1
|
Zhang Q, Zhu W, He S, Lei J, Xu L, Hu S, Zhang Z, Cai D, Chen S. Understanding energy fluctuation during the transition state: The role of AbrB in Bacillus licheniformis. Microb Cell Fact 2024; 23:296. [PMID: 39491006 PMCID: PMC11533420 DOI: 10.1186/s12934-024-02572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Limited research has been conducted on energy fluctuation during the transition state, despite the critical role of energy supply in microbial physiological metabolism. RESULTS This study aimed to investigate the regulatory function of transition state transcription factor AbrB on energy metabolism in Bacillus licheniformis WX-02. Firstly, the deletion of abrB was found to prolong the cell generation time, significantly reducing the intercellular ATP concentration and NADH/NAD+ ratio at the early stage. Subsequently, various target genes and transcription factors regulated by AbrB were identified through in vitro verification assays. Specifically, AbrB was shown to modulate energy metabolism by directly regulating the expression of genes pyk and pgk in substrate-level phosphorylation, as well as genes narK and narGHIJ associated with nitrate respiration. In terms of oxidative phosphorylation, AbrB not only directly regulated ATP generation genes, including cyd, atpB, hmp, ndh, qoxA and sdhC, but also influenced the expression of NAD-dependent enzymes and intracellular NADH/NAD+ ratio. Additionally, AbrB positively affected the expression of transcription factors CcpN, Fnr, Rex, and ResD involved in energy supply, while negatively affected the regulator CcpA. Overall, this study found that AbrB positively regulates both substrate-level phosphorylation and oxidative phosphorylation, while negatively regulating nitrate respiration. CONCLUSIONS This study proposes a comprehensive regulatory network of AbrB on energy metabolism in Bacillus, expanding the understanding of regulatory mechanisms of AbrB and elucidating energy fluctuations during the transition state.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Wanying Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Shisi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Jiaqi Lei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Liangsheng Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Shiying Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Zheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China.
| |
Collapse
|
2
|
Crack JC, Le Brun NE. Binding of a single nitric oxide molecule is sufficient to disrupt DNA binding of the nitrosative stress regulator NsrR. Chem Sci 2024:d4sc04618h. [PMID: 39464610 PMCID: PMC11500311 DOI: 10.1039/d4sc04618h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
The regulatory protein NsrR, a member of the Rrf2 protein superfamily, plays a major role in the cellular response to nitrosative stress in many benign and pathogenic bacteria. The homodimeric protein binds a [4Fe-4S] cluster in each subunit (termed holo NsrR), and represses transcription of genes primarily involved in NO detoxification. Holo NsrR reacts rapidly with multiple NO molecules per [4Fe-4S] cluster, via a complex reaction, with loss of DNA binding and formation of NsrR-bound iron-nitrosyl species. However, the point at which DNA binding is lost is unknown. Here, we demonstrate using surface plasmon resonance (SPR) and native mass spectrometry (MS) that holo NsrR binds the promoter regions of NsrR-regulated genes with promoter-dependent nanomolar affinity, while hemi-apo NsrR (i.e. one cluster per dimer) binds >10-fold less tightly, and the cluster-free (apo) form not at all. Strikingly, native MS provided detailed information about the reaction of NO with the physiologically relevant form of NsrR, i.e. DNA-bound dimeric NsrR. Reaction with a single NO molecule per NsrR dimer is sufficient to abolish DNA binding. This exquisite sensitivity of DNA binding to NO is consistent with the importance of de-repressing NO detoxification systems at the earliest opportunity to minimise damage due to nitrosative stress. Furthermore, the data show that previously characterised iron-nitrosyls, which form at higher ratios of NO to [4Fe-4S], are not physiologically relevant for regulating the NsrR on/off switch.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy and Pharmacology, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy and Pharmacology, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
3
|
Pang B, Zheng H, Ma S, Tian J, Wen Y. Nitric oxide sensor NsrR is the key direct regulator of magnetosome formation and nitrogen metabolism in Magnetospirillum. Nucleic Acids Res 2024; 52:2924-2941. [PMID: 38197240 PMCID: PMC11014258 DOI: 10.1093/nar/gkad1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Nitric oxide (NO) plays an essential role as signaling molecule in regulation of eukaryotic biomineralization, but its role in prokaryotic biomineralization is unknown. Magnetospirillum gryphiswaldense MSR-1, a model strain for studies of prokaryotic biomineralization, has the unique ability to form magnetosomes (magnetic organelles). We demonstrate here that magnetosome biomineralization in MSR-1 requires the presence of NsrRMg (an NO sensor) and a certain level of NO. MSR-1 synthesizes endogenous NO via nitrification-denitrification pathway to activate magnetosome formation. NsrRMg was identified as a global transcriptional regulator that acts as a direct activator of magnetosome gene cluster (MGC) and nitrification genes but as a repressor of denitrification genes. Specific levels of NO modulate DNA-binding ability of NsrRMg to various target promoters, leading to enhancing expression of MGC genes, derepressing denitrification genes, and repressing nitrification genes. These regulatory functions help maintain appropriate endogenous NO level. This study identifies for the first time the key transcriptional regulator of major MGC genes, clarifies the molecular mechanisms underlying NsrR-mediated NO signal transduction in magnetosome formation, and provides a basis for a proposed model of the role of NO in the evolutionary origin of prokaryotic biomineralization processes.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haolan Zheng
