1
|
Lembke HK, Nauta KM, Hunter RC, Carlson EE. Evaluating the Link between Efflux Pump Expression and Motility Phenotypes in Pseudomonas aeruginosa Treated with Virulence Inhibitors. ACS Infect Dis 2025. [PMID: 40287835 DOI: 10.1021/acsinfecdis.5c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Antibiotic resistance continues to rise as a global health threat. Novel antivirulence strategies diminish the drive for evolutionary pressure but still hinder a pathogen's ability to infect a host. Treatment of the highly virulent Pseudomonas aeruginosa strain PA14 with virulence inhibitors (R-2 and R-6) elicited widely varying transcriptional profiles. Of interest, the expression of a family of resistance-nodulation-division (RND) efflux pumps implicated in the intrinsic drug resistance of P. aeruginosa was significantly altered by R-2 and R-6 treatment. While structurally similar, these inhibitors caused differential expression of various RND efflux pumps within the Mex family─the R-2 treatment stimulated the expression of mexEF-oprN, while the R-6 treatment led to increased mexAB-oprM expression. Further expansion into a small library of virulence inhibitors revealed chemical motifs that trigger increases in the level of RND efflux pump expression. Additionally, activation of these efflux pumps suggests a low accumulation of virulence inhibitors in WT PA14. Treatment of an efflux pump-deficient strain with R-2 or R-6 resulted in inhibition of several virulence factors; for example, R-2 was found to abolish swimming motility. Collectively, treatment with either R-2 or R-6 gives rise to a convoluted transcriptomic response confounded by the impact of efflux pump expression on the system. However, understanding the moieties that lead to high expression of the efflux pumps enables the further rational design of novel virulence inhibitors that do not cause RND efflux pump activation.
Collapse
Affiliation(s)
- Hannah K Lembke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States of America
| | - Kelsie M Nauta
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States of America
| | - Ryan C Hunter
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo, 955 Main Street, Buffalo, New York 14051, United States of America
| | - Erin E Carlson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States of America
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55455, United States of America
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States of America
- Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55455, United States of America
| |
Collapse
|
2
|
Fernandes SE, Ortega H, Vaillancourt M, Galdino ACM, Stotland A, Mun KS, Aguilar D, Doi Y, Lee JS, Burgener EB, Barrick JE, Schertzer JW, Jorth P. Evolutionary loss of an antibiotic efflux pump increases Pseudomonas aeruginosa quorum sensing mediated virulence in vivo. RESEARCH SQUARE 2024:rs.3.rs-5391023. [PMID: 39606469 PMCID: PMC11601840 DOI: 10.21203/rs.3.rs-5391023/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Antibiotic resistance is one of the most pressing threats to human health, yet recent work highlights how loss of resistance may also drive pathogenesis in some bacteria. In two recent studies, we found that β-lactam antibiotic and nutrient stresses faced during infection selected for the genetic inactivation of the Pseudomonas aeruginosa (Pa) antibiotic efflux pump mexEFoprN. Unexpectedly, efflux pump mutations increased Pa virulence during infection; however, neither the prevalence of efflux pump inactivating mutations in real human infections, nor the mechanisms driving increased virulence of efflux pump mutants are known. We hypothesized that human infection would select for efflux pump mutations that drive increased virulence in Pa clinical isolates. Using genome sequencing of hundreds of Pa clinical isolates, we show that mexEFoprN efflux pump inactivating mutations are enriched in Pa cystic fibrosis isolates relative to Pa intensive care unit clinical isolates. Combining RNA-seq, metabolomics, genetic approaches, and infection models we show that efflux pump mutants have elevated expression of two key Pa virulence factors, elastase and rhamnolipids, which increased Pa virulence and lung damage during both acute and chronic infections. Increased virulence factor production was driven by higher Pseudomonas quinolone signal levels in the efflux pump mutants. Finally, genetic restoration of the efflux pump in a representative ICU clinical isolate and the notorious CF Pa Liverpool epidemic strain reduced their virulence. Together, our findings suggest that mutations inactivating antibiotic resistance mechanisms could lead to greater patient mortality and morbidity.
Collapse
Affiliation(s)
- Sheryl E Fernandes
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Humberto Ortega
- Binghamton Biofilm Research Center, Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Mylene Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anna Clara M Galdino
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandr Stotland
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kyu Shik Mun
- Board of Governor's Regenerative Medicine Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Diane Aguilar
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yohei Doi
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Elizabeth B Burgener
- Department of Pediatrics, Division of Pulmonology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey W Schertzer
- Binghamton Biofilm Research Center, Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governor's Regenerative Medicine Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
3
|
Lechtenberg T, Wynands B, Müller MF, Polen T, Noack S, Wierckx N. Improving 5-(hydroxymethyl)furfural (HMF) tolerance of Pseudomonas taiwanensis VLB120 by automated adaptive laboratory evolution (ALE). Metab Eng Commun 2024; 18:e00235. [PMID: 38832093 PMCID: PMC11144800 DOI: 10.1016/j.mec.2024.e00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
The aldehyde 5-(hydroxymethyl)furfural (HMF) is of great importance for a circular bioeconomy. It is a renewable platform chemical that can be converted into a range of useful compounds to replace petroleum-based products such as the green plastic monomer 2,5-furandicarboxylic acid (FDCA). However, it also exhibits microbial toxicity for example hindering the efficient biotechnological valorization of lignocellulosic hydrolysates. Thus, there is an urgent need for tolerance-improved organisms applicable to whole-cell biocatalysis. Here, we engineer an oxidation-deficient derivative of the naturally robust and emerging biotechnological workhorse P. taiwanensis VLB120 by robotics-assisted adaptive laboratory evolution (ALE). The deletion of HMF-oxidizing enzymes enabled for the first time evolution under constant selection pressure by the aldehyde, yielding strains with consistently improved growth characteristics in presence of the toxicant. Genome sequencing of evolved clones revealed loss-of function mutations in the LysR-type transcriptional regulator-encoding mexT preventing expression of the associated efflux pump mexEF-oprN. This knowledge allowed reverse engineering of strains with enhanced aldehyde tolerance, even in a background of active or overexpressed HMF oxidation machinery, demonstrating a synergistic effect of two distinct tolerance mechanisms.
Collapse
Affiliation(s)
- Thorsten Lechtenberg
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Moritz-Fabian Müller
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
4
|
Wu W, Huang J, Xu Z. Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microb Biotechnol 2024; 17:e14487. [PMID: 38801351 PMCID: PMC11129675 DOI: 10.1111/1751-7915.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Pseudomonas aeruginosa is a notorious multidrug-resistant pathogen that poses a serious and growing threat to the worldwide public health. The expression of resistance determinants is exquisitely modulated by the abundant regulatory proteins and the intricate signal sensing and transduction systems in this pathogen. Downregulation of antibiotic influx porin proteins and upregulation of antibiotic efflux pump systems owing to mutational changes in their regulators or the presence of distinct inducing molecular signals represent two of the most efficient mechanisms that restrict intracellular antibiotic accumulation and enable P. aeruginosa to resist multiple antibiotics. Treatment of P. aeruginosa infections is extremely challenging due to the highly inducible mechanism of antibiotic resistance. This review comprehensively summarizes the regulatory networks of the major porin proteins (OprD and OprH) and efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY) that play critical roles in antibiotic influx and efflux in P. aeruginosa. It also discusses promising therapeutic approaches using safe and efficient adjuvants to enhance the efficacy of conventional antibiotics to combat multidrug-resistant P. aeruginosa by controlling the expression levels of porins and efflux pumps. This review not only highlights the complexity of the regulatory network that induces antibiotic resistance in P. aeruginosa but also provides important therapeutic implications in targeting the inducible mechanism of resistance.
