor on one side of the membrane to a recipient on the other side. Here we review what has been learned recently about how cross-membrane acyltransferases in polymer acylation pathways function, highlighting the chemical and biosynthetic logic used by two key protein families, membrane-bound O-acyltransferases (MBOATs) and acyltransferase-3 (AT3) proteins. We also point out outstanding questions and avenues for further exploration.
Collapse
Affiliation(s)
- Bailey J. Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Zhang P, Liu Z. Structural insights into the transporting and catalyzing mechanism of DltB in LTA D-alanylation. Nat Commun 2024; 15:3404. [PMID: 38649359 PMCID: PMC11035591 DOI: 10.1038/s41467-024-47783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
DltB, a model member of the Membrane-Bound O-AcylTransferase (MBOAT) superfamily, plays a crucial role in D-alanylation of the lipoteichoic acid (LTA), a significant component of the cell wall of gram-positive bacteria. This process stabilizes the cell wall structure, influences bacterial virulence, and modulates the host immune response. Despite its significance, the role of DltB is not well understood. Through biochemical analysis and cryo-EM imaging, we discover that Streptococcus thermophilus DltB forms a homo-tetramer on the cell membrane. We further visualize DltB in an apo form, in complex with DltC, and in complex with its inhibitor amsacrine (m-AMSA). Each tetramer features a central hole. The C-tunnel of each protomer faces the intratetramer interface and provides access to the periphery membrane. Each protomer binds a DltC without changing the tetrameric organization. A phosphatidylglycerol (PG) molecule in the substrate-binding site may serve as an LTA carrier. The inhibitor m-AMSA bound to the L-tunnel of each protomer blocks the active site. The tetrameric organization of DltB provides a scaffold for catalyzing D-alanyl transfer and regulating the channel opening and closing. Our findings unveil DltB's dual function in the D-alanylation pathway, and provide insight for targeting DltB as a anti-virulence antibiotic.
Collapse
Affiliation(s)
- Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| |
Collapse
|
3
|
Kelly JJ, Dalesandro BE, Liu Z, Chordia MD, Ongwae GM, Pires MM. Measurement of Accumulation of Antibiotics to Staphylococcus aureus in Phagosomes of Live Macrophages. Angew Chem Int Ed Engl 2024; 63:e202313870. [PMID: 38051128 PMCID: PMC10799677 DOI: 10.1002/anie.202313870] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Staphylococcus aureus (S. aureus) has evolved the ability to persist after uptake into host immune cells. This intracellular niche enables S. aureus to potentially escape host immune responses and survive the lethal actions of antibiotics. While the elevated tolerance of S. aureus to small-molecule antibiotics is likely to be multifactorial, we pose that there may be contributions related to permeation of antibiotics into phagocytic vacuoles, which would require translocation across two mammalian bilayers. To empirically test this, we adapted our recently developed permeability assay to determine the accumulation of FDA-approved antibiotics into phagocytic vacuoles of live macrophages. Bioorthogonal reactive handles were metabolically anchored within the surface of S. aureus, and complementary tags were chemically added to antibiotics. Following phagocytosis of tagged S. aureus cells, we were able to specifically analyze the arrival of antibiotics within the phagosomes of infected macrophages. Our findings enabled the determination of permeability differences between extra- and intracellular S. aureus, thus providing a roadmap to dissect the contribution of antibiotic permeability to intracellular pathogens.
Collapse
Affiliation(s)
| | | | - Zichen Liu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Mahendra D. Chordia
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - George M. Ongwae
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
4
|
Kelly JJ, Dalesandro BE, Liu Z, Chordia MD, Ongwae GM, Pires MM. Measurement of Accumulation of Antibiotics to Staphylococcus aureus in Phagosomes of Live Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528196. [PMID: 36824967 PMCID: PMC9949086 DOI: 10.1101/2023.02.13.528196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Staphylococcus aureus ( S. aureus ) has evolved the ability to persist after uptake into host immune cells. This intracellular niche enables S. aureus to potentially escape host immune responses and survive the lethal actions of antibiotics. While the elevated tolerance of S. aureus to small-molecule antibiotics is likely to be multifactorial, we pose that there may be contributions related to permeation of antibiotics into phagocytic vacuoles, which would require translocation across two mammalian bilayers. To empirically test this, we adapted our recently developed permeability assay to determine the accumulation of FDA-approved antibiotics into phagocytic vacuoles of live macrophages. Bioorthogonal reactive handles were metabolically anchored within the surface of S. aureus, and complementary tags were chemically added to antibiotics. Following phagocytosis of tagged S. aureus cells, we were able to specifically analyze the arrival of antibiotics within the phagosomes of infected macrophages. Our findings enabled the determination of permeability differences between extra- and intracellular S. aureus , thus providing a roadmap to dissect the contribution of antibiotic permeability to intracellular pathogens.
Collapse
|
5
|
Schultz BJ, Snow ED, Walker S. Mechanism of D-alanine transfer to teichoic acids shows how bacteria acylate cell envelope polymers. Nat Microbiol 2023; 8:1318-1329. [PMID: 37308592 PMCID: PMC10664464 DOI: 10.1038/s41564-023-01411-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/17/2023] [Indexed: 06/14/2023]
Abstract
Bacterial cell envelope polymers are often modified with acyl esters that modulate physiology, enhance pathogenesis and provide antibiotic resistance. Here, using the D-alanylation of lipoteichoic acid (Dlt) pathway as a paradigm, we have identified a widespread strategy for how acylation of cell envelope polymers occurs. In this strategy, a membrane-bound O-acyltransferase (MBOAT) protein transfers an acyl group from an intracellular thioester onto the tyrosine of an extracytoplasmic C-terminal hexapeptide motif. This motif shuttles the acyl group to a serine on a separate transferase that moves the cargo to its destination. In the Dlt pathway, here studied in Staphylococcus aureus and Streptococcus thermophilus, the C-terminal 'acyl shuttle' motif that forms the crucial pathway intermediate is found on a transmembrane microprotein that holds the MBOAT protein and the other transferase together in a complex. In other systems, found in both Gram-negative and Gram-positive bacteria as well as some archaea, the motif is fused to the MBOAT protein, which interacts directly with the other transferase. The conserved chemistry uncovered here is widely used for acylation throughout the prokaryotic world.
Collapse
Affiliation(s)
- Bailey J Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eric D Snow
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Kristensen SS, Diep DB, Kjos M, Mathiesen G. The role of site-2-proteases in bacteria: a review on physiology, virulence, and therapeutic potential. MICROLIFE 2023; 4:uqad025. [PMID: 37223736 PMCID: PMC10202637 DOI: 10.1093/femsml/uqad025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Site-2-proteases are a class of intramembrane proteases involved in regulated intramembrane proteolysis. Regulated intramembrane proteolysis is a highly conserved signaling mechanism that commonly involves sequential digestion of an anti-sigma factor by a site-1- and site-2-protease in response to external stimuli, resulting in an adaptive transcriptional response. Variation of this signaling cascade continues to emerge as the role of site-2-proteases in bacteria continues to be explored. Site-2-proteases are highly conserved among bacteria and play a key role in multiple processes, including iron uptake, stress response, and pheromone production. Additionally, an increasing number of site-2-proteases have been found to play a pivotal role in the virulence properties of multiple human pathogens, such as alginate production in Pseudomonas aeruginosa, toxin production in Vibrio cholerae, resistance to lysozyme in enterococci and antimicrobials in several Bacillus spp, and cell-envelope lipid composition in Mycobacterium tuberculosis. The prominent role of site-2-proteases in bacterial pathogenicity highlights the potential of site-2-proteases as novel targets for therapeutic intervention. In this review, we summarize the role of site-2-proteases in bacterial physiology and virulence, as well as evaluate the therapeutic potential of site-2-proteases.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | | | - Morten Kjos
- Corresponding author. NMBU, P.O. Box 5003, 1433 Ås, Norway. E-mail:
| | | |
Collapse
|
7
|
Cho THS, Pick K, Raivio TL. Bacterial envelope stress responses: Essential adaptors and attractive targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119387. [PMID: 36336206 DOI: 10.1016/j.bbamcr.2022.119387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Millions of deaths a year across the globe are linked to antimicrobial resistant infections. The need to develop new treatments and repurpose of existing antibiotics grows more pressing as the growing antimicrobial resistance pandemic advances. In this review article, we propose that envelope stress responses, the signaling pathways bacteria use to recognize and adapt to damage to the most vulnerable outer compartments of the microbial cell, are attractive targets. Envelope stress responses (ESRs) support colonization and infection by responding to a plethora of toxic envelope stresses encountered throughout the body; they have been co-opted into virulence networks where they work like global positioning systems to coordinate adhesion, invasion, microbial warfare, and biofilm formation. We highlight progress in the development of therapeutic strategies that target ESR signaling proteins and adaptive networks and posit that further characterization of the molecular mechanisms governing these essential niche adaptation machineries will be important for sparking new therapeutic approaches aimed at short-circuiting bacterial adaptation.
Collapse
Affiliation(s)
- Timothy H S Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kat Pick
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Probiotic Properties of Exopolysaccharide-Producing Bacteria from Natto. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:3298723. [PMID: 36762123 PMCID: PMC9904927 DOI: 10.1155/2023/3298723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Natto is a traditional Japanese food made from soybeans fermented with Bacillus subtilis var. natto. It is also a famous food in Thailand. Potential probiotics were screened from natto. Bacillus subtilis strain VN5 produced the most quantity of exopolysaccharide (EPS), so it was selected to study the properties of microbial EPS and probiotics. The Fourier transform infrared spectrometer or FT-IR spectroscopy confirmed the presence of carboxyl and hydroxyl groups. The patterns of FT-IR and levans are similar. The basic properties of probiotics were revealed. The 90% of VN5 strain resisted lysozyme within 30 min. VN5 survived under acidic conditions (pH 1-6), and the survival rate in 0.3%, 0.5%, and 1% bile solutions for 24 h was 100%. Unfortunately, VN5 did not inhibit the growth of Escherichia coli, Staphylococcus aureus, and Salmonella typhi. Gamma hemolysis was determined in VN5 strain. The finding on Bacillus subtilis strain (VN5) from natto paves the way to a high potential, useful new strain of probiotics.