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shijia Ma
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiesheng Tian
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Dent MR, Weaver BR, Roberts MG, Burstyn JN. Carbon Monoxide-Sensing Transcription Factors: Regulators of Microbial Carbon Monoxide Oxidation Pathway Gene Expression. J Bacteriol 2023; 205:e0033222. [PMID: 37154694 PMCID: PMC10210986 DOI: 10.1128/jb.00332-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Carbon monoxide (CO) serves as a source of energy and carbon for a diverse set of microbes found in anaerobic and aerobic environments. The enzymes that bacteria and archaea use to oxidize CO depend upon complex metallocofactors that require accessory proteins for assembly and proper function. This complexity comes at a high energetic cost and necessitates strict regulation of CO metabolic pathways in facultative CO metabolizers to ensure that gene expression occurs only when CO concentrations and redox conditions are appropriate. In this review, we examine two known heme-dependent transcription factors, CooA and RcoM, that regulate inducible CO metabolism pathways in anaerobic and aerobic microorganisms. We provide an analysis of the known physiological and genomic contexts of these sensors and employ this analysis to contextualize known biochemical properties. In addition, we describe a growing list of putative transcription factors associated with CO metabolism that potentially use cofactors other than heme to sense CO.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian R. Weaver
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Madeleine G. Roberts
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
A Diverged Transcriptional Network for Usage of Two Fe-S Cluster Biogenesis Machineries in the Delta-Proteobacterium Myxococcus xanthus. mBio 2023; 14:e0300122. [PMID: 36656032 PMCID: PMC9973013 DOI: 10.1128/mbio.03001-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Myxococcus xanthus possesses two Fe-S cluster biogenesis machineries, ISC (iron-sulfur cluster) and SUF (sulfur mobilization). Here, we show that in comparison to the phylogenetically distant Enterobacteria, which also have both machineries, M. xanthus evolved an independent transcriptional scheme to coordinately regulate the expression of these machineries. This transcriptional response is directed by RisR, which we show to belong to a phylogenetically distant and biochemically distinct subgroup of the Rrf2 transcription factor family, in comparison to IscR that regulates the isc and suf operons in Enterobacteria. We report that RisR harbors an Fe-S cluster and that holo-RisR acts as a repressor of both the isc and suf operons, in contrast to Escherichia coli, where holo-IscR represses the isc operon whereas apo-IscR activates the suf operon. In addition, we establish that the nature of the cluster and the DNA binding sites of RisR, in the isc and suf operons, diverge from those of IscR. We further show that in M. xanthus, the two machineries appear to be fully interchangeable in maintaining housekeeping levels of Fe-S cluster biogenesis and in synthesizing the Fe-S cluster for their common regulator, RisR. We also demonstrate that in response to oxidative stress and iron limitation, transcriptional upregulation of the M. xanthus isc and suf operons was mediated solely by RisR and that the contribution of the SUF machinery was greater than the ISC machinery. Altogether, these findings shed light on the diversity of homeostatic mechanisms exploited by bacteria to coordinately use two Fe-S cluster biogenesis machineries. IMPORTANCE Fe-S proteins are ubiquitous and control a wide variety of key biological processes; therefore, maintaining Fe-S cluster homeostasis is an essential task for all organisms. Here, we provide the first example of how a bacterium from the Deltaproteobacteria branch coordinates expression of two Fe-S cluster biogenesis machineries. The results revealed a new model of coordination, highlighting the unique and common features that have independently emerged in phylogenetically distant bacteria to maintain Fe-S cluster homeostasis in response to environmental changes. Regulation is orchestrated by a previously uncharacterized transcriptional regulator, RisR, belonging to the Rrf2 superfamily, whose members are known to sense diverse environmental stresses frequently encountered by bacteria. Understanding how M. xanthus maintains Fe-S cluster homeostasis via RisR regulation revealed a strategy reflective of the aerobic lifestyle of this organsim. This new knowledge also paves the way to improve production of Fe-S-dependent secondary metabolites using M. xanthus as a chassis.