Collapse
Affiliation(s)
- Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
5
|
Kristensen R, Andersen JB, Rybtke M, Jansen CU, Fritz BG, Kiilerich RO, Uhd J, Bjarnsholt T, Qvortrup K, Tolker-Nielsen T, Givskov M, Jakobsen TH. Inhibition of Pseudomonas aeruginosa quorum sensing by chemical induction of the MexEF-oprN efflux pump. Antimicrob Agents Chemother 2024; 68:e0138723. [PMID: 38189278 PMCID: PMC10848761 DOI: 10.1128/aac.01387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024] Open
Abstract
The cell-to-cell communication system quorum sensing (QS), used by various pathogenic bacteria to synchronize gene expression and increase host invasion potentials, is studied as a potential target for persistent infection control. To search for novel molecules targeting the QS system in the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, a chemical library consisting of 3,280 small compounds from LifeArc was screened. A series of 10 conjugated phenones that have not previously been reported to target bacteria were identified as inhibitors of QS in P. aeruginosa. Two lead compounds (ethylthio enynone and propylthio enynone) were re-synthesized for verification of activity and further elucidation of the mode of action. The isomeric pure Z-ethylthio enynone was used for RNA sequencing, revealing a strong inhibitor of QS-regulated genes, and the QS-regulated virulence factors rhamnolipid and pyocyanin were significantly decreased by treatment with the compounds. A transposon mutagenesis screen performed in a newly constructed lasB-gfp monitor strain identified the target of Z-ethylthio enynone in P. aeruginosa to be the MexEF-OprN efflux pump, which was further established using defined mex knockout mutants. Our data indicate that the QS inhibitory capabilities of Z-ethylthio enynone were caused by the drainage of intracellular signal molecules as a response to chemical-induced stimulation of the MexEF-oprN efflux pump, thereby inhibiting the autogenerated positive feedback and its enhanced signal-molecule synthesis.
Collapse
Affiliation(s)
- Rasmus Kristensen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bo Andersen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rybtke
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | | | - Blaine Gabriel Fritz
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Overgaard Kiilerich
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Uhd
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Michael Givskov
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Zhou Z, Lian Y, Zhu L, Zhang H, Li Z, Wang M. Platinum Nanoparticles Prevent the Resistance of Pseudomonas aeruginosa to Ciprofloxacin and Imipenem: Mechanism Insights. ACS NANO 2023; 17:24685-24695. [PMID: 38048441 DOI: 10.1021/acsnano.3c04167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Metal nanoparticles (MNPs) have recently gained extensive attention due to their broad-spectrum prospect, particularly in biomedical application. Here, we reveal that long-term exposure to platinum nanoparticles (Pt NPs) increases the susceptibility of Pseudomonas aeruginosa PAO1 to imipenem and ciprofloxacin. We exposed PAO1 to Pt NPs (a series of doses, varying from 0.125 to 35 μg/mL) for 60 days and characterized the evolved strains (ES) and compared with wild type (WT) to understand the mechanism of heightened sensitivity. We found that overexpression of oprD and downregulation of mexEF-oprN facilitate the intracellular accumulation of antibiotic, thus increasing susceptibility. Furthermore, loss-of-function mutations were discovered in regulators lasR and mexT. Cloning intact lasR from wild-type (WT) into ES slightly improves imipenem resistance. Strikingly, cloning mexT from WT into ES reverts the imipenem and ciprofloxacin resistance to the original level. Briefly, the increase of membrane permeability controlled by mexT made PAO1 greatly susceptible to imipenem and ciprofloxacin, and the decrease of quorum sensing mediated by lasR made PAO1 slightly susceptible to imipenem. Overall, these results reveal an antibiotic susceptibility mechanism from prolonged exposure to MNPs, which provides a promising approach to prevent antibiotic resistance.
Collapse
Affiliation(s)
- Zhiruo Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yulu Lian
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Haibo Zhang
- China National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, China
| | - Zhangqiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| |
Collapse
|
7
|
Kostylev M, Smalley NE, Chao MH, Greenberg EP. Relationship of the transcription factor MexT to quorum sensing and virulence in Pseudomonas aeruginosa. J Bacteriol 2023; 205:e0022623. [PMID: 38032211 PMCID: PMC10729655 DOI: 10.1128/jb.00226-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Pseudomonas aeruginosa is an opportunistic bacterial pathogen. Many of its virulence genes are regulated by quorum sensing (QS), a form of cell-to-cell communication. P. aeruginosa QS consists of three interlinked circuits, LasI-R, Rhl-R, and Pseudomonas quinolone signal (PQS). Additionally, its QS system is interconnected with other regulatory networks, which help optimize gene expression under variable conditions. The numbers of genes regulated by QS differ substantially among P. aeruginosa strains. We show that a regulatory factor MexT, which is activated in response to certain antibiotics, downregulates the RhlI-R circuit and in turn measurably lowers virulence in a nematode worm infection model. Our findings help understand how existing and future therapeutic interventions for P. aeruginosa infections may impact this bacterium's gene regulation and physiology.
Collapse
Affiliation(s)
- Maxim Kostylev
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Nicole E. Smalley
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Man Hou Chao
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - E. Peter Greenberg
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
8
|
Zhao Y, Xu G, Xu Z, Guo B, Liu F. LexR Positively Regulates the LexABC Efflux Pump Involved in Self-Resistance to the Antimicrobial Di- N-Oxide Phenazine in Lysobacter antibioticus. Microbiol Spectr 2023; 11:e0487222. [PMID: 37166326 PMCID: PMC10269722 DOI: 10.1128/spectrum.04872-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
Myxin, a di-N-oxide phenazine isolated from the soil bacterium Lysobacter antibioticus, exhibits potent activity against various microorganisms and has the potential to be developed as an agrochemical. Antibiotic-producing microorganisms have developed self-resistance mechanisms to protect themselves from autotoxicity. Antibiotic efflux is vital for such protection. Recently, we identified a resistance-nodulation-division (RND) efflux pump, LexABC, involved in self-resistance against myxin in L. antibioticus. Expression of its genes, lexABC, was induced by myxin and was positively regulated by the LysR family transcriptional regulator LexR. The molecular mechanisms, however, have not been clear. Here, LexR was found to bind to the lexABC promoter region to directly regulate expression. Moreover, myxin enhanced this binding. Molecular docking and surface plasmon resonance analysis showed that myxin bound LexR with valine and lysine residues at positions 146 (V146) and 195 (K195), respectively. Furthermore, mutation of K195 in vivo led to downregulation of the gene lexA. These results indicated that LexR sensed and bound with myxin, thereby directly activating the expression of the LexABC efflux pump and increasing L. antibioticus resistance against myxin. IMPORTANCE Antibiotic-producing bacteria exhibit various sophisticated mechanisms for self-protection against their own secondary metabolites. RND efflux pumps that eliminate antibiotics from cells are ubiquitous in Gram-negative bacteria. Myxin is a heterocyclic N-oxide phenazine with potent antimicrobial and antitumor activities produced by the soil bacterium L. antibioticus. The RND pump LexABC contributes to the self-resistance of L. antibioticus against myxin. Herein, we report a mechanism involving the LysR family regulator LexR that binds to myxin and directly activates the LexABC pump. Further study on self-resistance mechanisms could help the investigation of strategies to deal with increasing bacterial antibiotic resistance and enable the discovery of novel natural products with resistance genes as selective markers.
Collapse
Affiliation(s)
- Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- School of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Zhizhou Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- School of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
9
|
Yamasaki S, Zwama M, Yoneda T, Hayashi-Nishino M, Nishino K. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001322. [PMID: 37319001 PMCID: PMC10333786 DOI: 10.1099/mic.0.001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/18/2023] [Indexed: 06/17/2023]
Abstract
Drug efflux pumps transport antimicrobial agents out of bacteria, thereby reducing the intracellular antimicrobial concentration, which is associated with intrinsic and acquired bacterial resistance to these antimicrobials. As genome analysis has advanced, many drug efflux pump genes have been detected in the genomes of bacterial species. In addition to drug resistance, these pumps are involved in various essential physiological functions, such as bacterial adaptation to hostile environments, toxin and metabolite efflux, biofilm formation and quorum sensing. In Gram-negative bacteria, efflux pumps in the resistance–nodulation–division (RND) superfamily play a clinically important role. In this review, we focus on Gram-negative bacteria, including Salmonella enterica , Escherichia coli and Pseudomonas aeruginosa , and discuss the role of RND efflux pumps in drug resistance and physiological functions.
