1
|
Scherler A, Jacquier N, Kebbi-Beghdadi C, Greub G. Diverse Stress-Inducing Treatments cause Distinct Aberrant Body Morphologies in the Chlamydia-Related Bacterium, Waddlia chondrophila. Microorganisms 2020; 8:E89. [PMID: 31936490 PMCID: PMC7022761 DOI: 10.3390/microorganisms8010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/27/2019] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
Chlamydiae, such as Chlamydia trachomatis and Chlamydia pneumoniae, can cause chronic infections. It is believed that persistent forms called aberrant bodies (ABs) might be involved in this process. AB formation seems to be a common trait of all members of the Chlamydiales order and is caused by distinct stress stimuli, such as β-lactam antibiotics or nutrient starvation. While the diverse stimuli inducing ABs are well described, no comprehensive morphological characterization has been performed in Chlamydiales up to now. We thus infected mammalian cells with the Chlamydia-related bacterium Waddlia chondrophila and induced AB formation using different stimuli. Their morphology, differences in DNA content and in gene expression were assessed by immunofluorescence, quantitative PCR, and reverse transcription PCR, respectively. All stimuli induced AB formation. Interestingly, we show here for the first time that the DNA gyrase inhibitor novobiocin also caused appearance of ABs. Two distinct patterns of ABs could be defined, according to their morphology and number: (i) small and multiple ABs versus (ii) large and rare ABs. DNA replication of W. chondrophila was generally not affected by the different treatments. Finally, no correlation could be observed between specific types of ABs and expression patterns of mreB and rodZ genes.
Collapse
Affiliation(s)
| | | | | | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; (A.S.); (N.J.); (C.K.-B.)
| |
Collapse
|
2
|
Zhou Y, Lu X, Huang D, Lu Y, Zhang H, Zhang L, Yu P, Wang F, Wang Y. A novel protease inhibitor causes inclusion vacuole reduction and disrupts the intracellular growth of Chlamydia trachomatis. Biochem Biophys Res Commun 2019; 516:157-162. [PMID: 31202460 DOI: 10.1016/j.bbrc.2019.05.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/16/2022]
Abstract
Chlamydia (C.) trachomatis, characterized by a unique biphasic life cycle, is an obligate intracellular bacterial pathogen which is responsible for the highest number of sexually transmitted bacterial infections globally. However, its pathogenic mechanisms have not been fully elucidated because of its unique developmental cycle and obligate intracellular nature. High temperature requirement (HtrA), a critical protease and chaperone, has been previously demonstrated to be essential for several functions and the replicative phase in the C. trachomatis developmental cycle. In the current study, we designed and synthesized a novel peptidomimetic inhibitor targeting C. trachomatis HtrA (CtHtrA) using homology modeling and chemical synthesis. The inhibitor was tested in chlamydia in the mid-replicative phase and resulted in a significant loss of viable infectious progeny and diminishing inclusion size and number at a relatively low concentration. This finding not only indicates that CtHtrA plays a critical role during the replicative phase of the chlamydial developmental cycle but also reveals a useful target for the design of novel anti-chlamydial agents.
Collapse
Affiliation(s)
- Yachun Zhou
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiaofang Lu
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Dong Huang
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yuying Lu
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hongbo Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Zhang
- Department of Urinary Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Yu
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fuyan Wang
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Scherler A, Jacquier N, Greub G. Chlamydiales, Anaplasma and Bartonella: persistence and immune escape of intracellular bacteria. Microbes Infect 2017; 20:416-423. [PMID: 29162422 DOI: 10.1016/j.micinf.2017.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
Intracellular bacteria, such as Chlamydiales, Anaplasma or Bartonella, need to persist inside their host in order to complete their developmental cycle and to infect new hosts. In order to escape from the host immune system, intracellular bacteria have developed diverse mechanisms of persistence, which can directly impact the health of their host.