Collapse
|
9
|
Manoil D, Parga A, Hellesen C, Khawaji A, Brundin M, Durual S, Özenci V, Fang H, Belibasakis GN. Photo-oxidative stress response and virulence traits are co-regulated in E. faecalis after antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112547. [PMID: 36030693 DOI: 10.1016/j.jphotobiol.2022.112547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Knowledge of photo-oxidative stress responses in bacteria that survive antimicrobial photodynamic therapy (aPDT) is scarce. Whereas aPDT is attracting growing clinical interest, subsequent stress responses are crucial to evaluate as they may lead to the up-regulation of pathogenic traits. Here, we aimed to assess transcriptional responses to sublethal aPDT-stress and identify potential connections with virulence-related genes. Six Enterococcus faecalis strains were investigated; ATCC 29212, three dental root-canal isolates labelled UmID1, UmID2 and UmID3 and two vancomycin-resistant isolates labelled A1 and A2. TMPyP was employed as a photosensitiser. A viability dose-response curve to increasing concentrations of TMPyP was determined by culture plating. Differential expression of genes involved in oxidative stress responses (dps and hypR), general stress responses (dnaK, sigma-factorV and relA), virulence-related genes (ace, fsrC and gelE) and vancomycin-resistance (vanA) was assessed by reverse-transcription qPCR. TMPyP-mediated aPDT inactivated all strains with comparable efficiencies. TMPyP at 0.015 μM was selected to induce sublethal photo-oxidative stress. Despite heterogeneities in gene expression between strains, transcriptional profiles revealed up-regulations of transcripts dps, hypR as well as dnaK and sigma factorV after exposure to TMPyP alone and to light-irradiated TMPyP. Specifically, the alternative sigma factorV reached up to 39 ± 113-fold (median ± IQR) (p = 0.0369) in strain A2. Up-regulation of the quorum sensing operon, fsr, and its downstream virulence-related gelatinase gelE were also observed in strains ATCC-29212, A1, A2 and UmID3. Finally, photo-oxidative stress induced vanA-type vancomycin-resistance gene in both carrier isolates, reaching up to 3.3 ± 17-fold in strain A2 (p = 0.015). These findings indicate that, while aPDT successfully inactivates vancomycin-resistant and naïve strains of E. faecalis, subpopulations of surviving cells respond by co-ordinately up-regulating a network of genes involved in stress survival and virulence. This includes the induction of vancomycin-resistance genes in carrier isolates. These data may provide the mechanistic basis to circumvent bacterial responses and improve future clinical protocols.
Collapse
Affiliation(s)
- Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden; Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Ana Parga
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cecilia Hellesen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Arwa Khawaji
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Malin Brundin
- Division of Endodontics, Department of Odontology, Umeå University, Umeå, Sweden
| | - Stéphane Durual
- Biomaterials Laboratory, Division of Fixed Prosthodontics and Biomaterials, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Volkan Özenci
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institute, Huddinge, Stockholm, Sweden
| | - Hong Fang
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institute, Huddinge, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
10
|
Xu S, Cao Q, Liu Z, Chen J, Yan P, Li B, Xu Y. Transcriptomic Analysis Reveals the Role of tmRNA on Biofilm Formation in Bacillus subtilis. Microorganisms 2022; 10:microorganisms10071338. [PMID: 35889057 PMCID: PMC9319509 DOI: 10.3390/microorganisms10071338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus strains are widely distributed in terrestrial and marine environments, and some of them are used as biocontrol organisms for their biofilm-formation ability. In Bacillus subtilis, biofilm formation is fine-tuned by a complex network, a clear understanding of which still requires study. In bacteria, tmRNA, encoded by the ssrA gene, catalyzes trans-translation that can rescue ribosomes stalled on mRNA transcripts lacking a functional stop codon. tmRNA also affects physiological bioprocesses in some bacteria. In this study, we constructed a ssrA mutant in B. subtilis and found that the biofilm formation in the ssrA mutant was largely impaired. Moreover, we isolated a biofilm-formation suppressor of ssrA, in which the biofilm formation was restored to a level even stronger than that in the wild type. We further performed RNAseq assays with the wild type, ssrA mutant, and suppressor of ssrA for comparisons of their transcriptomes. By analyzing the transcriptomic data, we predicted the possible functions of some differentially expressed genes (DEGs) in the tmRNA regulation of biofilm formation in B. subtilis. Finally, we found that the overexpression of two DEGs, acoA and yhjR, could restore the biofilm formation in the ssrA mutant, indicating that AcoA and YhjR were immediate regulators involved in the tmRNA regulatory web controlling biofilm formation in B. subtilis. Our data can improve the knowledge about the molecular network involved in Bacillus biofilm formation and provide new targets for manipulation of Bacillus biofilms for future investigation.
Collapse
Affiliation(s)
- Shanshan Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Qianqian Cao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
| | - Zengzhi Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Junpeng Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
| | - Peiguang Yan
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Bingyu Li
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen 518055, China
- Correspondence: (B.L.); (Y.X.)
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
- Correspondence: (B.L.); (Y.X.)
| |
Collapse
|
11
|
Activation of the Extracytoplasmic Function σ Factor σ V in Clostridioides difficile Requires Regulated Intramembrane Proteolysis of the Anti-σ Factor RsiV. mSphere 2022; 7:e0009222. [PMID: 35317618 PMCID: PMC9044953 DOI: 10.1128/msphere.00092-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Clostridioides (Clostridium) difficile is one of the leading causes of nosocomial diarrhea. Lysozyme is a common host defense against many pathogenic bacteria. C. difficile exhibits high levels of lysozyme resistance, which is due in part to the extracytoplasmic functioning (ECF) σ factor, σV. It has been previously demonstrated that genes regulated by σV are responsible for peptidoglycan modifications that provide C. difficile with high lysozyme resistance. σV is not unique to C. difficile however, and its role in lysozyme resistance and its mechanism of activation has been well characterized in Bacillus subtilis where the anti-σ, RsiV, sequesters σV until lysozyme directly binds to RsiV, activating σV. However, it remains unclear if the mechanism of σV activation is similar in C. difficile. Here, we investigated how activation of σV is controlled in C. difficile by lysozyme. We found that C. difficile RsiV was degraded in the presence of lysozyme. We also found that disruption of a predicted signal peptidase cleavage site blocked RsiV degradation and σV activation, indicating that the site-1 protease is likely a signal peptidase. We also identified a conserved site-2 protease, RasP, that was required for site-2 cleavage of RsiV and σV activation in response to lysozyme. Combined with previous work showing RsiV directly binds lysozyme, these data suggested that RsiV directly binds lysozyme in C. difficile, which leads to RsiV destruction via cleavage at site-1 by signal peptidase and then at site-2 by RasP, ultimately resulting in σV activation and increased resistance to lysozyme. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. We previously showed that σV and the regulon under its control were involved in lysozyme resistance. We have also shown in B. subtilis that the anti-σ RsiV acts as a direct sensor for lysozyme. which results in the destruction of RsiV and activation of σV. Here, we described the proteases required for degradation of RsiV in C. difficile in response to lysozyme. Our data indicated that the mechanism is highly conserved between B. subtilis and C. difficile.
Collapse
|
12
|
Ho TD, Ellermeier CD. Activation of the extracytoplasmic function σ factor σ V by lysozyme in Clostridioides difficile. Curr Opin Microbiol 2022; 65:162-166. [PMID: 34894542 PMCID: PMC8792214 DOI: 10.1016/j.mib.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/03/2023]
Abstract
Clostridioides difficile is naturally resistant to high levels of lysozyme an important component of the innate immune defense system. C. difficile encodes both constitutive as well as inducible lysozyme resistance genes. The inducible lysozyme resistance genes are controlled by an alternative σ factor σV that belongs to the Extracytoplasmic function σ factor family. In the absence of lysozyme, the activity of σV is inhibited by the anti-σ factor RsiV. In the presence of lysozyme RsiV is destroyed via a proteolytic cascade that leads to σV activation and increased lysozyme resistance. This review highlights how activity of σV is controlled.
Collapse
Affiliation(s)
- Theresa D. Ho
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 431 Newton Rd, Iowa City, IA 52242
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 431 Newton Rd, Iowa City, IA 52242,Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA,Corresponding author: , 319-384-4565
| |
Collapse
|
13
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
14
|
Ferraro NJ, Kim S, Im W, Pires MM. Systematic Assessment of Accessibility to the Surface of Staphylococcus aureus. ACS Chem Biol 2021; 16:2527-2536. [PMID: 34609132 DOI: 10.1021/acschembio.1c00604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteins from bacterial foes, antimicrobial peptides, and host immune proteins must navigate past a dense layer of bacterial surface biomacromolecules to reach the peptidoglycan (PG) layer of Gram-positive bacteria. A subclass of molecules (e.g., antibiotics with intracellular targets) also must permeate through the PG (in a molecular sieving manner) to reach the cytoplasmic membrane. Despite the biological and therapeutic importance of surface accessibility, systematic analyses in live bacterial cells have been lacking. We describe a live cell fluorescence assay that is robust, shows a high level of reproducibility, and reports on the permeability of molecules to and within the PG scaffold. Moreover, our study shows that teichoic acids impede the permeability of molecules of a wide range of sizes and chemical composition.