Collapse
Affiliation(s)
- Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, 2-8 Yamadaoka, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Moore-Machacek A, Gloe A, O'Leary N, Reen FJ. Efflux, Signaling and Warfare in a Polymicrobial World. Antibiotics (Basel) 2023; 12:antibiotics12040731. [PMID: 37107093 PMCID: PMC10135244 DOI: 10.3390/antibiotics12040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The discovery void of antimicrobial development has occurred at a time when the world has seen a rapid emergence and spread of antimicrobial resistance, the 'perfect storm' as it has often been described. While the discovery and development of new antibiotics has continued in the research sphere, the pipeline to clinic has largely been fed by derivatives of existing classes of antibiotics, each prone to pre-existing resistance mechanisms. A novel approach to infection management has come from the ecological perspective whereby microbial networks and evolved communities already possess small molecular capabilities for pathogen control. The spatiotemporal nature of microbial interactions is such that mutualism and parasitism are often two ends of the same stick. Small molecule efflux inhibitors can directly target antibiotic efflux, a primary resistance mechanism adopted by many species of bacteria and fungi. However, a much broader anti-infective capability resides within the action of these inhibitors, borne from the role of efflux in key physiological and virulence processes, including biofilm formation, toxin efflux, and stress management. Understanding how these behaviors manifest within complex polymicrobial communities is key to unlocking the full potential of the advanced repertoires of efflux inhibitors.
Collapse
Affiliation(s)
| | - Antje Gloe
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53113 Bonn, Germany
| | - Niall O'Leary
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
11
|
Schick A, Shewaramani S, Kassen R. Genomics of diversification of Pseudomonas aeruginosa in cystic fibrosis lung-like conditions. Genome Biol Evol 2022; 14:6602282. [PMID: 35660861 PMCID: PMC9168666 DOI: 10.1093/gbe/evac074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/22/2022] [Accepted: 05/12/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudomonas aeruginosa is among the most problematic opportunistic pathogens for adults with cystic fibrosis (CF), causing repeated and resilient infections in the lung and surrounding airways. Evidence suggests that long-term infections are associated with diversification into specialized types but the underlying cause of that diversification and the effect it has on the persistence of infections remains poorly understood. Here, we use evolve-and-resequence experiments to investigate the genetic changes accompanying rapid, de novo phenotypic diversification in lab environments designed to mimic two aspects of human lung ecology: spatial structure and complex nutritional content. After ∼220 generations of evolution, we find extensive genetic variation present in all environments, including those that most closely resemble the CF lung. We use the abundance and frequency of nonsynonymous and synonymous mutations to estimate the ratio of mutations that are selectively neutral (hitchhikers) to those that are under positive selection (drivers). A significantly lower proportion of driver mutations in spatially structured populations suggests that reduced dispersal generates subpopulations with reduced effective population size, decreasing the supply of beneficial mutations and causing more divergent evolutionary trajectories. In addition, we find mutations in a handful of genes typically associated with chronic infection in the CF lung, including one gene associated with antibiotic resistance. This demonstrates that many of the genetic changes considered to be hallmarks of CF lung adaptation can arise as a result of adaptation to a novel environment and do not necessarily require antimicrobial treatment, immune system suppression, or competition from other microbial species to occur.
Collapse
Affiliation(s)
- Alana Schick
- Biology Department and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Sonal Shewaramani
- Biology Department and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rees Kassen
- Biology Department and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
12
|
Abstract
The P. aeruginosa reference strain PAO1 has been used to delineate much of the physiology, metabolism, and fundamental biology of the species. The wild-type parent of PAO1 was lost, and PAO1 carries a regulatory mutation introduced for positive genetic selection that affects antibiotic resistance, virulence, quorum sensing, and other traits. The mutation is a loss-of-function change in an oxidoreductase gene (mexS), which constitutively activates a stress response controlled by a positive regulator (MexT). Fitness defects associated with the constitutive response have led to the inadvertent selection of mexT-minus suppressor mutations, creating genetic heterogeneity in PAO1 sublines studied in different laboratories. To help circumvent complications due to the mexS-minus phenotypes, we created a wild-type version of PAO1 (called LPAO) by "reverting" its mexS to the functional allele likely to have been in its parent. Phenotypic analysis revealed that the mexS-minus allele in PAO1 makes growth sensitive to salt (NaCl) and is lethal when combined with mutations inactivating the major sodium antiporter (ShaABCDEF). The salt sensitivity of PAO1 may underlie some complex mexS-minus phenotypes and help explain the selection of mexT-minus suppressor mutations. To facilitate genetic comparisons of PAO1, LPAO, and other P. aeruginosa strains, we developed a transformation procedure to transfer selectable alleles, such as transposon insertion alleles, between strains. Overall, the study helps explain phenotypic heterogeneity of PAO1-derived strains and provides resources to help recognize and eliminate difficulties due to it. IMPORTANCE The P. aeruginosa reference strain PAO1 carries a regulatory mutation that may affect processes characterized in it. To eliminate complications due to the mutation, we constructed a version of the missing wild-type parent strain and developed methods to transfer mutations between PAO1 and the new strain. The methods are likely to be applicable to other isolates of P. aeruginosa as well.
Collapse
|
13
|
Cianciulli Sesso A, Lilić B, Amman F, Wolfinger MT, Sonnleitner E, Bläsi U. Gene Expression Profiling of Pseudomonas aeruginosa Upon Exposure to Colistin and Tobramycin. Front Microbiol 2021; 12:626715. [PMID: 33995291 PMCID: PMC8120321 DOI: 10.3389/fmicb.2021.626715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/31/2021] [Indexed: 11/22/2022] Open
Abstract
Pseudomonas aeruginosa (Pae) is notorious for its high-level resistance toward clinically used antibiotics. In fact, Pae has rendered most antimicrobials ineffective, leaving polymyxins and aminoglycosides as last resort antibiotics. Although several resistance mechanisms of Pae are known toward these drugs, a profounder knowledge of hitherto unidentified factors and pathways appears crucial to develop novel strategies to increase their efficacy. Here, we have performed for the first time transcriptome analyses and ribosome profiling in parallel with strain PA14 grown in synthetic cystic fibrosis medium upon exposure to polymyxin E (colistin) and tobramycin. This approach did not only confirm known mechanisms involved in colistin and tobramycin susceptibility but revealed also as yet unknown functions/pathways. Colistin treatment resulted primarily in an anti-oxidative stress response and in the de-regulation of the MexT and AlgU regulons, whereas exposure to tobramycin led predominantly to a rewiring of the expression of multiple amino acid catabolic genes, lower tricarboxylic acid (TCA) cycle genes, type II and VI secretion system genes and genes involved in bacterial motility and attachment, which could potentially lead to a decrease in drug uptake. Moreover, we report that the adverse effects of tobramycin on translation are countered with enhanced expression of genes involved in stalled ribosome rescue, tRNA methylation and type II toxin-antitoxin (TA) systems.
Collapse
Affiliation(s)
- Anastasia Cianciulli Sesso
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Branislav Lilić
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Michael T. Wolfinger
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Zhao Y, Liu J, Jiang T, Hou R, Xu G, Xu H, Liu F. Resistance-Nodulation-Division Efflux Pump, LexABC, Contributes to Self-Resistance of the Phenazine Di- N-Oxide Natural Product Myxin in Lysobacter antibioticus. Front Microbiol 2021; 12:618513. [PMID: 33679640 PMCID: PMC7927275 DOI: 10.3389/fmicb.2021.618513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotic-producing microorganisms have developed several self-resistance mechanisms to protect them from autotoxicity. Transporters belonging to the resistance- nodulation-division (RND) superfamily commonly confer multidrug resistance in Gram-negative bacteria. Phenazines are heterocyclic, nitrogen-containing and redox-active compounds that exhibit diverse activities. We previously identified six phenazines from Lysobacter antibioticus OH13, a soil bacterium emerging as a potential biocontrol agent. Among these phenazines, myxin, a di-N-oxide phenazine, exhibited potent activity against a variety of microorganisms. In this study, we identified a novel RND efflux pump gene cluster, designated lexABC, which is located far away in the genome from the myxin biosynthesis gene cluster. We found a putative LysR-type transcriptional regulator encoding gene lexR, which was adjacent to lexABC. Deletion of lexABC or lexR gene resulted in significant increasing susceptibility of strains to myxin and loss of myxin production. The results demonstrated that LexABC pump conferred resistance against myxin. The myxin produced at lower concentrations in these mutants was derivatized by deoxidation and O-methylation. Furthermore, we found that the abolishment of myxin with deletion of LaPhzB, which is an essential gene in myxin biosynthesis, resulted in significant downregulation of the lexABC. However, exogenous supplementation with myxin to LaPhzB mutant could efficiently induce the expression of lexABC genes. Moreover, lexR mutation also led to decreased expression of lexABC, which indicates that LexR potentially positively modulated the expression of lexABC. Our findings reveal a resistance mechanism against myxin of L. antibioticus, which coordinates regulatory pathways to protect itself from autotoxicity.