Collapse
Affiliation(s)
- Aurélie Scherler
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquier
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Zigangirova NA, Kost EA, Didenko LV, Kapotina LN, Zayakin ES, Luyksaar SI, Morgunova EY, Fedina ED, Artyukhova OA, Samorodov AV, Kobets NV. A small-molecule compound belonging to a class of 2,4-disubstituted 1,3,4-thiadiazine-5-ones inhibits intracellular growth and persistence of Chlamydia trachomatis. J Med Microbiol 2016; 65:91-98. [PMID: 26489840 DOI: 10.1099/jmm.0.000189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chlamydia trachomatis is one of the most common sexually transmitted pathogens in the world and often causes chronic inflammatory diseases that are insensitive to antibiotics. The type 3 secretion system (T3SS) of pathogenic bacteria is a promising target for therapeutic intervention aimed at bacterial virulence and can be an attractive alternative for the treatment of chronic infections. Recently, we have shown that a small-molecule compound belonging to a class of 2,4-disubstituted 1,3,4-thiadiazine-5-ones produced through the chemical modification of the thiohydrazides of oxamic acids, designated CL-55, inhibited the intracellular growth of C. trachomatis in a T3SS-dependent manner. To assess the feasibility of CL-55 as a therapeutic agent, our aim was to determine which point(s) in the developmental cycle CL-55 affects. We found that CL-55 had no effect on the adhesion of elementary bodies (EBs) to host cells but significantly suppressed EB internalization. We further found that CL-55 inhibited the intracellular division of reticulate bodies (RBs). An ultrastructural analysis revealed loss of contact between the RBs and the inclusion membrane in the presence of CL-55. Finally, we found that our T3SS inhibitor prevented the persistence of Chlamydia in cell culture and its reversion to the infectious state. Our findings indicate that our T3SS inhibitor may be effective in the treatment of both productive and persistent infections.
Collapse
Affiliation(s)
- Naylia A Zigangirova
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Elena A Kost
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Lubov V Didenko
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Lydia N Kapotina
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Egor S Zayakin
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Sergei I Luyksaar
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Elena Y Morgunova
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Elena D Fedina
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| | - Olga A Artyukhova
- Bauman Moscow State Technical University, 105005, 2nd Baumanskaya Str. 5, Moscow, Russian Federation
| | - Andrey V Samorodov
- Bauman Moscow State Technical University, 105005, 2nd Baumanskaya Str. 5, Moscow, Russian Federation
| | - Natalya V Kobets
- Gamaleya Center of Epidemiology and Microbiology, Ministry of Health Russian Federation, 123098, Gamaleya Str. 18, Moscow, Russian Federation
| |
Collapse
|
5
|
Nans A, Saibil HR, Hayward RD. Pathogen-host reorganization during Chlamydia invasion revealed by cryo-electron tomography. Cell Microbiol 2014; 16:1457-72. [PMID: 24809274 PMCID: PMC4336559 DOI: 10.1111/cmi.12310] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 02/06/2023]
Abstract
Invasion of host cells is a key early event during bacterial infection, but the underlying pathogen–host interactions are yet to be fully visualized in three-dimensional detail. We have captured snapshots of the early stages of bacterial-mediated endocytosis in situ by exploiting the small size of chlamydial elementary bodies (EBs) for whole-cell cryo-electron tomography. Chlamydiae are obligate intracellular bacteria that infect eukaryotic cells and cause sexually transmitted infections and trachoma, the leading cause of preventable blindness. We demonstrate that Chlamydia trachomatis LGV2 EBs are intrinsically polarized. One pole is characterized by a tubular inner membrane invagination, while the other exhibits asymmetric periplasmic expansion to accommodate an array of type III secretion systems (T3SSs). Strikingly, EBs orient with their T3SS-containing pole facing target cells, enabling the T3SSs to directly contact the cellular plasma membrane. This contact induces enveloping macropinosomes, actin-rich filopodia and phagocytic cups to zipper tightly around the internalizing bacteria. Once encapsulated into tight early vacuoles, EB polarity and the T3SSs are lost. Our findings reveal previously undescribed structural transitions in both pathogen and host during the initial steps of chlamydial invasion.