Collapse
|
6
|
Distinct Interaction Mechanism of RNAP and ResD and Distal Subsites for Transcription Activation of Nitrite Reductase in Bacillus subtilisψ. J Bacteriol 2021; 204:e0043221. [PMID: 34898263 DOI: 10.1128/jb.00432-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ResD-ResE signal transduction system plays a pivotal role in anaerobic nitrate respiration in Bacillus subtilis. The nasD operon encoding nitrite reductase is essential for nitrate respiration and is tightly controlled by the ResD response regulator. To understand the mechanism of ResD-dependent transcription activation of the nasD operon, we explored ResD-RNA polymerase (RNAP), ResD-DNA, and RNAP-DNA interactions required for nasD transcription. Full transcriptional activation requires the upstream promoter region where five molecules of ResD bind. The distal ResD-binding subsite at -87 to -84 partially overlaps a sequence similar to the consensus distal subsite of the upstream (UP) element with which the Escherichia coli C-terminal domain of the α subunit (αCTD) of RNAP interacts to stimulate transcription. We propose that interaction between αCTD and ResD at the promoter-distal site is essential for stimulating nasD transcription. Although nasD has an extended -10 promoter, it lacks a reasonable -35 element. Genetic analysis and structural simulations predicted that the absence of the -35 element might be compensated by interactions between σA and αCTD, and between αCTD and ResD at the promoter-proximal ResD-binding subsite. Thus, our work suggested that ResD likely participates in nasD transcription activation by binding to two αCTD subunits at the proximal and distal promoter sites, representing a unique configuration for transcription activation. IMPORTANCE A significant number of ResD-controlled genes have been identified and transcription regulatory pathways in which ResD participates have emerged. Nevertheless, the mechanism of how ResD activates transcription of different genes in a nucleotide sequence-specific manner has been less explored. This study suggested that among the five ResD-binding subsites in the promoter of the nasD operon, the promoter-proximal and -distal ResD-binding subsites play important roles in nasD activation by adapting different modes of protein-protein and protein-DNA interactions. The finding of a new-type of protein-promoter architecture provides insight into the understanding of transcription activation mechanisms controlled by transcription factors including the ubiquitous response regulators of two-component regulatory systems particularly in Gram-positive bacteria.