Collapse
Affiliation(s)
- Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jiayu Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Tianping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Rongxian Hou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Huiyong Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Response of Pseudomonas aeruginosa to the Innate Immune System-Derived Oxidants Hypochlorous Acid and Hypothiocyanous Acid. J Bacteriol 2020; 203:JB.00300-20. [PMID: 33106346 PMCID: PMC7950407 DOI: 10.1128/jb.00300-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023] Open
Abstract
The bacterial pathogen Pseudomonas aeruginosa causes devastating infections in immunocompromised hosts, including chronic lung infections in cystic fibrosis patients. To combat infection, the host’s immune system produces the antimicrobial oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). Little is known about how P. aeruginosa responds to and survives attack from these oxidants. To address this, we carried out two approaches: a mutant screen and transcriptional study. We identified the P. aeruginosa transcriptional regulator, RclR, which responds specifically to HOCl and HOSCN stress and is essential for protection against both oxidants. We uncovered a link between the P. aeruginosa transcriptional response to these oxidants and physiological processes associated with pathogenicity, including antibiotic resistance and the type 3 secretion system. Pseudomonas aeruginosa is a significant nosocomial pathogen and is associated with lung infections in cystic fibrosis (CF). Once established, P. aeruginosa infections persist and are rarely eradicated despite host immune cells producing antimicrobial oxidants, including hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). There is limited knowledge as to how P. aeruginosa senses, responds to, and protects itself against HOCl and HOSCN and the contribution of such responses to its success as a CF pathogen. To investigate the P. aeruginosa response to these oxidants, we screened 707 transposon mutants, with mutations in regulatory genes, for altered growth following HOCl exposure. We identified regulators of antibiotic resistance, methionine biosynthesis, catabolite repression, and PA14_07340, the homologue of the Escherichia coli HOCl-sensor RclR (30% identical), which are required for protection against HOCl. We have shown that RclR (PA14_07340) protects specifically against HOCl and HOSCN stress and responds to both oxidants by upregulating the expression of a putative peroxiredoxin, rclX (PA14_07355). Transcriptional analysis revealed that while there was specificity in the response to HOCl (231 genes upregulated) and HOSCN (105 genes upregulated), there was considerable overlap, with 74 genes upregulated by both oxidants. These included genes encoding the type 3 secretion system, sulfur and taurine transport, and the MexEF-OprN efflux pump. RclR coordinates part of the response to both oxidants, including upregulation of pyocyanin biosynthesis genes, and, in the presence of HOSCN, downregulation of chaperone genes. These data indicate that the P. aeruginosa response to HOCl and HOSCN is multifaceted, with RclR playing an essential role. IMPORTANCE The bacterial pathogen Pseudomonas aeruginosa causes devastating infections in immunocompromised hosts, including chronic lung infections in cystic fibrosis patients. To combat infection, the host’s immune system produces the antimicrobial oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). Little is known about how P. aeruginosa responds to and survives attack from these oxidants. To address this, we carried out two approaches: a mutant screen and transcriptional study. We identified the P. aeruginosa transcriptional regulator, RclR, which responds specifically to HOCl and HOSCN stress and is essential for protection against both oxidants. We uncovered a link between the P. aeruginosa transcriptional response to these oxidants and physiological processes associated with pathogenicity, including antibiotic resistance and the type 3 secretion system.
Collapse
|
16
|
Henriquez T, Baldow T, Lo YK, Weydert D, Brachmann A, Jung H. Involvement of MexS and MexEF-OprN in Resistance to Toxic Ion Chelators in Pseudomonas putida KT2440. Microorganisms 2020; 8:microorganisms8111782. [PMID: 33202537 PMCID: PMC7697342 DOI: 10.3390/microorganisms8111782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/22/2023] Open
Abstract
Bacteria must be able to cope with harsh environments to survive. In Gram-negative bacteria like Pseudomonas species, resistance-nodulation-division (RND) transporters contribute to this task by pumping toxic compounds out of cells. Previously, we found that the RND system TtgABC of Pseudomonas putida KT2440 confers resistance to toxic metal chelators of the bipyridyl group. Here, we report that the incubation of a ttgB mutant in medium containing 2,2’-bipyridyl generated revertant strains able to grow in the presence of this compound. This trait was related to alterations in the pp_2827 locus (homolog of mexS in Pseudomonas aeruginosa). The deletion and complementation of pp_2827 confirmed the importance of the locus for the revertant phenotype. Furthermore, alteration in the pp_2827 locus stimulated expression of the mexEF-oprN operon encoding an RND efflux pump. Deletion and complementation of mexF confirmed that the latter system can compensate the growth defect of the ttgB mutant in the presence of 2,2’-bipyridyl. To our knowledge, this is the first report on a role of pp_2827 (mexS) in the regulation of mexEF-oprN in P. putida KT2440. The results expand the information about the significance of MexEF-OprN in the stress response of P. putida KT2440 and the mechanisms for coping with bipyridyl toxicity.
Collapse
Affiliation(s)
- Tania Henriquez
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
| | - Tom Baldow
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
| | - Yat Kei Lo
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
| | - Dina Weydert
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
| | - Andreas Brachmann
- Biozentrum, Genetik, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany;
| | - Heinrich Jung
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
- Correspondence:
| |
Collapse
|
17
|
Xu M, Zhang H, Yu N, Dong Y, Wang W, Chen Y, Kang J. Cigarette smoke extract induces the Pseudomonas aeruginosa nfxC drug-resistant phenotype. J Infect Chemother 2020; 26:1278-1282. [PMID: 32800691 DOI: 10.1016/j.jiac.2020.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND There is clinical and epidemiological evidence indicating that cigarette smoke exposure can significantly increase the usage of antibiotics by smokers to treat pulmonary infections, suggesting an increased risk of bacterial drug resistance. Pseudomonas aeruginosa is commonly found in infectious diseases closely related to cigarette smoke exposure and frequently acquires drug resistance. Recently, a study has demonstrated that cigarette smoke extract may induce Pseudomonas aeruginosa antibiotic resistance but the mechanism remain unknown. OBJECTIVES To explore the effect of cigarette smoke exposure on drug resistance in P. aeruginosa and the underlying mechanism using an in vitro model of cigarette smoke extract (CSE) exposure. METHODS P. aeruginosa strains PAO1, PA103 and ATCC27853 were used in this study. Changes in drug resistance in P. aeruginosa after CSE exposure were evaluated by antimicrobial susceptibility tests. Additionally, differentially expressed genes related to drug resistance were detected by transcriptome sequencing and qRT-PCR. RESULTS CSE increased both the MIC and MBC of levofloxacin and imipenem (MIC was not changed in ATCC 27853) against P. aeruginosa. However, CSE could only increase the minimum inhibitory concentration of tigecycline and minocycline against P. aeruginosa. Transcriptome sequencing and qRT-PCR indicated that MvaT and OprD levels decreased and MexEF-OprN levels increased. CONCLUSIONS Overall, our results showed that CSE may induce antibiotic resistance in P. aeruginosa. The results of antimicrobial susceptibility tests, transcriptome sequencing and qRT-PCR showed that CSE induced P. aeruginosa to the nfxC drug-resistant phenotype.