Collapse
Affiliation(s)
- Andrea Nans
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | | | | |
Collapse
|
6
|
Wilkat M, Herdoiza E, Forsbach-Birk V, Walther P, Essig A. Electron tomography and cryo-SEM characterization reveals novel ultrastructural features of host-parasite interaction during Chlamydia abortus infection. Histochem Cell Biol 2014; 142:171-84. [PMID: 24522393 DOI: 10.1007/s00418-014-1189-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2014] [Indexed: 01/06/2023]
Abstract
Chlamydia (C.) abortus is a widely spread pathogen among ruminants that can be transmitted to women during pregnancy leading to severe systemic infection with consecutive abortion. As a member of the Chlamydiaceae, C. abortus shares the characteristic feature of an obligate intracellular biphasic developmental cycle with two morphological forms including elementary bodies (EBs) and reticulate bodies (RBs). In contrast to other chlamydial species, C. abortus ultrastructure has not been investigated yet. To do so, samples were fixed by high-pressure freezing and processed by different electron microscopic methods. Freeze-substituted samples were analysed by transmission electron microscopy, scanning transmission electron microscopical tomography and immuno-electron microscopy, and freeze-fractured samples were analysed by cryo-scanning electron microscopy. Here, we present three ultrastructural features of C. abortus that have not been reported up to now. Firstly, the morphological evidence that C. abortus is equipped with the type three secretion system. Secondly, the accumulation and even coating of whole inclusion bodies by membrane complexes consisting of multiple closely adjacent membranes which seems to be a C. abortus specific feature. Thirdly, the formation of small vesicles in the periplasmic space of RBs in the second half of the developmental cycle. Concerning the time point of their formation and the fact that they harbour chlamydial components, these vesicles might be morphological correlates of an intermediate step during the process of redifferentiation of RBs into EBs. As this feature has also been shown for C. trachomatis and C. pneumoniae, it might be a common characteristic of the family of Chlamydiaceae.
Collapse
Affiliation(s)
- M Wilkat
- Institute of Medical Microbiology and Hygiene, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany,
| | | | | | | | | |
Collapse
|
7
|
Steigen A, Nylund A, Karlsbakk E, Akoll P, Fiksdal IU, Nylund S, Odong R, Plarre H, Semyalo R, Skår C, Watanabe K. 'Cand. Actinochlamydia clariae' gen. nov., sp. nov., a unique intracellular bacterium causing epitheliocystis in catfish (Clarias gariepinus) in Uganda. PLoS One 2013; 8:e66840. [PMID: 23826156 PMCID: PMC3691252 DOI: 10.1371/journal.pone.0066840] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/13/2013] [Indexed: 12/25/2022] Open
Abstract
Background and Objectives Epitheliocystis, caused by bacteria infecting gill epithelial cells in fish, is common among a large range of fish species in both fresh- and seawater. The aquaculture industry considers epitheliocystis an important problem. It affects the welfare of the fish and the resulting gill disease may lead to mortalities. In a culture facility in Kampala, Uganda, juveniles of the African sharptooth catfish (Clarias gariepinus) was observed swimming in the surface, sometimes belly up, showing signs of respiratory problems. Histological examination of gill tissues from this fish revealed large amounts of epitheliocysts, and also presence of a few Ichthyobodo sp. and Trichodina sp. Methods and Results Sequencing of the epitheliocystis bacterium 16S rRNA gene shows 86.3% similarity with Candidatus Piscichlamydia salmonis causing epitheliocystis in Atlantic salmon (Salmo salar). Transmission electron microscopy showed that the morphology of the developmental stages of the bacterium is similar to that of members of the family Chlamydiaceae. The similarity of the bacterium rRNA gene sequences compared with other chlamydia-like bacteria ranged between 80.5% and 86.3%. Inclusions containing this new bacterium have tubules/channels (termed actinae) that are radiating from the inclusion membrane and opening on the cell surface or in neighbouring cells. Conclusions Radiation of tubules/channels (actinae) from the inclusion membrane has never been described in any of the other members of Chlamydiales. It seems to be a completely new character and an apomorphy. We propose the name Candidatus Actinochlamydia clariae gen. nov., sp. nov. (Actinochlamydiaceae fam. nov., order Chlamydiales, phylum Chlamydiae) for this new agent causing epitheliocystis in African sharptooth catfish.