Collapse
|
7
|
Durand S, Guillier M. Transcriptional and Post-transcriptional Control of the Nitrate Respiration in Bacteria. Front Mol Biosci 2021; 8:667758. [PMID: 34026838 PMCID: PMC8139620 DOI: 10.3389/fmolb.2021.667758] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
In oxygen (O2) limiting environments, numerous aerobic bacteria have the ability to shift from aerobic to anaerobic respiration to release energy. This process requires alternative electron acceptor to replace O2 such as nitrate (NO3 -), which has the next best reduction potential after O2. Depending on the organism, nitrate respiration involves different enzymes to convert NO3 - to ammonium (NH4 +) or dinitrogen (N2). The expression of these enzymes is tightly controlled by transcription factors (TFs). More recently, bacterial small regulatory RNAs (sRNAs), which are important regulators of the rapid adaptation of microorganisms to extremely diverse environments, have also been shown to control the expression of genes encoding enzymes or TFs related to nitrate respiration. In turn, these TFs control the synthesis of multiple sRNAs. These results suggest that sRNAs play a central role in the control of these metabolic pathways. Here we review the complex interplay between the transcriptional and the post-transcriptional regulators to efficiently control the respiration on nitrate.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Maude Guillier
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
8
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
9
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
10
|
Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as 'gasotransmitters' in bacteria? Biochem Soc Trans 2018; 46:1107-1118. [PMID: 30190328 PMCID: PMC6195638 DOI: 10.1042/bst20170311] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/04/2023]
Abstract
A gasotransmitter is defined as a small, generally reactive, gaseous molecule that, in solution, is generated endogenously in an organism and exerts important signalling roles. It is noteworthy that these molecules are also toxic and antimicrobial. We ask: is this definition of a gasotransmitter appropriate in the cases of nitric oxide, carbon monoxide and hydrogen sulfide (H2S) in microbes? Recent advances show that, not only do bacteria synthesise each of these gases, but the molecules also have important signalling or messenger roles in addition to their toxic effects. However, strict application of the criteria proposed for a gasotransmitter leads us to conclude that the term ‘small molecule signalling agent’, as proposed by Fukuto and others, is preferable terminology.
Collapse
|
11
|
Abstract
This chapter provides an overview of current knowledge of how anaerobic bacteria protect themselves against nitrosative stress. Nitric oxide (NO) is the primary source of this stress. Aerobically its removal is an oxidative process, whereas reduction is required anaerobically. Mechanisms required to protect aerobic and anaerobic bacteria are therefore different. Several themes recur in the review. First, how gene expression is regulated often provides clues to the physiological function of the gene products. Second, the physiological significance of reports based upon experiments under extreme conditions that bacteria do not encounter in their natural environment requires reassessment. Third, responses to the primary source of stress need to be distinguished from secondary consequences of chemical damage due to failure of repair mechanisms to cope with extreme conditions. NO is generated by many mechanisms, some of which remain undefined. An example is the recent demonstration that the hybrid cluster protein combines with YtfE (or RIC protein, for repair of iron centres damaged by nitrosative stress) in a new pathway to repair key iron-sulphur proteins damaged by nitrosative stress. The functions of many genes expressed in response to nitrosative stress remain either controversial or are completely unknown. The concentration of NO that accumulates in the bacterial cytoplasm is essentially unknown, so dogmatic statements cannot be made that damage to transcription factors (Fur, FNR, SoxRS, MelR, OxyR) occurs naturally as part of a physiologically relevant signalling mechanism. Such doubts can be resolved by simple experiments to meet six proposed criteria.