Collapse
Affiliation(s)
- Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Seonghoon Kim
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
15
|
Parthasarathy S, Wang X, Carr KR, Varahan S, Hancock EB, Hancock LE. SigV Mediates Lysozyme Resistance in Enterococcus faecalis via RsiV and PgdA. J Bacteriol 2021; 203:e0025821. [PMID: 34370556 PMCID: PMC8459761 DOI: 10.1128/jb.00258-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Enterococcus faecalis is a gut commensal but transitions to a pathogenic state as a consequence of intestinal dysbiosis and/or the presence of indwelling medical devices, causing a wide range of infections. One of the unique features of E. faecalis is its ability to display high level resistance to lysozyme, an important host defense of the innate immune response. Lysozyme resistance in E. faecalis is known to be mediated by the extracytoplasmic function (ECF) sigma factor SigV. PgdA and RsiV expression is directly regulated by SigV, but pgdA and rsiV mutants display nominal changes in lysozyme resistance, suggesting that additional gene products in the SigV regulon contribute to lysozyme resistance. Using transcriptome sequencing (RNA-seq) analysis, we compared the transcriptional profile of the parental strain to that of an isogenic sigV mutant and show that apart from sigV, only rsiV and pgdA expression was induced upon lysozyme exposure. The combined deletion mutant of both rsiV and pgdA rendered E. faecalis sensitive to lysozyme at a level comparable to that of the sigV mutant, highlighting the limited SigV regulon. Several additional genes were also induced upon lysozyme exposure, but in a SigV-independent fashion. Overexpression of pgdA from a SigV-independent promoter restored lysozyme resistance in a sigV deletion mutant and also induced cell chaining. Overexpression of rsiV from a SigV-independent promoter only partially restored lysozyme resistance in a sigV mutant. Overall, we provide evidence for a simple adaptation to lysozyme stress, in which SigV controls the expression of rsiV and pgdA, and that both gene products contribute to lysozyme resistance. IMPORTANCE Enterococcus faecalis causes health care-associated infections and displays resistance to a variety of antibiotics and molecules of the innate immune system. SigV has been shown to play an important role in enterococcal lysozyme resistance. Even though several proteins have been implicated in enterococcal lysozyme resistance, a complete SigV-dependent regulon has not been functionally characterized as being responsible for the dramatic increase in lysozyme susceptibility displayed by a sigV mutant. Using RNA-seq, we have identified the SigV regulon to be comprised of two gene loci, sigV-rsiV and pgdA. Deletion of both rsiV and pgdA renders E. faecalis susceptible to lysozyme on par with a sigV mutant. We also demonstrate that overproduction of rsiV and pgdA contributes to lysozyme resistance in susceptible strains.
Collapse
Affiliation(s)
- Srivatsan Parthasarathy
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Xiaofei Wang
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Kristen R. Carr
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Sriram Varahan
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Elyssa B. Hancock
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| | - Lynn E. Hancock
- Department of Molecular Biosciences, University of Kansasgrid.266515.3, Lawrence, Kansas, USA
| |
Collapse
|
16
|
Schwall CP, Loman TE, Martins BMC, Cortijo S, Villava C, Kusmartsev V, Livesey T, Saez T, Locke JCW. Tunable phenotypic variability through an autoregulatory alternative sigma factor circuit. Mol Syst Biol 2021; 17:e9832. [PMID: 34286912 PMCID: PMC8287880 DOI: 10.15252/msb.20209832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single-cell time-lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma-anti-sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.
Collapse
Affiliation(s)
| | | | - Bruno M C Martins
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | | | | | - Toby Livesey
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Teresa Saez
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
17
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021; 8:634438. [PMID: 34046426 PMCID: PMC8144471 DOI: 10.3389/fmolb.2021.634438] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
18
|
Lang KS, Merrikh H. Topological stress is responsible for the detrimental outcomes of head-on replication-transcription conflicts. Cell Rep 2021; 34:108797. [PMID: 33657379 PMCID: PMC7986047 DOI: 10.1016/j.celrep.2021.108797] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Conflicts between the replication and transcription machineries have profound effects on chromosome duplication, genome organization, and evolution across species. Head-on conflicts (lagging-strand genes) are significantly more detrimental than codirectional conflicts (leading-strand genes). The fundamental reason for this difference is unknown. Here, we report that topological stress significantly contributes to this difference. We find that head-on, but not codirectional, conflict resolution requires the relaxation of positive supercoils by the type II topoisomerases DNA gyrase and Topo IV, at least in the Gram-positive model bacterium Bacillus subtilis. Interestingly, our data suggest that after positive supercoil resolution, gyrase introduces excessive negative supercoils at head-on conflict regions, driving pervasive R-loop formation. Altogether, our results reveal a fundamental mechanistic difference between the two types of encounters, addressing a long-standing question in the field of replication-transcription conflicts. Lang and Merrikh show that resolution of head-on, but not codirectional, conflicts between replication and transcription machineries requires type II topoisomerases, suggesting that a fundamental difference between the two types of conflicts is supercoil buildup in DNA. Furthermore, they show that supercoil resolution at head-on conflict regions drives R-loop formation.
Collapse
Affiliation(s)
- Kevin S Lang
- Department of Biochemistry, Light Hall, Vanderbilt University, Nashville, TN, USA
| | - Houra Merrikh
- Department of Biochemistry, Light Hall, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
19
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021. [PMID: 34046426 DOI: 10.3389/fmolb.2021.634438/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Jessica R Willdigg
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
Kaus GM, Snyder LF, Müh U, Flores MJ, Popham DL, Ellermeier CD. Lysozyme Resistance in Clostridioides difficile Is Dependent on Two Peptidoglycan Deacetylases. J Bacteriol 2020; 202:e00421-20. [PMID: 32868404 PMCID: PMC7585060 DOI: 10.1128/jb.00421-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridioides (Clostridium) difficile is a major cause of hospital-acquired infections leading to antibiotic-associated diarrhea. C. difficile exhibits a very high level of resistance to lysozyme. Bacteria commonly resist lysozyme through modification of the cell wall. In C. difficile, σV is required for lysozyme resistance, and σV is activated in response to lysozyme. Once activated, σV, encoded by csfV, directs transcription of genes necessary for lysozyme resistance. Here, we analyze the contribution of individual genes in the σV regulon to lysozyme resistance. Using CRISPR-Cas9-mediated mutagenesis we constructed in-frame deletions of single genes in the csfV operon. We find that pdaV, which encodes a peptidoglycan deacetylase, is partially responsible for lysozyme resistance. We then performed CRISPR inhibition (CRISPRi) to identify a second peptidoglycan deacetylase, encoded by pgdA, that is important for lysozyme resistance. Deletion of either pgdA or pdaV resulted in modest decreases in lysozyme resistance. However, deletion of both pgdA and pdaV resulted in a 1,000-fold decrease in lysozyme resistance. Further, muropeptide analysis revealed that loss of either PgdA or PdaV had modest effects on peptidoglycan deacetylation but that loss of both PgdA and PdaV resulted in almost complete loss of peptidoglycan deacetylation. This suggests that PgdA and PdaV are redundant peptidoglycan deacetylases. We also used CRISPRi to compare other lysozyme resistance mechanisms and conclude that peptidoglycan deacetylation is the major mechanism of lysozyme resistance in C. difficileIMPORTANCEClostridioides difficile is the leading cause of hospital-acquired diarrhea. C. difficile is highly resistant to lysozyme. We previously showed that the csfV operon is required for lysozyme resistance. Here, we used CRISPR-Cas9 mediated mutagenesis and CRISPRi knockdown to show that peptidoglycan deacetylation is necessary for lysozyme resistance and is the major lysozyme resistance mechanism in C. difficile We show that two peptidoglycan deacetylases in C. difficile are partially redundant and are required for lysozyme resistance. PgdA provides an intrinsic level of deacetylation, and PdaV, encoded by a part of the csfV operon, provides lysozyme-induced peptidoglycan deacetylation.
Collapse
Affiliation(s)
- Gabriela M Kaus
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lindsey F Snyder
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Matthew J Flores
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - David L Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Craig D Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
21
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
22
|
Grishin AV, Karyagina AS, Vasina DV, Vasina IV, Gushchin VA, Lunin VG. Resistance to peptidoglycan-degrading enzymes. Crit Rev Microbiol 2020; 46:703-726. [PMID: 32985279 DOI: 10.1080/1040841x.2020.1825333] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The spread of bacterial strains resistant to commonly used antibiotics urges the development of novel antibacterial compounds. Ideally, these novel antimicrobials should be less prone to the development of resistance. Peptidoglycan-degrading enzymes are a promising class of compounds with a fundamentally different mode of action compared to traditionally used antibiotics. The difference in the mechanism of action implies differences both in the mechanisms of resistance and the chances of its emergence. To critically assess the potential of resistance development to peptidoglycan-degrading enzymes, we review the available evidence for the development of resistance to these enzymes in vitro, along with the known mechanisms of resistance to lysozyme, bacteriocins, autolysins, and phage endolysins. We conclude that genetic determinants of resistance to peptidoglycan-degrading enzymes are unlikely to readily emerge de novo. However, resistance to these enzymes would probably spread by the horizontal transfer between intrinsically resistant and susceptible species. Finally, we speculate that the higher cost of the therapeutics based on peptidoglycan degrading enzymes compared to classical antibiotics might result in less misuse, which in turn would lead to lower selective pressure, making these antibacterials less prone to resistance development.