Collapse
Affiliation(s)
- Mingtao Xu
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Hanyin Zhang
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Na Yu
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Ying Dong
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Yu Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jian Kang
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Kim S, Kim SH, Ahn J, Jo I, Lee ZW, Choi SH, Ha NC. Crystal Structure of the Regulatory Domain of MexT, a Transcriptional Activator of the MexEFOprN Efflux Pump in Pseudomonas aeruginosa. Mol Cells 2019; 42:850-857. [PMID: 31722511 PMCID: PMC6939650 DOI: 10.14348/molcells.2019.0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 10/07/2019] [Indexed: 12/02/2022] Open
Abstract
The Gram-negative opportunistic pathogen, Pseudomonas aeruginosa , has multiple multidrug efflux pumps. MexT, a LysR-type transcriptional regulator, functions as a transcriptional activator of the MexEF-OprN efflux system. MexT consists of an N-terminal DNA-binding domain and a C-terminal regulatory domain (RD). Little is known regarding MexT ligands and its mechanism of activation. We elucidated the crystal structure of the MexT RD at 2.0 Å resolution. The structure comprised two protomer chains in a dimeric arrangement. MexT possessed an arginine-rich region and a hydrophobic patch lined by a variable loop, both of which are putative ligand-binding sites. The three-dimensional structure of MexT provided clues to the interacting ligand structure. A DNase I footprinting assay of full-length MexT identified two MexT-binding sequence in the mexEF oprN promoter. Our findings enhance the understanding of the regulation of MexT-dependent activation of efflux pumps.
Collapse
Affiliation(s)
- Suhyeon Kim
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Songhee H. Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826,
Korea
| | - Jinsook Ahn
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Inseong Jo
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Zee-Won Lee
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Sang Ho Choi
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
19
|
Hill IT, Tallo T, Dorman MJ, Dove SL. Loss of RNA Chaperone Hfq Unveils a Toxic Pathway in Pseudomonas aeruginosa. J Bacteriol 2019; 201:e00232-19. [PMID: 31358608 PMCID: PMC6755729 DOI: 10.1128/jb.00232-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Hfq is an RNA chaperone that serves as a master regulator of bacterial physiology. Here we show that in the opportunistic pathogen Pseudomonas aeruginosa, the loss of Hfq can result in a dramatic reduction in growth in a manner that is dependent upon MexT, a transcription regulator that governs antibiotic resistance in this organism. Using a combination of chromatin immunoprecipitation with high-throughput sequencing and transposon insertion sequencing, we identify the MexT-activated genes responsible for mediating the growth defect of hfq mutant cells. These include a newly identified MexT-controlled gene that we call hilR We demonstrate that hilR encodes a small protein that is acutely toxic to wild-type cells when produced ectopically. Furthermore, we show that hilR expression is negatively regulated by Hfq, offering a possible explanation for the growth defect of hfq mutant cells. Finally, we present evidence that the expression of MexT-activated genes is dependent upon GshA, an enzyme involved in the synthesis of glutathione. Our findings suggest that Hfq can influence the growth of P. aeruginosa by limiting the toxic effects of specific MexT-regulated genes. Moreover, our results identify glutathione to be a factor important for the in vivo activity of MexT.IMPORTANCE Here we show that the conserved RNA chaperone Hfq is important for the growth of the opportunistic pathogen Pseudomonas aeruginosa We found that the growth defect of hfq mutant cells is dependent upon the expression of genes that are under the control of the transcription regulator MexT. These include a gene that we refer to as hilR, which we show is negatively regulated by Hfq and encodes a small protein that can be toxic when ectopically produced in wild-type cells. Thus, Hfq can influence the growth of P. aeruginosa by limiting the toxic effects of MexT-regulated genes, including one encoding a previously unrecognized small protein. We also show that MexT activity depends on an enzyme that synthesizes glutathione.
Collapse
Affiliation(s)
- Ian T Hill
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Tallo
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew J Dorman
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Cinnamaldehyde Induces Expression of Efflux Pumps and Multidrug Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01081-19. [PMID: 31383658 DOI: 10.1128/aac.01081-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/27/2019] [Indexed: 01/23/2023] Open
Abstract
Essential oils or their components are increasingly used to fight bacterial infections. Cinnamaldehyde (CNA), the main constituent of cinnamon bark oil, has demonstrated interesting properties in vitro against various pathogens, including Pseudomonas aeruginosa In the present study, we investigated the mechanisms and possible therapeutic consequences of P. aeruginosa adaptation to CNA. Exposure of P. aeruginosa PA14 to subinhibitory concentrations of CNA caused a strong albeit transient increase in the expression of operons that encode the efflux systems MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY/OprM. This multipump activation enhanced from 2- to 8-fold the resistance (MIC) of PA14 to various antipseudomonal antibiotics, including meropenem, ceftazidime, tobramycin, and ciprofloxacin. CNA-induced production of pump MexAB-OprM was found to play a major role in the adaption of P. aeruginosa to the electrophilic biocide, through the NalC regulatory pathway. CNA was progressively transformed by bacteria into the less toxic metabolite cinnamic alcohol (CN-OH), via yet undetermined detoxifying mechanisms. In conclusion, the use of cinnamon bark oil or cinnamaldehyde as adjunctive therapy to treat P. aeruginosa infections may potentially have antagonistic effects if combined with antibiotics because of Mex pump activation.
Collapse
|
21
|
Four LysR-type transcriptional regulator family proteins (LTTRs) involved in antibiotic resistance in Aeromonas hydrophila. World J Microbiol Biotechnol 2019; 35:127. [DOI: 10.1007/s11274-019-2700-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/22/2019] [Indexed: 01/21/2023]
|
22
|
Perry EK, Newman DK. The transcription factors ActR and SoxR differentially affect the phenazine tolerance of Agrobacterium tumefaciens. Mol Microbiol 2019; 112:199-218. [PMID: 31001852 PMCID: PMC6615960 DOI: 10.1111/mmi.14263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2019] [Indexed: 01/01/2023]
Abstract
Bacteria in soils encounter redox-active compounds, such as phenazines, that can generate oxidative stress, but the mechanisms by which different species tolerate these compounds are not fully understood. Here, we identify two transcription factors, ActR and SoxR, that play contrasting yet complementary roles in the tolerance of the soil bacterium Agrobacterium tumefaciens to phenazines. We show that ActR promotes phenazine tolerance by proactively driving expression of a more energy-efficient terminal oxidase at the expense of a less efficient alternative, which may affect the rate at which phenazines abstract electrons from the electron transport chain (ETC) and thereby generate reactive oxygen species. SoxR, on the other hand, responds to phenazines by inducing expression of several efflux pumps and redox-related genes, including one of three copies of superoxide dismutase and five novel members of its regulon that could not be computationally predicted. Notably, loss of ActR is far more detrimental than loss of SoxR at low concentrations of phenazines, and also increases dependence on the otherwise functionally redundant SoxR-regulated superoxide dismutase. Our results thus raise the intriguing possibility that the composition of an organism's ETC may be the driving factor in determining sensitivity or tolerance to redox-active compounds.
Collapse
Affiliation(s)
- Elena K Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
23
|
Constitutive Activation of MexT by Amino Acid Substitutions Results in MexEF-OprN Overproduction in Clinical Isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018. [PMID: 29530852 DOI: 10.1128/aac.02445-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When overproduced, the multidrug efflux system MexEF-OprN increases the resistance of Pseudomonas aeruginosa to fluoroquinolones, chloramphenicol, and trimethoprim. In this work, we demonstrate that gain-of-function mutations in the regulatory gene mexT result in oligomerization of the LysR regulator MexT, constitutive upregulation of the efflux pump, and increased resistance in clinical isolates.
Collapse
|
24
|
The Microbial Endocrinology of Pseudomonas aeruginosa: Inflammatory and Immune Perspectives. Arch Immunol Ther Exp (Warsz) 2018. [PMID: 29541797 DOI: 10.1007/s00005-018-0510-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa is a major pathogen responsible for both acute and chronic infection. Known as a colonising pathogen of the cystic fibrosis (CF) lung, it is implicated in other settings such as bronchiectasis. It has the ability to cause acute disseminated or localised infection particularly in the immunocompromised. Human hormones have been highlighted as potential regulators of bacterial virulence through crosstalk between analogous "quorum sensing" (QS) systems present in the bacteria that respond to mammalian hormones. Pseudomonas aeruginosa is known to utilise interconnected QS systems to coordinate its virulence and evade various aspects of the host immune system activated in response to infection. Several human hormones demonstrate an influence on P. aeruginosa growth and virulence. This inter-kingdom signalling, termed "microbial endocrinology" has important implications for host-microbe interaction during infection and, potentially opens up novel avenues for therapeutic intervention. This phenomenon, supported by the existence of sexual dichotomies in both microbial infection and chronic lung diseases such as CF is potentially explained by sex hormones and their influence on the infective process. This review summarises our current understanding of the microbial endocrinology of P. aeruginosa, including its endogenous QS systems and their intersection with human endocrinology, pathogenesis of infection and the host immune system.