Collapse
|
12
|
Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by In Vivo Footprinting. J Bacteriol 2017; 199:JB.00086-17. [PMID: 28439033 DOI: 10.1128/jb.00086-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Upon oxygen limitation, the Bacillus subtilis ResE sensor kinase and its cognate ResD response regulator play primary roles in the transcriptional activation of genes functioning in anaerobic respiration. The nitric oxide (NO)-sensitive NsrR repressor controls transcription to support nitrate respiration. In addition, the ferric uptake repressor (Fur) can modulate transcription under anaerobic conditions. However, whether these controls are direct or indirect has been investigated only in a gene-specific manner. To gain a genomic view of anaerobic gene regulation, we determined the genome-wide in vivo DNA binding of ResD, NsrR, and Fur transcription factors (TFs) using in situ DNase I footprinting combined with chromatin affinity precipitation sequencing (ChAP-seq; genome footprinting by high-throughput sequencing [GeF-seq]). A significant number of sites were targets of ResD and NsrR, and a majority of them were also bound by Fur. The binding of multiple TFs to overlapping targets affected each individual TF's binding, which led to combinatorial transcriptional control. ResD bound to both the promoters and the coding regions of genes under its positive control. Other genes showing enrichment of ResD at only the promoter regions are targets of direct ResD-dependent repression or antirepression. The results support previous findings of ResD as an RNA polymerase (RNAP)-binding protein and indicated that ResD can associate with the transcription elongation complex. The data set allowed us to reexamine consensus sequence motifs of Fur, ResD, and NsrR and uncovered evidence that multiple TGW (where W is A or T) sequences surrounded by an A- and T-rich sequence are often found at sites where all three TFs competitively bind.IMPORTANCE Bacteria encounter oxygen fluctuation in their natural environment as well as in host organisms. Hence, understanding how bacteria respond to oxygen limitation will impact environmental and human health. ResD, NsrR, and Fur control transcription under anaerobic conditions. This work using in situ DNase I footprinting uncovered the genome-wide binding profile of the three transcription factors (TFs). Binding of the TFs is often competitive or cooperative depending on the promoters and the presence of other TFs, indicating that transcriptional regulation by multiple TFs is much more complex than we originally thought. The results from this study provide a more complete picture of anaerobic gene regulation governed by ResD, NsrR, and Fur and contribute to our further understanding of anaerobic physiology.
Collapse
|
13
|
Crack JC, Svistunenko DA, Munnoch J, Thomson AJ, Hutchings MI, Le Brun NE. Differentiated, Promoter-specific Response of [4Fe-4S] NsrR DNA Binding to Reaction with Nitric Oxide. J Biol Chem 2016; 291:8663-72. [PMID: 26887943 PMCID: PMC4861436 DOI: 10.1074/jbc.m115.693192] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 12/19/2022] Open
Abstract
NsrR is an iron-sulfur cluster protein that regulates the nitric oxide (NO) stress response of many bacteria. NsrR from Streptomyces coelicolor regulates its own expression and that of only two other genes, hmpA1 and hmpA2, which encode HmpA enzymes predicted to detoxify NO. NsrR binds promoter DNA with high affinity only when coordinating a [4Fe-4S] cluster. Here we show that reaction of [4Fe-4S] NsrR with NO affects DNA binding differently depending on the gene promoter. Binding to the hmpA2 promoter was abolished at ∼2 NO per cluster, although for the hmpA1 and nsrR promoters, ∼4 and ∼8 NO molecules, respectively, were required to abolish DNA binding. Spectroscopic and kinetic studies of the NO reaction revealed a rapid, multi-phase, non-concerted process involving up to 8–10 NO molecules per cluster, leading to the formation of several iron-nitrosyl species. A distinct intermediate was observed at ∼2 NO per cluster, along with two further intermediates at ∼4 and ∼6 NO. The NsrR nitrosylation reaction was not significantly affected by DNA binding. These results show that NsrR regulates different promoters in response to different concentrations of NO. Spectroscopic evidence indicates that this is achieved by different NO-FeS complexes.