Collapse
Affiliation(s)
- Alexander V Grishin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna S Karyagina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical and Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Daria V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir G Lunin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Patel Y, Zhao H, Helmann JD. A regulatory pathway that selectively up-regulates elongasome function in the absence of class A PBPs. eLife 2020; 9:57902. [PMID: 32897856 PMCID: PMC7478892 DOI: 10.7554/elife.57902] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/22/2020] [Indexed: 12/28/2022] Open
Abstract
Bacteria surround themselves with peptidoglycan, an adaptable enclosure that contributes to cell shape and stability. Peptidoglycan assembly relies on penicillin-binding proteins (PBPs) acting in concert with SEDS-family transglycosylases RodA and FtsW, which support cell elongation and division respectively. In Bacillus subtilis, cells lacking all four PBPs with transglycosylase activity (aPBPs) are viable. Here, we show that the alternative sigma factor σI is essential in the absence of aPBPs. Defects in aPBP-dependent wall synthesis are compensated by σI-dependent upregulation of an MreB homolog, MreBH, which localizes the LytE autolysin to the RodA-containing elongasome complex. Suppressor analysis reveals that cells unable to activate this σI stress response acquire gain-of-function mutations in the essential histidine kinase WalK, which also elevates expression of sigI, mreBH and lytE. These results reveal compensatory mechanisms that balance the directional peptidoglycan synthesis arising from the elongasome complex with the more diffusive action of aPBPs.
Collapse
Affiliation(s)
- Yesha Patel
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Heng Zhao
- Department of Microbiology, Cornell University, Ithaca, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, United States
| |
Collapse
|
24
|
Buongiorno J, Sipes K, Wasmund K, Loy A, Lloyd KG. Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. PLoS One 2020; 15:e0234839. [PMID: 32853201 PMCID: PMC7451513 DOI: 10.1371/journal.pone.0234839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/04/2020] [Indexed: 11/30/2022] Open
Abstract
Distinct lineages of Gammaproteobacteria clade Woeseiales are globally distributed in marine sediments, based on metagenomic and 16S rRNA gene analysis. Yet little is known about why they are dominant or their ecological role in Arctic fjord sediments, where glacial retreat is rapidly imposing change. This study combined 16S rRNA gene analysis, metagenome-assembled genomes (MAGs), and genome-resolved metatranscriptomics uncovered the in situ abundance and transcriptional activity of Woeseiales with burial in four shallow sediment sites of Kongsfjorden and Van Keulenfjorden of Svalbard (79°N). We present five novel Woeseiales MAGs and show transcriptional evidence for metabolic plasticity during burial, including sulfur oxidation with reverse dissimilatory sulfite reductase (dsrAB) down to 4 cm depth and nitrite reduction down to 6 cm depth. A single stress protein, spore protein SP21 (hspA), had a tenfold higher mRNA abundance than any other transcript, and was a hundredfold higher on average than other transcripts. At three out of the four sites, SP21 transcript abundance increased with depth, while total mRNA abundance and richness decreased, indicating a shift in investment from metabolism and other cellular processes to build-up of spore protein SP21. The SP21 gene in MAGs was often flanked by genes involved in membrane-associated stress response. The ability of Woeseiales to shift from sulfur oxidation to nitrite reduction with burial into marine sediments with decreasing access to overlying oxic bottom waters, as well as enter into a dormant state dominated by SP21, may account for its ubiquity and high abundance in marine sediments worldwide, including those of the rapidly shifting Arctic.
Collapse
Affiliation(s)
- Joy Buongiorno
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Katie Sipes
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Karen G. Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
25
|
Ragland SA, Gray MC, Melson EM, Kendall MM, Criss AK. Effect of Lipidation on the Localization and Activity of a Lysozyme Inhibitor in Neisseria gonorrhoeae. J Bacteriol 2020; 202:e00633-19. [PMID: 32041800 PMCID: PMC7099142 DOI: 10.1128/jb.00633-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/01/2020] [Indexed: 01/02/2023] Open
Abstract
The Gram-negative pathogen Neisseria gonorrhoeae (gonococcus [Gc]) colonizes lysozyme-rich mucosal surfaces. Lysozyme hydrolyzes peptidoglycan, leading to bacterial lysis. Gc expresses two proteins, SliC and NgACP, that bind and inhibit the enzymatic activity of lysozyme. SliC is a surface-exposed lipoprotein, while NgACP is found in the periplasm and also released extracellularly. Purified SliC and NgACP similarly inhibit lysozyme. However, whereas mutation of ngACP increases Gc susceptibility to lysozyme, the sliC mutant is only susceptible to lysozyme when ngACP is inactivated. In this work, we examined how lipidation contributes to SliC expression, cellular localization, and resistance of Gc to killing by lysozyme. To do so, we mutated the conserved cysteine residue (C18) in the N-terminal lipobox motif of SliC, the site for lipid anchor attachment, to alanine. SliC(C18A) localized to soluble rather than membrane fractions in Gc and was not displayed on the bacterial surface. Less SliC(C18A) was detected in Gc lysates compared to the wild-type protein. This was due in part to some release of the C18A mutant, but not wild-type, protein into the extracellular space. Surprisingly, Gc expressing SliC(C18A) survived better than SliC (wild type)-expressing Gc after exposure to lysozyme. We conclude that lipidation is not required for the ability of SliC to inhibit lysozyme, even though the lipidated cysteine is 100% conserved in Gc SliC alleles. These findings shed light on how members of the growing family of lysozyme inhibitors with distinct subcellular localizations contribute to bacterial defense against lysozyme.IMPORTANCENeisseria gonorrhoeae is one of many bacterial species that express multiple lysozyme inhibitors. It is unclear how inhibitors that differ in their subcellular localization contribute to defense from lysozyme. We investigated how lipidation of SliC, an MliC (membrane-bound lysozyme inhibitor of c-type lysozyme)-type inhibitor, contributes to its localization and lysozyme inhibitory activity. We found that lipidation was required for surface exposure of SliC and yet was dispensable for protecting the gonococcus from killing by lysozyme. To our knowledge, this is the first time the role of lipid anchoring of a lysozyme inhibitor has been investigated. These results help us understand how different lysozyme inhibitors are localized in bacteria and how this impacts resistance to lysozyme.
Collapse
Affiliation(s)
- Stephanie A Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mary C Gray
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Elizabeth M Melson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
26
|
Mendonça AA, da Silva PKN, Calazans TLS, de Souza RB, Elsztein C, de Morais Junior MA. Gene regulation of the Lactobacillus vini in response to industrial stress in the fuel ethanol production. Microbiol Res 2020; 236:126450. [PMID: 32146295 DOI: 10.1016/j.micres.2020.126450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/25/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
The industrial ethanol fermentation imposes several stresses to microorganisms. However, some bacterial species are well adapted and manage to endure these harmful conditions. Lactobacillus vini is one of the most found bacteria in these environments, indicating the existence of efficient tolerance mechanisms. In view of this premise, the present study aimed to describe the tolerance of L. vini to several stressing agents encounter in industrial environments and the genetic components of the stress response. In general, L. vini showed significant tolerance to stressors commonly found in fuel-ethanol fermentations, and only doses higher than normally reached in processes restrained its growth. The lag phase and the growth rate were the most responsive kinetic parameter affected. Gene expression analysis revealed that uspII gene positively responded to all conditions tested, a typical profile of a general stress response gene. In addition, the results also revealed aspects of regulatory modules of co-expressed genes responding to different stresses, and also the similarities of response mechanism with basis in common cellular damages. Altogether, these data contribute to uncover the factors that could favour L. vini in the industrial fermentation which could be shared with other well adapted species and reports the first stress response genes in this bacterium.
Collapse
Affiliation(s)
| | | | | | | | - Carolina Elsztein
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
27
|
Wüllner D, Haupt A, Prochnow P, Leontiev R, Slusarenko AJ, Bandow JE. Interspecies Comparison of the Bacterial Response to Allicin Reveals Species-Specific Defense Strategies. Proteomics 2019; 19:e1900064. [PMID: 31622046 DOI: 10.1002/pmic.201900064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/16/2019] [Indexed: 12/22/2022]
Abstract
Allicin, a broad-spectrum antimicrobial agent from garlic, disrupts thiol and redox homeostasis, proteostasis, and cell membrane integrity. Since medicine demands antimicrobials with so far unexploited mechanisms, allicin is a promising lead structure. While progress is being made in unraveling its mode of action, little is known on bacterial adaptation strategies. Some isolates of Pseudomonas aeruginosa and Escherichia coli withstand exposure to high allicin concentrations due to as yet unknown mechanisms. To elucidate resistance and sensitivity-conferring cellular processes, the acute proteomic responses of a resistant P. aeruginosa strain and the sensitive species Bacillus subtilis are compared to the published proteomic response of E. coli to allicin treatment. The cellular defense strategies share functional features: proteins involved in translation and maintenance of protein quality, redox homeostasis, and cell envelope modification are upregulated. In both Gram-negative species, protein synthesis of the majority of proteins is downregulated while the Gram-positive B. subtilis responded by upregulation of multiple regulons. A comparison of the B. subtilis proteomic response to a library of responses to antibiotic treatment reveals 30 proteins specifically upregulated by allicin. Upregulated oxidative stress proteins are shared with nitrofurantoin and diamide. Microscopy-based assays further indicate that in B. subtilis cell wall integrity is impaired.