Collapse
|
25
|
Tan J, Huyck M, Hu D, Zelaya RA, Hogan DA, Greene CS. ADAGE signature analysis: differential expression analysis with data-defined gene sets. BMC Bioinformatics 2017; 18:512. [PMID: 29166858 PMCID: PMC5700673 DOI: 10.1186/s12859-017-1905-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Gene set enrichment analysis and overrepresentation analyses are commonly used methods to determine the biological processes affected by a differential expression experiment. This approach requires biologically relevant gene sets, which are currently curated manually, limiting their availability and accuracy in many organisms without extensively curated resources. New feature learning approaches can now be paired with existing data collections to directly extract functional gene sets from big data. RESULTS Here we introduce a method to identify perturbed processes. In contrast with methods that use curated gene sets, this approach uses signatures extracted from public expression data. We first extract expression signatures from public data using ADAGE, a neural network-based feature extraction approach. We next identify signatures that are differentially active under a given treatment. Our results demonstrate that these signatures represent biological processes that are perturbed by the experiment. Because these signatures are directly learned from data without supervision, they can identify uncurated or novel biological processes. We implemented ADAGE signature analysis for the bacterial pathogen Pseudomonas aeruginosa. For the convenience of different user groups, we implemented both an R package (ADAGEpath) and a web server ( http://adage.greenelab.com ) to run these analyses. Both are open-source to allow easy expansion to other organisms or signature generation methods. We applied ADAGE signature analysis to an example dataset in which wild-type and ∆anr mutant cells were grown as biofilms on the Cystic Fibrosis genotype bronchial epithelial cells. We mapped active signatures in the dataset to KEGG pathways and compared with pathways identified using GSEA. The two approaches generally return consistent results; however, ADAGE signature analysis also identified a signature that revealed the molecularly supported link between the MexT regulon and Anr. CONCLUSIONS We designed ADAGE signature analysis to perform gene set analysis using data-defined functional gene signatures. This approach addresses an important gap for biologists studying non-traditional model organisms and those without extensive curated resources available. We built both an R package and web server to provide ADAGE signature analysis to the community.
Collapse
Affiliation(s)
- Jie Tan
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Matthew Huyck
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Dongbo Hu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - René A Zelaya
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
26
|
Groitl B, Dahl JU, Schroeder JW, Jakob U. Pseudomonas aeruginosa defense systems against microbicidal oxidants. Mol Microbiol 2017; 106:335-350. [PMID: 28795780 DOI: 10.1111/mmi.13768] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2017] [Indexed: 11/29/2022]
Abstract
The most abundant oxidants controlling bacterial colonization on mucosal barrier epithelia are hypochlorous acid (HOCl), hypobromous acid (HOBr) and hypothiocyanous acid (HOSCN). All three oxidants are highly antimicrobial but little is known about their relative efficacies, their respective cellular targets, or what specific responses they elicit in bacteria. To address these important questions, we directly tested the individual oxidants on the virulent Pseudomonas aeruginosa strain PA14. We discovered that HOCl and HOBr work almost interchangeably, impacting non-growing bacterial cultures more significantly than actively growing bacteria, and eliciting similar stress responses, including the heat shock response. HOSCN treatment is distinctly different, affecting primarily actively growing PA14 and evoking stress responses suggestive of membrane damage. What all three oxidants have in common, however, is their ability to cause substantial protein aggregation. This effect became particularly obvious in strains lacking polyphosphate, a newly recognized chemical chaperone. Treatment of PA14 with the FDA-approved anti-inflammatory drug mesalamine, which has recently been shown to attenuate polyP production in a wide range of bacteria, effectively decreased the resistance of PA14 toward all three oxidants, suggesting that we have discovered a novel, targetable defense system in P. aeruginosa.
Collapse
Affiliation(s)
- Bastian Groitl
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jan-Ulrik Dahl
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jeremy W Schroeder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Biological Chemistry, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Toxic Electrophiles Induce Expression of the Multidrug Efflux Pump MexEF-OprN in Pseudomonas aeruginosa through a Novel Transcriptional Regulator, CmrA. Antimicrob Agents Chemother 2017; 61:AAC.00585-17. [PMID: 28507116 DOI: 10.1128/aac.00585-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
The multidrug efflux system MexEF-OprN is produced at low levels in wild-type strains of Pseudomonas aeruginosa However, in so-called nfxC mutants, mutational alteration of the gene mexS results in constitutive overexpression of the pump, along with increased resistance of the bacterium to chloramphenicol, fluoroquinolones, and trimethoprim. In this study, analysis of in vitro-selected chloramphenicol-resistant clones of strain PA14 led to the identification of a new class of MexEF-OprN-overproducing mutants (called nfxC2) exhibiting alterations in an as-yet-uncharacterized gene, PA14_38040 (homolog of PA2047 in strain PAO1). This gene is predicted to encode an AraC-like transcriptional regulator and was called cmrA (for chloramphenicol resistance activator). In nfxC2 mutants, the mutated CmrA increases its proper gene expression and upregulates the operon mexEF-oprN through MexS and MexT, resulting in a multidrug resistance phenotype without significant loss in bacterial virulence. Transcriptomic experiments demonstrated that CmrA positively regulates a small set of 11 genes, including PA14_38020 (homolog of PA2048), which is required for the MexS/T-dependent activation of mexEF-oprN PA2048 codes for a protein sharing conserved domains with the quinol monooxygenase YgiN from Escherichia coli Interestingly, exposure of strain PA14 to toxic electrophilic molecules (glyoxal, methylglyoxal, and cinnamaldehyde) strongly activates the CmrA pathway and upregulates MexEF-OprN and, thus, increases the resistance of P. aeruginosa to the pump substrates. A picture emerges in which MexEF-OprN is central in the response of the pathogen to stresses affecting intracellular redox homeostasis.
Collapse
|
28
|
Description of genomic islands associated to the multidrug-resistant Pseudomonas aeruginosa clone ST277. INFECTION GENETICS AND EVOLUTION 2016; 42:60-5. [DOI: 10.1016/j.meegid.2016.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
|
29
|
Reen FJ, Flynn S, Woods DF, Dunphy N, Chróinín MN, Mullane D, Stick S, Adams C, O'Gara F. Bile signalling promotes chronic respiratory infections and antibiotic tolerance. Sci Rep 2016; 6:29768. [PMID: 27432520 PMCID: PMC4949476 DOI: 10.1038/srep29768] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/17/2016] [Indexed: 12/29/2022] Open
Abstract
Despite aggressive antimicrobial therapy, many respiratory pathogens persist in the lung, underpinning the chronic inflammation and eventual lung decline that are characteristic of respiratory disease. Recently, bile acid aspiration has emerged as a major comorbidity associated with a range of lung diseases, shaping the lung microbiome and promoting colonisation by Pseudomonas aeruginosa in Cystic Fibrosis (CF) patients. In order to uncover the molecular mechanism through which bile modulates the respiratory microbiome, a combination of global transcriptomic and phenotypic analyses of the P. aeruginosa response to bile was undertaken. Bile responsive pathways responsible for virulence, adaptive metabolism, and redox control were identified, with macrolide and polymyxin antibiotic tolerance increased significantly in the presence of bile. Bile acids, and chenodeoxycholic acid (CDCA) in particular, elicited chronic biofilm behaviour in P. aeruginosa, while induction of the pro-inflammatory cytokine Interleukin-6 (IL-6) in lung epithelial cells by CDCA was Farnesoid X Receptor (FXR) dependent. Microbiome analysis of paediatric CF sputum samples demonstrated increased colonisation by P. aeruginosa and other Proteobacterial pathogens in bile aspirating compared to non-aspirating patients. Together, these data suggest that bile acid signalling is a leading trigger for the development of chronic phenotypes underlying the pathophysiology of chronic respiratory disease.