Collapse
Affiliation(s)
- Andreas Steigen
- Department of Biology, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hoare A, Timms P, Bavoil PM, Wilson DP. Spatial constraints within the chlamydial host cell inclusion predict interrupted development and persistence. BMC Microbiol 2008; 8:5. [PMID: 18182115 PMCID: PMC2254404 DOI: 10.1186/1471-2180-8-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 01/09/2008] [Indexed: 11/10/2022] Open
Abstract
Background The chlamydial developmental cycle involves the alternation between the metabolically inert elementary body (EB) and the replicating reticulate body (RB). The triggers that mediate the interchange between these particle types are unknown and yet this is crucial for understanding basic Chlamydia biology. Presentation of the hypothesis We have proposed a hypothesis to explain key chlamydial developmental events whereby RBs are replicating strictly whilst in contact with the host cell membrane-derived inclusion via type three secretion (T3S) injectisomes. As the inclusion expands, the contact between each RB and the inclusion membrane decreases, eventually reaching a threshold, beyond which T3S is inactivated upon detachment and this is the signal for RB-to-EB differentiation. Testing the hypothesis We explore this hypothesis through the development of a detailed mathematical model. The model uses knowledge and data of the biological system wherever available and simulates the chlamydial developmental cycle under the assumptions of the hypothesis in order to predict various outcomes and implications under a number of scenarios. Implications of the hypothesis We show that the concept of in vitro persistent infection is not only consistent with the hypothesis but in fact an implication of it. We show that increasing the RB radius, and/or the maximum length of T3S needles mediating contact between RBs and the inclusion membrane, and/or the number of inclusions per infected cell, will contribute to the development of persistent infection. The RB radius is the most important determinant of whether persistent infection would ensue, and subsequently, the magnitude of the EB yield. We determine relationships between the length of the T3S needle and the RB radius within an inclusion, and between the RB radius and the number of inclusions per host cell to predict whether persistent infection or normal development would occur within a host cell. These results are all testable experimentally and could lead to significantly greater understanding of one of the most crucial steps in chlamydial development.
Collapse
Affiliation(s)
- Alexander Hoare
- National Centre in HIV Epidemiology and Clinical Research, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
9
|
Peters J, Wilson DP, Myers G, Timms P, Bavoil PM. Type III secretion à la Chlamydia. Trends Microbiol 2007; 15:241-51. [PMID: 17482820 DOI: 10.1016/j.tim.2007.04.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/07/2007] [Accepted: 04/23/2007] [Indexed: 01/08/2023]
Abstract
Type III secretion (T3S) is a mechanism that is central to the biology of the Chlamydiaceae and many other pathogens whose virulence depends on the translocation of toxic effector proteins to cytosolic targets within infected eukaryotic cells. Biomathematical simulations, using a previously described model of contact-dependent, T3S-mediated chlamydial growth and late differentiation, suggest that chlamydiae contained in small non-fusogenic inclusions will persist. Here, we further discuss the model in the context of in vitro-persistent, stress-induced aberrantly enlarged forms and of recent studies using small molecule inhibitors of T3S. A general mechanism is emerging whereby both early- and mid-cycle T3S-mediated activities and late T3S inactivation upon detachment of chlamydiae from the inclusion membrane are crucial for chlamydial intracellular development.
Collapse
Affiliation(s)
- Jan Peters
- Department of Biomedical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
10
|
Wilson DP, Timms P, McElwain DLS, Bavoil PM. Type III secretion, contact-dependent model for the intracellular development of chlamydia. Bull Math Biol 2006; 68:161-78. [PMID: 16794925 DOI: 10.1007/s11538-005-9024-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2004] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
The medically significant genus Chlamydia is a class of obligate intracellular bacterial pathogens that replicate within vacuoles in host eukaryotic cells termed inclusions. Chlamydia's developmental cycle involves two forms; an infectious extracellular form, known as an elementary body (EB), and a non-infectious form, known as the reticulate body (RB), that replicates inside the vacuoles of the host cells. The RB surface is covered in projections that are in intimate contact with the inclusion membrane. Late in the developmental cycle, these reticulate bodies differentiate into the elementary body form. In this paper, we present a hypothesis for the modulation of these developmental events involving the contact-dependent type III secretion (TTS) system. TTS surface projections mediate intimate contact between the RB and the inclusion membrane. Below a certain number of projections, detachment of the RB provides a signal for late differentiation of RB into EB. We use data and develop a mathematical model investigating this hypothesis. If the hypothesis proves to be accurate, then we have shown that increasing the number of inclusions per host cell will increase the number of infectious progeny EB until some optimal number of inclusions. For more inclusions than this optimum, the infectious yield is reduced because of spatial restrictions. We also predict that a reduction in the number of projections on the surface of the RB (and as early as possible during development) will significantly reduce the burst size of infectious EB particles. Many of the results predicted by the model can be tested experimentally and may lead to the identification of potential targets for drug design.