Collapse
Affiliation(s)
- Dominik Wüllner
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Annika Haupt
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Pascal Prochnow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Roman Leontiev
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056, Aachen, Germany.,Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66041, Saarbrücken, Germany
| | - Alan J Slusarenko
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056, Aachen, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| |
Collapse
|
28
|
Boonmee A, Oliver HF, Chaturongakul S. Listeria monocytogenes σ A Is Sufficient to Survive Gallbladder Bile Exposure. Front Microbiol 2019; 10:2070. [PMID: 31551995 PMCID: PMC6737072 DOI: 10.3389/fmicb.2019.02070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a foodborne Gram-positive bacterium causing listeriosis in both animals and humans. It can persist and grow in various environments including conditions countered during saprophytic or intra-host lifestyles. Sigma (σ) subunit of RNA polymerase is a transcriptional factor responsible for guiding the core RNA polymerase and initiating gene expression under normal growth or physiological changes. In L. monocytogenes, there is one housekeeping sigma factor, σA, and four alternative sigma factors σB, σC, σH, and σL. Generally, σA directs expression of genes required for normal growth while alternative σ factors alter gene expression in response to specific conditions (e.g., stress). In this study, we aimed to determine the exclusive role of σA in L. monocytogenes by comparing a wild type strain with its isogenic mutant lacking genes encoding all alternative sigma factors (i.e., sigB, sigC, sigH, and sigL). We further investigated their survival abilities in 6% porcine bile (pH 8.2) mimicking gallbladder bile and their transcriptomics profiles in rich medium (i.e., BHI) and 1% porcine bile. Surprisingly, the results showed that survival abilities of wild type and ΔsigBΔsigCΔsigHΔsigL (or ΔsigBCHL) quadruple mutant strains in 6% bile were similar suggesting a compensatory role for σA. RNA-seq results revealed that bile stimulon of L. monocytogenes wild type contained 66 genes (43 and 23 genes were up- and down-regulated, respectively); however, only 29 genes (five up- and 24 down-regulated by bile) were differentially expressed in ΔsigBCHL. We have shown that bile exposure mediates increased transcription levels of dlt and ilv operons and decreased transcription levels of prfA and heat shock genes in wild type. Furthermore, we identified σA-dependent bile inducible genes that are involved in phosphotransferase systems, chaperones, and transporter systems; these genes appear to contribute to L. monocytogenes cellular homeostasis. As a result, σA seemingly plays a compensatory role in the absence of alternative sigma factors under bile exposure. Our data support that the bile stimulon is prone to facilitate resistance to bile prior to initiated infection.
Collapse
Affiliation(s)
- Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Haley F. Oliver
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN, United States
| | - Soraya Chaturongakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
29
|
Activation of the Extracytoplasmic Function σ Factor σ P by β-Lactams in Bacillus thuringiensis Requires the Site-2 Protease RasP. mSphere 2019; 4:4/4/e00511-19. [PMID: 31391284 PMCID: PMC6686233 DOI: 10.1128/msphere.00511-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery of antibiotics to treat bacterial infections has had a dramatic and positive impact on human health. However, shortly after the introduction of a new antibiotic, bacteria often develop resistance. The bacterial cell envelope is essential for cell viability and is the target of many of the most commonly used antibiotics, including β-lactam antibiotics. Resistance to β-lactams is often dependent upon β-lactamases. In B. cereus, B. thuringiensis, and some B. anthracis strains, the expression of some β-lactamases is inducible. This inducible β-lactamase expression is controlled by activation of an alternative σ factor called σP. Here, we show that β-lactam antibiotics induce σP activation by degradation of the anti-σ factor RsiP. Bacteria can utilize alternative σ factors to regulate sets of genes in response to changes in the environment. The largest and most diverse group of alternative σ factors are the extracytoplasmic function (ECF) σ factors. σP is an ECF σ factor found in Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Previous work showed that σP is induced by ampicillin, a β-lactam antibiotic, and required for resistance to ampicillin. However, it was not known how activation of σP is controlled or what other antibiotics may activate σP. Here, we report that activation of σP is specific to a subset of β-lactams and that σP is required for resistance to these β-lactams. We demonstrate that activation of σP is controlled by the proteolytic destruction of the anti-σ factor RsiP and that degradation of RsiP requires multiple proteases. Upon exposure to β-lactams, the extracellular domain of RsiP is cleaved by an unknown protease, which we predict cleaves at site-1. Following cleavage by the unknown protease, the N terminus of RsiP is further degraded by the site-2 intramembrane protease RasP. Our data indicate that RasP cleavage of RsiP is not the rate-limiting step in σP activation. This proteolytic cascade leads to activation of σP, which induces resistance to β-lactams likely via increased expression of β-lactamases. IMPORTANCE The discovery of antibiotics to treat bacterial infections has had a dramatic and positive impact on human health. However, shortly after the introduction of a new antibiotic, bacteria often develop resistance. The bacterial cell envelope is essential for cell viability and is the target of many of the most commonly used antibiotics, including β-lactam antibiotics. Resistance to β-lactams is often dependent upon β-lactamases. In B. cereus, B. thuringiensis, and some B. anthracis strains, the expression of some β-lactamases is inducible. This inducible β-lactamase expression is controlled by activation of an alternative σ factor called σP. Here, we show that β-lactam antibiotics induce σP activation by degradation of the anti-σ factor RsiP.
Collapse
|
30
|
Zhao H, Roistacher DM, Helmann JD. Deciphering the essentiality and function of the anti-σ M factors in Bacillus subtilis. Mol Microbiol 2019; 112:482-497. [PMID: 30715747 PMCID: PMC6679829 DOI: 10.1111/mmi.14216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
Abstract
Bacteria use alternative sigma factors to adapt to different growth and stress conditions. The Bacillus subtilis extracytoplasmic function sigma factor SigM regulates genes for cell wall synthesis and is crucial for maintaining cell wall homeostasis under stress conditions. The activity of SigM is regulated by its anti-sigma factor, YhdL, and the accessory protein YhdK. Here, we show that dysregulation of SigM caused by the absence of either component of the anti-sigma factor complex leads to toxic levels of SigM and severe growth defects. High SigM activity results from a dysregulated positive feedback loop, and can be suppressed by overexpression of the housekeeping sigma, SigA. Using a sigM merodiploid strain, we selected for suppressor mutations that allow survival of yhdL depletion strain. The recovered suppressor mutations map to the beta and beta-prime subunits of RNA polymerase core enzyme and selectively reduce SigM activity, and in some cases increase the activity of other alternative sigma factors. This work highlights the ability of mutations in RNA polymerase that remodel the sigma-core interface to differentially affect sigma factor activity, and thereby alter the transcriptional landscape of the cell.
Collapse
Affiliation(s)
- Heng Zhao
- Cornell University, Department of Microbiology, Ithaca, NY, USA
| | | | - John D. Helmann
- Cornell University, Department of Microbiology, Ithaca, NY, USA
| |
Collapse
|
31
|
Ho TD, Ellermeier CD. Activation of the extracytoplasmic function σ factor σ V by lysozyme. Mol Microbiol 2019; 112:410-419. [PMID: 31286585 DOI: 10.1111/mmi.14348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
σV is an extracytoplasmic function (ECF) σ factor that is found exclusively in Firmicutes including Bacillus subtilis and the opportunistic pathogens Clostridioides difficile and Enterococcus faecalis. σV is activated by lysozyme and is required for lysozyme resistance. The activity of σV is normally inhibited by the anti-σ factor RsiV, a transmembrane protein. RsiV acts as a receptor for lysozyme. The binding of lysozyme to RsiV triggers a signal transduction cascade which results in degradation of RsiV and activation of σV . Like the anti-σ factors for several other ECF σ factors, RsiV is degraded by a multistep proteolytic cascade that is regulated at the step of site-1 cleavage. Unlike other anti-σ factors, site-1 cleavage of RsiV is not dependent upon a site-1 protease whose activity is regulated. Instead constitutively active signal peptidase cleaves RsiV at site-1 in a lysozyme-dependent manner. The activation of σV leads to the transcription of genes, which encode proteins required for lysozyme resistance.
Collapse
Affiliation(s)
- Theresa D Ho
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 431 Newton Rd, Iowa City, IA, 52242, USA
| | - Craig D Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 431 Newton Rd, Iowa City, IA, 52242, USA.,Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
32
|
Gaballa A, Guariglia-Oropeza V, Dürr F, Butcher BG, Chen AY, Chandrangsu P, Helmann JD. Modulation of extracytoplasmic function (ECF) sigma factor promoter selectivity by spacer region sequence. Nucleic Acids Res 2019; 46:134-145. [PMID: 29069433 PMCID: PMC5758882 DOI: 10.1093/nar/gkx953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/05/2017] [Indexed: 11/27/2022] Open
Abstract
The ability of bacteria to adapt to stress depends on the conditional expression of specific sets of genes. Bacillus subtilis encodes seven extracytoplasmic function (ECF) sigma (σ) factors that regulate functions important for survival under conditions eliciting cell envelope stress. Of these, four have been studied in detail: σM, σW, σX and σV. These four σ factors recognize overlapping sets of promoters, although the sequences that determine this overlapping recognition are incompletely understood. A major role in promoter selectivity has been ascribed to the core −10 and −35 promoter elements. Here, we demonstrate that a homopolymeric T-tract motif, proximal to the −35 element, functions in combination with the core promoter sequences to determine selectivity for ECF sigma factors. This motif is most critical for promoter activation by σV, and contributes variably to activation by σM, σX and σW. We propose that this motif, which is a feature of the deduced promoter consensus for a subset of ECF σ factors from many species, imparts intrinsic DNA curvature to influence promoter activity. The differential effect of this region among ECF σ factors thereby provides a mechanism to modulate the nature and extent of regulon overlap.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | - Franziska Dürr
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Bronwyn G Butcher
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Albert Y Chen
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Pete Chandrangsu
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
33
|
Identification of Pneumococcal Factors Affecting Pneumococcal Shedding Shows that the dlt Locus Promotes Inflammation and Transmission. mBio 2019; 10:mBio.01032-19. [PMID: 31213554 PMCID: PMC6581856 DOI: 10.1128/mbio.01032-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a common cause of respiratory tract and invasive infection. The overall effectiveness of immunization with the organism’s capsular polysaccharide depends on its ability to block colonization of the upper respiratory tract and thereby prevent host-to-host transmission. Because of the limited coverage of current pneumococcal vaccines, we carried out an unbiased in vivo transposon mutagenesis screen to identify pneumococcal factors other than its capsular polysaccharide that affect transmission. One such candidate was expressed by the dlt locus, previously shown to add d-alanine onto the pneumococcal lipoteichoic acid present on the bacterial cell surface. This modification protects against host antimicrobials and augments host inflammatory responses. The latter increases secretions and bacterial shedding from the upper respiratory tract to allow for transmission. Thus, this study provides insight into a mechanism employed by the pneumococcus to successfully transit from one host to another. Host-to-host transmission is a necessary but poorly understood aspect of microbial pathogenesis. Herein, we screened a genomic library of mutants of the leading respiratory pathogen Streptococcus pneumoniae generated by mariner transposon mutagenesis (Tn-Seq) to identify genes contributing to its exit or shedding from the upper respiratory tract (URT), the limiting step in the organism’s transmission in an infant mouse model. Our analysis focused on genes affecting the bacterial surface that directly impact interactions with the host. Among the multiple factors identified was the dlt locus, which adds d-alanine onto lipoteichoic acids (LTA) and thereby increases Toll-like receptor 2-mediated inflammation and resistance to antimicrobial peptides. The more robust proinflammatory response in the presence of d-alanylation promotes secretions that facilitate pneumococcal shedding and allows for transmission. Expression of the dlt locus is controlled by the CiaRH system, which senses cell wall stress in response to antimicrobial activity, including in response to lysozyme, the most abundant antimicrobial along the URT mucosa. Accordingly, in a lysM−/− host, there was no longer an effect of the dlt locus on pneumococcal shedding. Thus, our findings demonstrate how a pathogen senses the URT milieu and then modifies its surface characteristics to take advantage of the host response for transit to another host.