Collapse
Affiliation(s)
- F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Stephanie Flynn
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Niall Dunphy
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | | | - David Mullane
- Paediatric Cystic Fibrosis Unit, Cork University Hospital, Cork, Ireland
| | | | - Claire Adams
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.,Telethon Kids Institute, Perth, Western Australia.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
30
|
Amino Acid Substitutions Account for Most MexS Alterations in Clinical nfxC Mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60:2302-10. [PMID: 26833155 DOI: 10.1128/aac.02622-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant mutants ofPseudomonas aeruginosathat overproduce the active efflux system MexEF-OprN (callednfxCmutants) have rarely been characterized in the hospital setting. Screening of 221 clinical strains exhibiting a reduced susceptibility to ciprofloxacin (a substrate of MexEF-OprN) and imipenem (a substrate of the negatively coregulated porin OprD) led to the identification of 43 (19.5%)nfxCmutants. Subsequent analysis of 22 nonredundant mutants showed that, in contrast to theirin vitro-selected counterparts, only 3 of them (13.6%) harbored a disruptedmexSgene, which codes for the oxidoreductase MexS, whose inactivation is known to activate themexEF-oprNoperon through a LysR-type regulator, MexT. Nine (40.9%) of the clinicalnfxCmutants contained single amino acid mutations in MexS, and these were associated with moderate effects on resistance and virulence factor production in 8/9 strains. Finally, the remaining 10 (45.5%)nfxCmutants did not display mutations in any of the regulators known to controlmexEF-oprNexpression (themexS,mexT,mvaT, andampRgenes), confirming that other loci are responsible for pump upregulation in patients. Collectively, these data demonstrate thatnfxCmutants are probably more frequent in the hospital than previously thought and have genetic and phenotypic features somewhat different from those ofin vitro-selected mutants.
Collapse
|
31
|
Stability of the GraA Antitoxin Depends on Growth Phase, ATP Level, and Global Regulator MexT. J Bacteriol 2015; 198:787-96. [PMID: 26668267 DOI: 10.1128/jb.00684-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacterial type II toxin-antitoxin systems consist of a potentially poisonous toxin and an antitoxin that inactivates the toxic protein by binding to it. Most of the toxins regulate stress survival, but their activation depends on the stability of the antitoxin that has to be degraded in order for the toxin to be able to attack its cellular targets. The degradation of antitoxins is usually rapid and carried out by ATP-dependent protease Lon or Clp, which is activated under stress conditions. The graTA system of Pseudomonas putida encodes the toxin GraT, which can affect the growth rate and stress tolerance of bacteria but is under most conditions inactivated by the unusually stable antitoxin GraA. Here, we aimed to describe the stability features of the antitoxin GraA by analyzing its degradation rate in total cell lysates of P. putida. We show that the degradation rate of GraA depends on the growth phase of bacteria being fastest in the transition from exponential to stationary phase. In accordance with this, higher ATP levels were shown to stabilize GraA. Differently from other antitoxins, the main cellular proteases Lon and Clp are not involved in GraA stability. Instead, GraA seems to be degraded through a unique pathway involving an endoprotease that cleaves the antitoxin into two unequal parts. We also identified the global transcriptional regulator MexT as a factor for destabilization of GraA, which indicates that the degradation of GraA may be induced by conditions similar to those that activate MexT. IMPORTANCE Toxin-antitoxin (TA) modules are widespread in bacterial chromosomes and have important roles in stress tolerance. As activation of a type II toxin is triggered by proteolytic degradation of the antitoxin, knowledge about the regulation of the antitoxin stability is critical for understanding the activation of a particular TA module. Here, we report on the unusual degradation pathway of the antitoxin GraA of the recently characterized GraTA system. While GraA is uncommonly stable in the exponential and late-stationary phases, its degradation increases in the transition phase. The degradation pathway of GraA involves neither Lon nor Clp, which usually targets antitoxins, but rather an unknown endoprotease and the global regulator MexT, suggesting a new type of regulation of antitoxin stability.
Collapse
|
32
|
Kim S, Yoon Y, Choi KH. Pseudomonas aeruginosa DesB Promotes Staphylococcus aureus Growth Inhibition in Coculture by Controlling the Synthesis of HAQs. PLoS One 2015; 10:e0134624. [PMID: 26230088 PMCID: PMC4521719 DOI: 10.1371/journal.pone.0134624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/10/2015] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is a pathogen that can cause serious infections and usually coexists with other pathogens, such as Staphylococcus aureus. Virulence factors are important for maintaining a presence of the organisms in these multispecies environments, and DesB plays an important role in P. aeruginosa virulence. Therefore, we investigated the effect of DesB on S. aureus reduction under competitive situation. Liquid cultures of P. aeruginosa wild type (WT) and its desB mutant were spotted on agar plates containing S. aureus, and the size of the clear zones was compared. In addition, interbacterial competition between P. aeruginosa and S. aureus was observed over time during planktonic coculture. The transcriptional profiles of the WT and desB mutant were compared by qRT-PCR and microarray to determine the role of DesB in S. aureus reduction at the molecular level. As a result, the clear zone was smaller for the desB mutant than for P. aeruginosa PAO1 (WT), and in planktonic coculture, the number of S. aureus cells was reduced in the desB mutant. qRT-PCR and microarray revealed that the expression of MvfR-controlled pqsA-E and phnAB operons was significantly decreased, but the mexEF-oprN operon was highly expressed. The results indicate that intracellular levels of 4-hydroxy-2-heptylquinoline (HHQ), a ligand of MvfR, are reduced due to MexEF-OprN-mediated efflux in desB mutant, resulting in the decrease of MvfR binding to pqsA-E promoter and the reduction of 4-hydroxy-2-alkylquinolines (HAQs) synthesis. Overexpression of mexEF-oprN operon in desB mutant was phenotypically confirmed by observing significantly increased resistance to chloramphenicol. In conclusion, these results suggest that DesB plays a role in the inhibition of S. aureus growth by controlling HAQ synthesis.
Collapse
Affiliation(s)
- Sejeong Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Korea
- * E-mail: (YY); (KHC)
| | - Kyoung-Hee Choi
- Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan, Korea
- * E-mail: (YY); (KHC)
| |
Collapse
|
33
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1005] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
34
|
Silver-zinc redox-coupled electroceutical wound dressing disrupts bacterial biofilm. PLoS One 2015; 10:e0119531. [PMID: 25803639 PMCID: PMC4372374 DOI: 10.1371/journal.pone.0119531] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa biofilm is commonly associated with chronic wound infection. A FDA approved wireless electroceutical dressing (WED), which in the presence of conductive wound exudate gets activated to generate electric field (0.3–0.9V), was investigated for its anti-biofilm properties. Growth of pathogenic P. aeruginosa strain PAO1 in LB media was markedly arrested in the presence of the WED. Scanning electron microscopy demonstrated that WED markedly disrupted biofilm integrity in a setting where silver dressing was ineffective. Biofilm thickness and number of live bacterial cells were decreased in the presence of WED. Quorum sensing genes lasR and rhlR and activity of electric field sensitive enzyme, glycerol-3-phosphate dehydrogenase was also repressed by WED. This work provides first electron paramagnetic resonance spectroscopy evidence demonstrating that WED serves as a spontaneous source of reactive oxygen species. Redox-sensitive multidrug efflux systems mexAB and mexEF were repressed by WED. Taken together, these observations provide first evidence supporting the anti-biofilm properties of WED.