Collapse
Affiliation(s)
- D P Wilson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
| | | | | | | |
Collapse
|
11
|
Abdelrahman YM, Belland RJ. The chlamydial developmental cycle. FEMS Microbiol Rev 2005; 29:949-59. [PMID: 16043254 DOI: 10.1016/j.femsre.2005.03.002] [Citation(s) in RCA: 456] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2004] [Revised: 03/09/2005] [Accepted: 03/18/2005] [Indexed: 11/28/2022] Open
Abstract
Intracellular parasitism by bacterial pathogens is a complex, multi-factorial process that has been exploited successfully by a wide variety of organisms. Members of the Order Chlamydiales are obligate intracellular bacteria that are transmitted as metabolically inactive particles and must differentiate, replicate, and re-differentiate within the host cell to carry out their life cycle. Understanding the developmental cycle has been greatly advanced by the availability of complete genome sequences, DNA microarrays, and advanced cell biology techniques. Measuring transcriptional changes throughout the cycle has allowed investigators to determine the nature of the temporal gene expression changes required for bacterial growth and development.
Collapse
Affiliation(s)
- Yasser M Abdelrahman
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, 858 Madison Avenue, Memphis, TN 38163, USA
| | | |
Collapse
|
12
|
Escalante-Ochoa C, Ducatelle R, Haesebrouck F. The intracellular life of Chlamydia psittaci: how do the bacteria interact with the host cell? FEMS Microbiol Rev 1998; 22:65-78. [PMID: 9729764 DOI: 10.1111/j.1574-6976.1998.tb00361.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Throughout the life of any organism interactions with the surrounding environment are always taking place, a process that leads to evolution. Chlamydia psittaci is an obligate intracellular parasite, but it must also be capable of extracellular survival in order to search for new host cells. Therefore, these peculiar prokaryotes have evolved two different particles and a unique developmental cycle that, together with a series of not yet fully understood interactions with their host cells, allow them to fulfil the requirements for their permanence in nature. These interactions are the subject of this paper. Particular attention is paid to the attachment and internalization of the bacteria, the chlamydial vacuole, and the avoidance of lysosomal degradation.
Collapse
Affiliation(s)
- C Escalante-Ochoa
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, University of Ghent, Belgium.
| | | | | |
Collapse
|
13
|
Tan TW, Herring AJ, Anderson IE, Jones GE. Protection of sheep against Chlamydia psittaci infection with a subcellular vaccine containing the major outer membrane protein. Infect Immun 1990; 58:3101-8. [PMID: 2387636 PMCID: PMC313617 DOI: 10.1128/iai.58.9.3101-3108.1990] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An outer membrane (OM) preparation from elementary bodies (EBs) of Chlamydia psittaci (ovine abortion strain) was used to vaccinate pregnant ewes in a single subcutaneous dose and was found to achieve protection after subcutaneous challenge with infectious organisms. Inactivated purified EBs used as a single-dose vaccine also gave protection. The ratio of live to dead lambs was significantly higher in the vaccinated groups (16:1 and 15:1, respectively) than in the placebo group (8:9). Polyacrylamide gel electrophoresis and immunoblotting showed that a 40-kilodalton protein was the main protein constituent of the OM preparation, and this was positively identified as the major outer membrane protein by protein microsequencing. Electron microscopy revealed that fine particulate structures on the outermost surface of the EB were also present in the OM preparation. The findings suggest that the major outer membrane protein is an important immunoprotective determinant in ovine abortion vaccines.
Collapse
Affiliation(s)
- T W Tan
- Moredun Research Institute, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
14
|
Peterson EM, de la Maza LM. Chlamydia parasitism: ultrastructural characterization of the interaction between the chlamydial cell envelope and the host cell. J Bacteriol 1988; 170:1389-92. [PMID: 3343223 PMCID: PMC210922 DOI: 10.1128/jb.170.3.1389-1392.1988] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ultrastructural analysis of the growth cycles of Chlamydia trachomatis and Chlamydia psittaci showed that the chlamydial cell envelope became rigid and septated at the time of the reorganization from reticulate to elementary body. This process occurred in the immediacy of the inclusion membrane and in close proximity with the mitochondria or the endoplasmic reticulum of the host cell.