Collapse
|
34
|
Helmann JD. Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol Microbiol 2019; 112:335-347. [PMID: 31119812 DOI: 10.1111/mmi.14309] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription is the fundamental process that enables the expression of genetic information. DNA-directed RNA polymerase (RNAP) uses one strand of the DNA duplex as template to produce complementary RNA molecules that serve in translation (rRNA, tRNA), protein synthesis (mRNA) and regulation (sRNA). Although the RNAP core is catalytically competent for RNA synthesis, the selectivity of transcription initiation requires a sigma (σ) factor for promoter recognition and opening. Expression of alternative σ factors provides a powerful mechanism to control the expression of discrete sets of genes (a σ regulon) in response to specific nutritional, developmental or stress-related signals. Here, I review the key insights that led to the original discovery of σ factor 50 years ago and the subsequent discovery of alternative σ factors as a ubiquitous mechanism of bacterial gene regulation. These studies form a prelude to the more recent, genomics-enabled insights into the vast diversity of σ factors in bacteria.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
35
|
Brott AS, Jones CS, Clarke AJ. Development of a High Throughput Screen for the Identification of Inhibitors of Peptidoglycan O-Acetyltransferases, New Potential Antibacterial Targets. Antibiotics (Basel) 2019; 8:E65. [PMID: 31137799 PMCID: PMC6627197 DOI: 10.3390/antibiotics8020065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/02/2022] Open
Abstract
The O-acetylation of peptidoglycan occurs in many Gram-negative and most Gram-positive pathogens and this modification to the essential wall polymer controls the lytic activity of the autolysins, particularly the lytic transglycosylases, and inhibits that of the lysozymes of innate immunity systems. As such, the peptidoglycan O-acetyltransferases PatA/B and OatA are recognized as virulence factors. In this study, we present the high throughput screening of small compound libraries to identify the first known inhibitors of these enzymes. The fluorometric screening assay developed involved monitoring the respective O-acetyltransferases as esterases using 4-methylumbelliferylacetate as substrate. Pilot screens of 3921 compounds validated the usefulness of the HTS protocol. A number of potential inhibitors were identified amongst a total of 145,000 low molecular-weight compounds, some of which were common to both enzymes, while others were unique to each. After eliminating a number of false positives in secondary screens, dose response curves confirmed the apparent specificity of a benzothiazolyl-pyrazolo-pyridine as an inhibitor of Neisseria gonorrhoeae PatB, and several coumarin-based compounds as inhibitors of both this PatB and OatA from Staphylococcus aureus. The benzothiazolyl-pyrazolo-pyridine was determined to be a non-competitive inhibitor of PatB with a Ki of 126 µM. At 177 µg/mL and close to its solubility limit, this compound caused a 90% reduction in growth of N. gonorrhoeae, while growth of Escherichia coli, a bacterium that lacks PatB and, hence, does not produce O-acetylated peptidoglycan, was unaffected. These data provide preliminary proof of concept that peptidoglycan O-acetyltransferases would serve as useful antibacterial targets.
Collapse
Affiliation(s)
- Ashley S Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Carys S Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
36
|
Seki T, Furumi T, Hashimoto M, Hara H, Matsuoka S. Activation of extracytoplasmic function sigma factors upon removal of glucolipids and reduction of phosphatidylglycerol content in Bacillus subtilis cells lacking lipoteichoic acid. Genes Genet Syst 2019; 94:71-80. [PMID: 30971625 DOI: 10.1266/ggs.18-00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Bacillus subtilis, extracytoplasmic function (ECF) sigma factors are activated by reduction of phosphatidylglycerol (PG) content, absence of glucolipids, or absence of lipoteichoic acid (LTA). LTA is synthesized by polymerization of the glycerophosphate moiety of PG onto diglucosyldiacylglycerol (DGlcDG), a major glucolipid in B. subtilis, in the plasma membrane. Thus, reduction of PG content or absence of glucolipids might cause some changes in LTA, and hence we investigated whether reduction of PG content or absence of glucolipids induces the activation of ECF sigma factors independently from an ensuing change in LTA. Disruption of ugtP, responsible for glucolipid synthesis, in cells lacking LTA caused an additive increase of activation levels of σM, σX, σV and σY (3.1-, 2.2-, 2.1- and 1.4-fold, respectively), relative to their activation levels in cells lacking LTA alone. Reduction of PG content (by repressing Pspac-pgsA) in the cells lacking LTA caused an additive increase of activation levels of σM, σW and σV (2.3-, 1.9- and 2.2-fold, respectively). These results suggested that absence of glucolipids or reduction of PG alone, not the possible secondary alteration in LTA, leads to changes that affect the regulation systems of some ECF sigma factors in the plasma membrane.
Collapse
Affiliation(s)
- Takahiro Seki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Takuya Furumi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Michihiro Hashimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
37
|
Mendonça AA, da Silva PKN, Calazans TLS, de Souza RB, de Barros Pita W, Elsztein C, de Morais Junior MA. Lactobacillus vini: mechanistic response to stress by medium acidification. Microbiology (Reading) 2019; 165:26-36. [DOI: 10.1099/mic.0.000738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | | | | | | | - Will de Barros Pita
- 3Department of Antibiotics, Federal University of Pernambuco, Recife, Brazil
| | - Carolina Elsztein
- 1Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
38
|
Abstract
Membrane-bound O-acyltransferases (MBOATs) are a superfamily of integral transmembrane enzymes that are found in all kingdoms of life1. In bacteria, MBOATs modify protective cell-surface polymers. In vertebrates, some MBOAT enzymes-such as acyl-coenzyme A:cholesterol acyltransferase and diacylglycerol acyltransferase 1-are responsible for lipid biosynthesis or phospholipid remodelling2,3. Other MBOATs, including porcupine, hedgehog acyltransferase and ghrelin acyltransferase, catalyse essential lipid modifications of secreted proteins such as Wnt, hedgehog and ghrelin, respectively4-10. Although many MBOAT proteins are important drug targets, little is known about their molecular architecture and functional mechanisms. Here we present crystal structures of DltB, an MBOAT responsible for the D-alanylation of cell-wall teichoic acid in Gram-positive bacteria11-16, both alone and in complex with the D-alanyl donor protein DltC. DltB contains a ring of 11 peripheral transmembrane helices, which shield a highly conserved extracellular structural funnel extending into the middle of the lipid bilayer. The conserved catalytic histidine residue is located at the bottom of this funnel and is connected to the intracellular DltC through a narrow tunnel. Mutation of either the catalytic histidine or the DltC-binding site of DltB abolishes the D-alanylation of lipoteichoic acid and sensitizes the Gram-positive bacterium Bacillus subtilis to cell-wall stress, which suggests cross-membrane catalysis involving the tunnel. Structure-guided sequence comparison among DltB and vertebrate MBOATs reveals a conserved structural core and suggests that MBOATs from different organisms have similar catalytic mechanisms. Our structures provide a template for understanding structure-function relationships in MBOATs and for developing therapeutic MBOAT inhibitors.
Collapse
|
39
|
Yadav AK, Espaillat A, Cava F. Bacterial Strategies to Preserve Cell Wall Integrity Against Environmental Threats. Front Microbiol 2018; 9:2064. [PMID: 30233540 PMCID: PMC6127315 DOI: 10.3389/fmicb.2018.02064] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Bacterial cells are surrounded by an exoskeleton-like structure, the cell wall, composed primarily of the peptidoglycan (PG) sacculus. This structure is made up of glycan strands cross-linked by short peptides generating a covalent mesh that shapes bacteria and prevents their lysis due to their high internal osmotic pressure. Even though the PG is virtually universal in bacteria, there is a notable degree of diversity in its chemical structure. Modifications in both the sugars and peptides are known to be instrumental for bacteria to cope with diverse environmental challenges. In this review, we summarize and discuss the cell wall strategies to withstand biotic and abiotic environmental insults such as the effect of antibiotics targeting cell wall enzymes, predatory PG hydrolytic proteins, and PG signaling systems. Finally we will discuss the opportunities that species-specific PG variability might open to develop antimicrobial therapies.