Collapse
|
35
|
Morita Y, Tomida J, Kawamura Y. Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon. Front Microbiol 2015; 6:8. [PMID: 25653649 PMCID: PMC4301020 DOI: 10.3389/fmicb.2015.00008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
Abstract
The emergence of multidrug-resistant Pseudomonas aeruginosa has become a serious problem in medical settings. P. aeruginosa clinical isolate PA7 is resistant to fluoroquinolones, aminoglycosides, and most β-lactams but not imipenem. In this study, enhanced efflux-mediated fluoroquinolone resistance of PA7 was shown to reflect increased expression of two resistance nodulation cell division (RND) -type multidrug efflux operons, mexEF-oprN and mexXY-oprA. Such a clinical isolate has rarely been reported because MexEF-OprN-overproducing mutants often increase susceptibility to aminoglycosides apparently owing to impairment of the MexXY system. A mutant of PA7 lacking three RND-type multidrug efflux operons (mexAB-oprM, mexEF-oprN, and mexXY-oprA) was susceptible to all anti-pseudomonas agents we tested, supporting an idea that these RND-type multidrug efflux transporters are molecular targets to overcome multidrug resistance in P. aeruginosa. mexEF-oprN-upregulation in P. aeruginosa PA7 was shown due to a MexS variant harboring the Valine-155 amino acid residue. This is the first genetic evidence shown that a MexS variant causes mexEF-oprN-upregulation in P. aeruginosa clinical isolates.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| |
Collapse
|
36
|
Dufour V, Stahl M, Baysse C. The antibacterial properties of isothiocyanates. MICROBIOLOGY-SGM 2014; 161:229-243. [PMID: 25378563 DOI: 10.1099/mic.0.082362-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isothiocyanates (ITCs) are natural plant products generated by the enzymic hydrolysis of glucosinolates found in Brassicaceae vegetables. These natural sulfur compounds and their dithiocarbamate conjugates have been previously evaluated for their anti-cancerous properties. Their antimicrobial properties have been previously studied as well, mainly for food preservation and plant pathogen control. Recently, several revelations concerning the mode of action of ITCs in prokaryotes have emerged. This review addresses these new studies and proposes a model to summarize the current knowledge and hypotheses for the antibacterial effect of ITCs and whether they may provide the basis for the design of novel antibiotics.
Collapse
Affiliation(s)
- Virginie Dufour
- Equipe EA1254, Microbiologie Risques Infectieux, University of Rennes 1, F-35042 Rennes cedex, France
| | - Martin Stahl
- Division of Gastroenterology, BC's Children's Hospital, Child and Family Research Institute and University of British Columbia, Vancouver, BC, Canada
| | - Christine Baysse
- Equipe EA1254, Microbiologie Risques Infectieux, University of Rennes 1, F-35042 Rennes cedex, France
| |
Collapse
|
37
|
Nonnative disulfide bond formation activates the σ32-dependent heat shock response in Escherichia coli. J Bacteriol 2013; 195:2807-16. [PMID: 23585533 DOI: 10.1128/jb.00127-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of nonnative disulfide bonds in the cytoplasm, so-called disulfide stress, is an integral component of oxidative stress. Quantification of the extent of disulfide bond formation in the cytoplasm of Escherichia coli revealed that disulfide stress is associated with oxidative stress caused by hydrogen peroxide, paraquat, and cadmium. To separate the impact of disulfide bond formation from unrelated effects of these oxidative stressors in subsequent experiments, we worked with two complementary approaches. We triggered disulfide stress either chemically by diamide treatment of cells or genetically in a mutant strain lacking the major disulfide-reducing systems TrxB and Gor. Studying the proteomic response of E. coli exposed to disulfide stress, we found that intracellular disulfide bond formation is a particularly strong inducer of the heat shock response. Real-time quantitative PCR experiments showed that disulfide stress induces the heat shock response in E. coli σ(32) dependently. However, unlike heat shock treatment, which induces these genes transiently, transcripts of σ(32)-dependent genes accumulated over time in disulfide stress-treated cells. Analyzing the stability of σ(32), we found that this constant induction can be attributed to an increase of the half-life of σ(32) upon disulfide stress. This is concomitant with aggregation of E. coli proteins treated with diamide. We conclude that oxidative stress triggers the heat shock response in E. coli σ(32) dependently. The component of oxidative stress responsible for the induction of heat shock genes is disulfide stress. Nonnative disulfide bond formation in the cytoplasm causes protein unfolding. This stabilizes σ(32) by preventing its DnaK- and FtsH-dependent degradation.
Collapse
|
38
|
Gene PA2449 is essential for glycine metabolism and pyocyanin biosynthesis in Pseudomonas aeruginosa PAO1. J Bacteriol 2013; 195:2087-100. [PMID: 23457254 DOI: 10.1128/jb.02205-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many pseudomonads produce redox active compounds called phenazines that function in a variety of biological processes. Phenazines are well known for their toxicity against non-phenazine-producing organisms, which allows them to serve as crucial biocontrol agents and virulence factors during infection. As for other secondary metabolites, conditions of nutritional stress or limitation stimulate the production of phenazines, but little is known of the molecular details underlying this phenomenon. Using a combination of microarray and metabolite analyses, we demonstrate that the assimilation of glycine as a carbon source and the biosynthesis of pyocyanin in Pseudomonas aeruginosa PAO1 are both dependent on the PA2449 gene. The inactivation of the PA2449 gene was found to influence the transcription of a core set of genes encoding a glycine cleavage system, serine hydroxymethyltransferase, and serine dehydratase. PA2449 also affected the transcription of several genes that are integral in cell signaling and pyocyanin biosynthesis in P. aeruginosa PAO1. This study sheds light on the unexpected relationship between the utilization of an unfavorable carbon source and the production of pyocyanin. PA2449 is conserved among pseudomonads and might be universally involved in the assimilation of glycine among this metabolically diverse group of bacteria.
Collapse
|
39
|
Alvarez-Ortega C, Olivares J, Martínez JL. RND multidrug efflux pumps: what are they good for? Front Microbiol 2013; 4:7. [PMID: 23386844 PMCID: PMC3564043 DOI: 10.3389/fmicb.2013.00007] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/07/2013] [Indexed: 01/27/2023] Open
Abstract
Multidrug efflux pumps are chromosomally encoded genetic elements capable of mediating resistance to toxic compounds in several life forms. In bacteria, these elements are involved in intrinsic and acquired resistance to antibiotics. Unlike other well-known horizontally acquired antibiotic resistance determinants, genes encoding for multidrug efflux pumps belong to the core of bacterial genomes and thus have evolved over millions of years. The selective pressure stemming from the use of antibiotics to treat bacterial infections is relatively recent in evolutionary terms. Therefore, it is unlikely that these elements have evolved in response to antibiotics. In the last years, several studies have identified numerous functions for efflux pumps that go beyond antibiotic extrusion. In this review we present some examples of these functions that range from bacterial interactions with plant or animal hosts, to the detoxification of metabolic intermediates or the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Carolina Alvarez-Ortega
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | | |
Collapse
|
40
|
Reen FJ, Haynes JM, Mooij MJ, O'Gara F. A non-classical LysR-type transcriptional regulator PA2206 is required for an effective oxidative stress response in Pseudomonas aeruginosa. PLoS One 2013; 8:e54479. [PMID: 23382903 PMCID: PMC3557286 DOI: 10.1371/journal.pone.0054479] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/12/2012] [Indexed: 01/13/2023] Open
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as key circuit components in regulating microbial stress responses and are implicated in modulating oxidative stress in the human opportunistic pathogen Pseudomonas aeruginosa. The oxidative stress response encapsulates several strategies to overcome the deleterious effects of reactive oxygen species. However, many of the regulatory components and associated molecular mechanisms underpinning this key adaptive response remain to be characterised. Comparative analysis of publically available transcriptomic datasets led to the identification of a novel LTTR, PA2206, whose expression was altered in response to a range of host signals in addition to oxidative stress. PA2206 was found to be required for tolerance to H2O2in vitro and lethality in vivo in the Zebrafish embryo model of infection. Transcriptomic analysis in the presence of H2O2 showed that PA2206 altered the expression of 58 genes, including a large repertoire of oxidative stress and iron responsive genes, independent of the master regulator of oxidative stress, OxyR. Contrary to the classic mechanism of LysR regulation, PA2206 did not autoregulate its own expression and did not influence expression of adjacent or divergently transcribed genes. The PA2214-15 operon was identified as a direct target of PA2206 with truncated promoter fragments revealing binding to the 5′-ATTGCCTGGGGTTAT-3′ LysR box adjacent to the predicted −35 region. PA2206 also interacted with the pvdS promoter suggesting a global dimension to the PA2206 regulon, and suggests PA2206 is an important regulatory component of P. aeruginosa adaptation during oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Fergal O'Gara
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|