Collapse
Affiliation(s)
- Jason C Crack
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| | - Dimitri A Svistunenko
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - John Munnoch
- the School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ and
| | - Andrew J Thomson
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| | - Matthew I Hutchings
- the School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ and
| | - Nick E Le Brun
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| |
Collapse
|
14
|
What a difference a cluster makes: The multifaceted roles of IscR in gene regulation and DNA recognition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1101-12. [PMID: 25641558 DOI: 10.1016/j.bbapap.2015.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/21/2015] [Indexed: 11/22/2022]
Abstract
Iron-sulfur clusters are essential cofactors in a myriad of metabolic pathways. Therefore, their biogenesis is tightly regulated across a variety of organisms and environmental conditions. In Gram-negative bacteria, two pathways - ISC and SUF - concur for maintaining intracellular iron-sulfur cluster balance. Recently, the mechanism of iron-sulfur cluster biosynthesis regulation by IscR, an iron-sulfur cluster-containing regulator encoded by the isc operon, was found to be conserved in some Gram-positive bacteria. Belonging to the Rrf2 family of transcriptional regulators, IscR displays a single helix-turn-helix DNA-binding domain but is able to recognize two distinct DNA sequence motifs, switching its specificity upon cluster ligation. This review provides an overview of gene regulation by iron-sulfur cluster-containing sensors, in the light of the recent structural characterization of cluster-less free and DNA-bound IscR, which provided insights into the molecular mechanism of nucleotide sequence recognition and discrimination of this unique transcription factor. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
|
15
|
A terD domain-encoding gene (SCO2368) is involved in calcium homeostasis and participates in calcium regulation of a DosR-like regulon in Streptomyces coelicolor. J Bacteriol 2014; 197:913-23. [PMID: 25535276 DOI: 10.1128/jb.02278-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Streptomyces coelicolor is not resistant to tellurite, it possesses several TerD domain-encoding (tdd) genes of unknown function. To elucidate the function of tdd8, the transcriptomes of S. coelicolor strain M145 and of a tdd8 deletion mutant derivative (the Δtdd8 strain) were compared. Several orthologs of Mycobacterium tuberculosis genes involved in dormancy survival were upregulated in the deletion mutant at the visual onset of prodiginine production. These genes are organized in a putative redox stress response cluster comprising two large loci. A binding motif similar to the dormancy survival regulator (DosR) binding site of M. tuberculosis has been identified in the upstream sequences of most genes in these loci. A predicted role for these genes in the redox stress response is supported by the low NAD(+)/NADH ratio in the Δtdd8 strain. This S. coelicolor gene cluster was shown to be induced by hypoxia and NO stress. While the tdd8 deletion mutant (the Δtdd8 strain) was unable to maintain calcium homeostasis in a calcium-depleted medium, the addition of Ca(2+) in Δtdd8 culture medium reduced the expression of several genes of the redox stress response cluster. The results shown in this work are consistent with Tdd8 playing a significant role in calcium homeostasis and redox stress adaptation.
Collapse
|
16
|
Mettert EL, Kiley PJ. Fe-S proteins that regulate gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1284-93. [PMID: 25450978 DOI: 10.1016/j.bbamcr.2014.11.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/24/2014] [Accepted: 11/13/2014] [Indexed: 02/06/2023]
Abstract
Iron-sulfur (Fe-S) cluster containing proteins that regulate gene expression are present in most organisms. The innate chemistry of their Fe-S cofactors makes these regulatory proteins ideal for sensing environmental signals, such as gases (e.g. O2 and NO), levels of Fe and Fe-S clusters, reactive oxygen species, and redox cycling compounds, to subsequently mediate an adaptive response. Here we review the recent findings that have provided invaluable insight into the mechanism and function of these highly significant Fe-S regulatory proteins. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Erin L Mettert
- University of Wisconsin-Madison, Department of Biomolecular Chemistry, 440 Henry Mall, Biochemical Sciences Building, Room 4204C, Madison, WI 53706, USA.
| | - Patricia J Kiley
- University of Wisconsin-Madison, Department of Biomolecular Chemistry, 440 Henry Mall, Biochemical Sciences Building, Room 4204C, Madison, WI 53706, USA.
| |
Collapse
|
17
|
Stern AM, Zhu J. An introduction to nitric oxide sensing and response in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:187-220. [PMID: 24581392 DOI: 10.1016/b978-0-12-800261-2.00005-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is a radical gas that has been intensively studied for its role as a bacteriostatic agent. NO reacts in complex ways with biological molecules, especially metal centers and other radicals, to generate other bioactive compounds that inhibit enzymes, oxidize macromolecules, and arrest bacterial growth. Bacteria encounter not only NO derived from the host during infection but also NO derived from other bacteria and inorganic sources. The transcriptional responses used by bacteria to respond to NO are diverse but usually involve an iron-containing transcription factor that binds NO and alters its affinity for either DNA or factors involved in transcription, leading to the production of enzymatic tolerance systems. Some of these systems, such as flavohemoglobin and flavorubredoxin, directly remove NO. Some do not but are still important for NO tolerance through other mechanisms. The targets of NO that are protected by these systems include many metabolic pathways such as the tricarboxylic acid cycle and branched chain amino acid synthesis. This chapter discusses these topics and others and serves as a general introduction to microbial NO biology.