Collapse
Affiliation(s)
- Akhilesh K Yadav
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
40
|
Lewerke LT, Kies PJ, Müh U, Ellermeier CD. Bacterial sensing: A putative amphipathic helix in RsiV is the switch for activating σV in response to lysozyme. PLoS Genet 2018; 14:e1007527. [PMID: 30020925 PMCID: PMC6066255 DOI: 10.1371/journal.pgen.1007527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/30/2018] [Accepted: 07/01/2018] [Indexed: 02/06/2023] Open
Abstract
Extra Cytoplasmic Function (ECF) σ factors are a diverse group of alternate σ factors bacteria use to respond to changes in the environment. The Bacillus subtilis ECF σ factor σV responds to lysozyme. In the absence of lysozyme, σV is held inactive by the anti-σ factor, RsiV. In the presence of lysozyme RsiV is degraded via regulated intramembrane proteolysis, which results in the release of σV and thus activation of lysozyme resistance genes. Signal peptidase is required to initiate degradation of RsiV. Previous work indicated that RsiV only becomes sensitive to signal peptidase upon direct binding to lysozyme. We have identified a unique domain of RsiV that is responsible for protecting RsiV from cleavage by signal peptidase in the absence of lysozyme. We provide evidence that this domain contains putative amphipathic helices. Disruption of the hydrophobic surface of these helices by introducing positively charged residues results in constitutive cleavage of RsiV by signal peptidase and thus constitutive σV activation. We provide further evidence that this domain contains amphipathic helices using a membrane-impermeable reagent. Finally, we show that upon lysozyme binding to RsiV, the hydrophobic face of the amphipathic helix becomes accessible to a membrane-impermeable reagent. Thus, we propose the amphipathic helices protect RsiV from cleavage in the absence of lysozyme. Additionally, we propose the amphipathic helices rearrange to form a suitable signal peptidase substrate upon binding of RsiV to lysozyme leading to the activation of σV. Signal transduction involves (i) sensing a signal, (ii) a molecular switch triggering a response, and (iii) altering gene expression. For Bacillus subtilis’ response to lysozyme, we have a detailed understanding of (i) and (iii). Here we provide insights for a molecular switch that triggers the lysozyme response via σV activation. RsiV, an inhibitor of σV activity, is cleaved by signal peptidase only in the presence of lysozyme. Signal peptidase constitutively cleaves substrates that are translocated across the membrane. A domain-of-unknown-function (DUF4179) in RsiV contains the signal peptidase cleavage site, and protects RsiV from cleavage in the absence of lysozyme via amphipathic helices. In addition to RsiV, DUF4179 is found in an unrelated and uncharacterized anti-σ factor present in Firmicutes including within some clinically-relevant species.
Collapse
Affiliation(s)
- Lincoln T Lewerke
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Paige J Kies
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Craig D Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America.,Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
41
|
Ragland SA, Humbert MV, Christodoulides M, Criss AK. Neisseria gonorrhoeae employs two protein inhibitors to evade killing by human lysozyme. PLoS Pathog 2018; 14:e1007080. [PMID: 29975775 PMCID: PMC6033460 DOI: 10.1371/journal.ppat.1007080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
The bacterial pathogen Neisseria gonorrhoeae (Gc) infects mucosal sites rich in antimicrobial proteins, including the bacterial cell wall-degrading enzyme lysozyme. Certain Gram-negative bacteria produce protein inhibitors that bind to and inhibit lysozyme. Here, we identify Ng_1063 as a new inhibitor of lysozyme in Gc, and we define its functions in light of a second, recently identified lysozyme inhibitor, Ng_1981. In silico analyses indicated that Ng_1063 bears sequence and structural homology to MliC-type inhibitors of lysozyme. Recombinant Ng_1063 inhibited lysozyme-mediated killing of a susceptible mutant of Gc and the lysozyme-sensitive bacterium Micrococcus luteus. This inhibitory activity was dependent on serine 83 and lysine 103 of Ng_1063, which are predicted to interact with lysozyme’s active site residues. Lysozyme co-immunoprecipitated with Ng_1063 and Ng_1981 from intact Gc. Ng_1063 and Ng_1981 protein levels were also increased in Gc exposed to lysozyme. Gc lacking both ng1063 and ng1981 was significantly more sensitive to killing by lysozyme than wild-type or single mutant bacteria. When exposed to human tears or saliva, in which lysozyme is abundant, survival of Δ1981Δ1063 Gc was significantly reduced compared to wild-type, and survival was restored upon addition of recombinant Ng_1981. Δ1981Δ1063 mutant Gc survival was additionally reduced in the presence of human neutrophils, which produce lysozyme. We found that while Ng_1063 was exposed on the surface of Gc, Ng_1981 was both in an intracellular pool and extracellularly released from the bacteria, suggesting that Gc employs these two proteins at multiple spatial barriers to fully neutralize lysozyme activity. Together, these findings identify Ng_1063 and Ng_1981 as critical components for Gc defense against lysozyme. These proteins may be attractive targets for antimicrobial therapy aimed to render Gc susceptible to host defenses and/or for vaccine development, both of which are urgently needed against drug-resistant gonorrhea. The mucosal pathogen Neisseria gonorrhoeae has acquired resistance to almost all recommended antibiotics, and no gonorrhea vaccine currently exists. Attractive targets for therapeutic discovery include bacterial factors that, when inactivated, enhance bacterial susceptibility to host-derived antimicrobial components. The bacterial cell wall-degrading enzyme lysozyme is abundant in mucosal secretions and innate immune cells. To resist killing by lysozyme, some bacteria produce proteins that bind to and directly inhibit the activity of lysozyme. Here, we demonstrate lysozyme inhibitory activity in the N. gonorrhoeae protein Ng_1063. We found that both Ng_1063 and a second, recently described lysozyme inhibitor, Ng_1981, contribute to full resistance of N. gonorrhoeae to lysozyme, including resistance to lysozyme-rich mucosal secretions and human neutrophils. Although Ng_1063 and Ng_1981 are both inhibitors of lysozyme, they are distinct in their sequences, biological activities, and cellular localizations. Because both Ng_1063 and Ng_1981 are extracellular, we propose they can be targeted for vaccines and drugs that sensitize Gc to human antimicrobial defenses.
Collapse
Affiliation(s)
- Stephanie A. Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Marίa V. Humbert
- Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
42
|
Synthetic antimicrobial peptides delocalize membrane bound proteins thereby inducing a cell envelope stress response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2416-2427. [PMID: 29894683 DOI: 10.1016/j.bbamem.2018.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Three amphipathic cationic antimicrobial peptides (AMPs) were characterized by determining their effect on Gram-positive bacteria using Bacillus subtilis strain 168 as a model organism. These peptides were TC19 and TC84, derivatives of thrombocidin-1 (TC-1), the major AMPs of human blood platelets, and Bactericidal Peptide 2 (BP2), a synthetic designer peptide based on human bactericidal permeability increasing protein (BPI). METHODS To elucidate the possible mode of action of the AMPs we performed a transcriptomic analysis using microarrays. Physiological analyses were performed using transmission electron microscopy (TEM), fluorescence microscopy and various B. subtilis mutants that produce essential membrane bound proteins fused to green fluorescent protein (GFP). RESULTS The transcriptome analysis showed that the AMPs induced a cell envelope stress response (cell membrane and cell wall). The cell membrane stress response was confirmed with the physiological observations that TC19, TC84 and BP2 perturb the membrane of B. subtilis. Using B. subtilis mutants, we established that the cell wall stress response is due to the delocalization of essential membrane bound proteins involved in cell wall synthesis. Other essential membrane proteins, involved in cell membrane synthesis and metabolism, were also delocalized due to alterations caused by the AMPs. CONCLUSIONS We showed that peptides TC19, TC84 and BP2 perturb the membrane causing essential proteins to delocalize, thus preventing the possible repair of the cell envelope after the initial interference with the membrane. GENERAL SIGNIFICANCE These AMPs show potential for eventual clinical application against Gram-positive bacterial cells and merit further application-oriented investigation.
Collapse
|
43
|
Signal Peptidase Is Necessary and Sufficient for Site 1 Cleavage of RsiV in Bacillus subtilis in Response to Lysozyme. J Bacteriol 2018; 200:JB.00663-17. [PMID: 29358498 DOI: 10.1128/jb.00663-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 01/09/2023] Open
Abstract
Extracytoplasmic function (ECF) σ factors are a diverse family of alternative σ factors that allow bacteria to sense and respond to changes in the environment. σV is an ECF σ factor found primarily in low-GC Gram-positive bacteria and is required for lysozyme resistance in several opportunistic pathogens. In the absence of lysozyme, σV is inhibited by the anti-σ factor RsiV. In response to lysozyme, RsiV is degraded via the process of regulated intramembrane proteolysis (RIP). RIP is initiated by cleavage of RsiV at site 1, which allows the intramembrane protease RasP to cleave RsiV within the transmembrane domain at site 2 and leads to activation of σV Previous work suggested that RsiV is cleaved by signal peptidase at site 1. Here we demonstrate in vitro that signal peptidase is sufficient for cleavage of RsiV only in the presence of lysozyme and provide evidence that multiple Bacillus subtilis signal peptidases can cleave RsiV in vitro This cleavage is dependent upon the concentration of lysozyme, consistent with previous work that showed that binding to RsiV was required for σV activation. We also show that signal peptidase activity is required for site 1 cleavage of RsiV in vivo Thus, we demonstrate that signal peptidase is the site 1 protease for RsiV.IMPORTANCE Extracytoplasmic function (ECF) σ factors are a diverse family of alternative σ factors that respond to extracellular signals. The ECF σ factor σV is present in many low-GC Gram-positive bacteria and induces resistance to lysozyme, a component of the innate immune system. The anti-σ factor RsiV inhibits σV activity in the absence of lysozyme. Lysozyme binds RsiV, which initiates a proteolytic cascade leading to destruction of RsiV and activation of σV This proteolytic cascade is initiated by signal peptidase, a component of the general secretory system. We show that signal peptidase is necessary and sufficient for cleavage of RsiV at site 1 in the presence of lysozyme. This report describes a role for signal peptidase in controlling gene expression.
Collapse
|
44
|
Maciejewska B, Olszak T, Drulis-Kawa Z. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol 2018; 102:2563-2581. [PMID: 29442169 PMCID: PMC5847195 DOI: 10.1007/s00253-018-8811-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/21/2023]
Abstract
Bacteriophages (phages) are viruses that infect bacteria. The "predator-prey" interactions are recognized as a potentially effective way to treat infections. Phages, as well as phage-derived proteins, especially enzymes, are intensively studied to become future alternative or supportive antibacterials used alone or in combination with standard antibiotic regimens treatment. There are many publications presenting phage therapy aspects, and some papers focused separately on the application of phage-derived enzymes. In this review, we discuss advantages and limitations of both agents concerning their specificity, mode of action, structural issues, resistance development, pharmacokinetics, product preparation, and interactions with the immune system. Finally, we describe the current regulations for phage-based product application.
Collapse
Affiliation(s)
- Barbara Maciejewska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Tomasz Olszak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.
| |
Collapse
|
45
|
Love MJ, Bhandari D, Dobson RCJ, Billington C. Potential for Bacteriophage Endolysins to Supplement or Replace Antibiotics in Food Production and Clinical Care. Antibiotics (Basel) 2018; 7:E17. [PMID: 29495476 PMCID: PMC5872128 DOI: 10.3390/antibiotics7010017] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/06/2018] [Accepted: 02/23/2018] [Indexed: 01/21/2023] Open
Abstract
There is growing concern about the emergence of bacterial strains showing resistance to all classes of antibiotics commonly used in human medicine. Despite the broad range of available antibiotics, bacterial resistance has been identified for every antimicrobial drug developed to date. Alarmingly, there is also an increasing prevalence of multidrug-resistant bacterial strains, rendering some patients effectively untreatable. Therefore, there is an urgent need to develop alternatives to conventional antibiotics for use in the treatment of both humans and food-producing animals. Bacteriophage-encoded lytic enzymes (endolysins), which degrade the cell wall of the bacterial host to release progeny virions, are potential alternatives to antibiotics. Preliminary studies show that endolysins can disrupt the cell wall when applied exogenously, though this has so far proven more effective in Gram-positive bacteria compared with Gram-negative bacteria. Their potential for development is furthered by the prospect of bioengineering, and aided by the modular domain structure of many endolysins, which separates the binding and catalytic activities into distinct subunits. These subunits can be rearranged to create novel, chimeric enzymes with optimized functionality. Furthermore, there is evidence that the development of resistance to these enzymes may be more difficult compared with conventional antibiotics due to their targeting of highly conserved bonds.
Collapse
Affiliation(s)
- Michael J Love
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Dinesh Bhandari
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne 3052, Australia.
| | - Craig Billington
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand.
| |
Collapse
|
46
|
Guariglia-Oropeza V, Orsi RH, Guldimann C, Wiedmann M, Boor KJ. The Listeria monocytogenes Bile Stimulon under Acidic Conditions Is Characterized by Strain-Specific Patterns and the Upregulation of Motility, Cell Wall Modification Functions, and the PrfA Regulon. Front Microbiol 2018; 9:120. [PMID: 29467736 PMCID: PMC5808219 DOI: 10.3389/fmicb.2018.00120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/18/2018] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes uses a variety of transcriptional regulation strategies to adapt to the extra-host environment, the gastrointestinal tract, and the intracellular host environment. While the alternative sigma factor SigB has been proposed to be a key transcriptional regulator that facilitates L. monocytogenes adaptation to the gastrointestinal environment, the L. monocytogenes' transcriptional response to bile exposure is not well-understood. RNA-seq characterization of the bile stimulon was performed in two L. monocytogenes strains representing lineages I and II. Exposure to bile at pH 5.5 elicited a large transcriptomic response with ~16 and 23% of genes showing differential transcription in 10403S and H7858, respectively. The bile stimulon includes genes involved in motility and cell wall modification mechanisms, as well as genes in the PrfA regulon, which likely facilitate survival during the gastrointestinal stages of infection that follow bile exposure. The fact that bile exposure induced the PrfA regulon, but did not induce further upregulation of the SigB regulon (beyond that expected by exposure to pH 5.5), suggests a model where at the earlier stages of gastrointestinal infection (e.g., acid exposure in the stomach), SigB-dependent gene expression plays an important role. Subsequent exposure to bile induces the PrfA regulon, potentially priming L. monocytogenes for subsequent intracellular infection stages. Some members of the bile stimulon showed lineage- or strain-specific distribution when 27 Listeria genomes were analyzed. Even though sigB null mutants showed increased sensitivity to bile, the SigB regulon was not found to be upregulated in response to bile beyond levels expected by exposure to pH 5.5. Comparison of wildtype and corresponding ΔsigB strains newly identified 26 SigB-dependent genes, all with upstream putative SigB-dependent promoters.
Collapse
Affiliation(s)
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Claudia Guldimann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Kathryn J Boor
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
47
|
Rojas-Tapias DF, Helmann JD. Induction of the Spx regulon by cell wall stress reveals novel regulatory mechanisms in Bacillus subtilis. Mol Microbiol 2018; 107:659-674. [PMID: 29271514 DOI: 10.1111/mmi.13906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022]
Abstract
The transcription factor Spx is the master regulator of the disulfide stress response in Bacillus subtilis. Intriguingly, the activation of Spx by diamide relies entirely on posttranslational regulatory events in spite of the complex transcriptional control of the spx gene. Here, we show that cell wall stress, but not membrane stress, also results in induction of the Spx regulon. Remarkably, two major differences were found regarding the mechanism of induction of Spx under cell wall stress in comparison to disulfide stress. First, transcriptional induction of the spx gene from a σM -dependent promoter is required for accumulation of Spx in response to cell wall stress. Second, activation of the Spx regulon during cell wall stress is not accompanied by oxidation of the Spx disulfide switch. Finally, we demonstrate that cells lacking Spx have increased sensitivity toward antibiotics inhibiting both early and late steps in peptidoglycan synthesis, suggesting that the Spx regulon plays an important adaptive role in the cell wall stress response. This study expands the functional role of the Spx regulon and reveals novel regulatory mechanisms that result in induction of Spx in B. subtilis.
Collapse
Affiliation(s)
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
48
|
Toyoda K, Inui M. Extracytoplasmic function sigma factor σDconfers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures inCorynebacterium glutamicum. Mol Microbiol 2017; 107:312-329. [DOI: 10.1111/mmi.13883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Koichi Toyoda
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawa; Kyoto 619-0292 Japan
| | - Masayuki Inui
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawa; Kyoto 619-0292 Japan
- Graduate School of Biological Sciences; Nara Institute of Science and Technology, 8916-5; Takayama, Ikoma, Nara 630-0101 Japan
| |
Collapse
|
49
|
Radeck J, Lautenschläger N, Mascher T. The Essential UPP Phosphatase Pair BcrC and UppP Connects Cell Wall Homeostasis during Growth and Sporulation with Cell Envelope Stress Response in Bacillus subtilis. Front Microbiol 2017; 8:2403. [PMID: 29259598 PMCID: PMC5723303 DOI: 10.3389/fmicb.2017.02403] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 12/03/2022] Open
Abstract
The bacterial cell wall separates the cell from its surrounding and protects it from environmental stressors. Its integrity is maintained by a highly regulated process of cell wall biosynthesis. The membrane-located lipid II cycle provides cell wall building blocks that are assembled inside the cytoplasm to the outside for incorporation. Its carrier molecule, undecaprenyl phosphate (UP), is then recycled by dephosphorylation from undecaprenyl pyrophosphate (UPP). In Bacillus subtilis, this indispensable reaction is catalyzed by the UPP phosphatases BcrC and UppP. Here, we study the physiological function of both phosphatases with respect to morphology, cell wall homeostasis and the resulting cell envelope stress response (CESR). We demonstrate that uppP and bcrC represent a synthetic lethal gene pair, which encodes an essential physiological function. Accordingly, cell growth and morphology were severely impaired during exponential growth if the overall UPP phosphatase level was limiting. UppP, but not BcrC, was crucial for normal sporulation. Expression of bcrC, but not uppP, was upregulated in the presence of cell envelope stress conditions caused by bacitracin if UPP phosphatase levels were limited. This homeostatic feedback renders BcrC more important during growth than UppP, particularly in defense against cell envelope stress.
Collapse
Affiliation(s)
- Jara Radeck
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | | | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
50
|
Abstract
Lysozyme is a cornerstone of innate immunity. The canonical mechanism for bacterial killing by lysozyme occurs through the hydrolysis of cell wall peptidoglycan (PG). Conventional type (c-type) lysozymes are also highly cationic and can kill certain bacteria independently of PG hydrolytic activity. Reflecting the ongoing arms race between host and invading microorganisms, both gram-positive and gram-negative bacteria have evolved mechanisms to thwart killing by lysozyme. In addition to its direct antimicrobial role, more recent evidence has shown that lysozyme modulates the host immune response to infection. The degradation and lysis of bacteria by lysozyme enhance the release of bacterial products, including PG, that activate pattern recognition receptors in host cells. Yet paradoxically, lysozyme is important for the resolution of inflammation at mucosal sites. This review will highlight recent advances in our understanding of the diverse mechanisms that bacteria use to protect themselves against lysozyme, the intriguing immunomodulatory function of lysozyme, and the relationship between these features in the context of infection.
Collapse
Affiliation(s)
- Stephanie A. Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|