Collapse
|
18
|
The ResD response regulator, through functional interaction with NsrR and fur, plays three distinct roles in Bacillus subtilis transcriptional control. J Bacteriol 2013; 196:493-503. [PMID: 24214949 DOI: 10.1128/jb.01166-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ResD response regulator activates transcription of diverse genes in Bacillus subtilis in response to oxygen limitation. ResD regulon genes that are the most highly induced during nitrate respiration include the nitrite reductase operon (nasDEF) and the flavohemoglobin gene (hmp), whose products function in nitric oxide (NO) metabolism. Transcription of these genes is also under the negative control of the NO-sensitive NsrR repressor. Recent studies showed that the NsrR regulon contains genes with no apparent relevance to NO metabolism and that the ResD response regulator and NsrR coordinately regulate transcription. To determine whether these genes are direct targets of NsrR and ResD, we used chromatin affinity precipitation coupled with tiling chip (ChAP-chip) and ChAP followed by quantitative PCR (ChAP-qPCR) analyses. The study showed that ResD and NsrR directly control transcription of the ykuNOP operon in the Fur regulon. ResD functions as an activator at the nasD and hmp promoters, whereas it functions at the ykuN promoter as an antirepressor of Fur and a corepressor for NsrR. This mechanism likely participates in fine-tuning of transcript levels in response to different sources of stress, such as oxygen limitation, iron limitation, and exposure to NO.
Collapse
|
19
|
Abstract
The Gram-positive soil bacterium Bacillus subtilis encounters changing environmental conditions in its habitat. The access to oxygen determines the mode of energy generation. A complex regulatory network is employed to switch from oxygen respiration to nitrate respiration and various fermentative processes. During adaptation, oxygen depletion is sensed by the [4Fe-4S](2+) cluster containing Fnr and the two-component regulatory system ResDE consisting of the membrane-bound histidine kinase ResE and the cytoplasmic ResD regulator. Nitric oxide is the signal recognized by NsrR. Acetate formation and decreasing pH are measured via AlsR. Finally, Rex is responding to changes in the cellular NAD(+)/NADH ration. The fine-tuned interplay of these regulators at approximately 400 target gene promoters ensures efficient adaptation of the B. subtilis physiology.
Collapse
Affiliation(s)
- Elisabeth Härtig
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
| | | |
Collapse
|
20
|
Vinella D, Loiseau L, de Choudens SO, Fontecave M, Barras F. In vivo[Fe-S] cluster acquisition by IscR and NsrR, two stress regulators inEscherichia coli. Mol Microbiol 2013; 87:493-508. [DOI: 10.1111/mmi.12135] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Vinella
- Laboratoire de Chimie Bactérienne; UMR 7283 (Aix-Marseille Université-CNRS); Institut de Microbiologie de la Méditerranée; 31 Chemin Joseph Aiguier; 13009; Marseille; France
| | - Laurent Loiseau
- Laboratoire de Chimie Bactérienne; UMR 7283 (Aix-Marseille Université-CNRS); Institut de Microbiologie de la Méditerranée; 31 Chemin Joseph Aiguier; 13009; Marseille; France
| | - Sandrine Ollagnier de Choudens
- Laboratoire de Chimie et Biologie des Métaux; UMR 5249 (CEA-Université Grenoble I-CNRS); 17 Rue des Martyrs; 38054; Grenoble Cedex; France
| | | | - Frédéric Barras
- Laboratoire de Chimie Bactérienne; UMR 7283 (Aix-Marseille Université-CNRS); Institut de Microbiologie de la Méditerranée; 31 Chemin Joseph Aiguier; 13009; Marseille; France
| |
Collapse
|
21
|
Gardner PR. Hemoglobin: a nitric-oxide dioxygenase. SCIENTIFICA 2012; 2012:683729. [PMID: 24278729 PMCID: PMC3820574 DOI: 10.6064/2012/683729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.
Collapse
Affiliation(s)
- Paul R. Gardner
- Miami Valley Biotech, 1001 E. 2nd Street, Suite 2445, Dayton, OH 45402, USA
| |
Collapse
|