Collapse
Affiliation(s)
- E M Peterson
- Department of Pathology, University of California, Irvine 92717
| | | |
Collapse
|
15
|
Hackstadt T, Todd WJ, Caldwell HD. Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae? J Bacteriol 1985; 161:25-31. [PMID: 2857160 PMCID: PMC214830 DOI: 10.1128/jb.161.1.25-31.1985] [Citation(s) in RCA: 109] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The effects of exogenous reducing agents on a number of biological properties of purified Chlamydia trachomatis LGV-434 and Chlamydia psittaci meningopneumonitis elementary bodies (EBs) have been examined in an attempt to identify in vitro correlates of early events in the differentiation of the infectious EB to the replicative cell type, the reticulate body (RB). Treatment of EBs with dithiothreitol elicited a number of changes normally associated with differentiation to the RB. EBs in the presence of 10 mM dithiothreitol displayed enhanced rates of [14C]glutamate oxidation, reduced infectivity, and decreased osmotic stability, and their Machiavello staining properties changed to those characteristic of the RB. A true differentiation of EB to RB did not take place under these conditions, since EBs treated in this manner and examined by transmission electron microscopy did not demonstrate increased size or decreased electron density as do isolated RBs. Additional studies were initiated to identify the macromolecules involved in this process. With polyacrylamide gel electrophoresis and immunoblotting procedures with monoclonal and polyclonal monospecific antibodies, the chlamydial major outer membrane protein was found to be the predominant component that varied under reducing versus nonreducing conditions. Furthermore, the extent of disulfide-mediated cross-linking of the major outer membrane protein varied between the infective and replicative forms of the C. trachomatis LGV-434 life cycle. Implications of disulfide interactions in the life cycle of chlamydiae are discussed.
Collapse
|
16
|
Chang JJ, Leonard K, Arad T, Pitt T, Zhang YX, Zhang LH. Structural studies of the outer envelope of Chlamydia trachomatis by electron microscopy. J Mol Biol 1982; 161:579-90. [PMID: 7154091 DOI: 10.1016/0022-2836(82)90409-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Soloff BL, Rank RG, Barron AL. Ultrastructural studies of chlamydial infection in guinea-pig urogenital tract. J Comp Pathol 1982; 92:547-58. [PMID: 7153378 DOI: 10.1016/0021-9975(82)90007-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Matsumoto A. Surface projections of Chlamydia psittaci elementary bodies as revealed by freeze-deep-etching. J Bacteriol 1982; 151:1040-2. [PMID: 7096263 PMCID: PMC220359 DOI: 10.1128/jb.151.2.1040-1042.1982] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The morphology of the surface projections of Chlamydia psittaci elementary bodies in the intracytoplasmic inclusion was the same as that of the projections on the purified elementary bodies. Each projection emerged from the center of a flower structure, which was composed of nine leaves arranged radially.
Collapse
|
19
|
Barbour AG, Amano K, Hackstadt T, Perry L, Caldwell HD. Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J Bacteriol 1982; 151:420-8. [PMID: 7085567 PMCID: PMC220254 DOI: 10.1128/jb.151.1.420-428.1982] [Citation(s) in RCA: 125] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chlamydia trachomatis LGV-434 was grown in HeLa 229 cells. Benzylpenicillin completely inhibited the formation of infectious elementary bodies (EBs) at a concentration of 19 pmol/ml or higher and produced abnormally large reticulate bodies (RBs) in the inclusions at 30 pmol/ml or higher. The possible targets for penicillin in C. trachomatis were three penicillin-binding proteins (PBPs) which were identified in the Sarkosyl-soluble fractions of both RBs and EBs. The apparent subunit molecular weights were 88,000 (PBP 1), 61,000 (BPB 2), and 36,000 (PBP 3). The 50% binding concentrations of [3H]penicillin for PBPs 1 to 3 in EBs and RBs were between 7 and 70 pmol/ml. Such high susceptibility to penicillin was shown by an organism that did not have detectable muramic acid (less than 0.02% by weight) in preparations of either whole cells or sodium dodecyl sulfate-insoluble residues.
Collapse
|
20
|
Matsumoto A. Electron microscopic observations of surface projections on Chlamydia psittaci reticulate bodies. J Bacteriol 1982; 150:358-64. [PMID: 7061397 PMCID: PMC220120 DOI: 10.1128/jb.150.1.358-364.1982] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Electron microscopic observations were carried out to confirm the presence of surface projections on Chlamydia psittaci reticulate bodies (RBs). The morphology of the projections on RBs was identical with that on elementary bodies (EBs); one end of each projection was connected with the cytoplasmic membrane, but the other end of the projection protruded beyond the cell wall through a fine hole or rosette in the cell wall. The results demonstrated that the rosettes seen in RB cell walls were morphological markers indicating the presence of the surface projections. A statistical anaylsis of the number of projections on EBs and the number of rosettes in RB cell walls prepared at 10, 15, and 20 h after infection demonstrated that all RBs had the projections and that the number of projections was maximal by 10 h after infection and then decreased gradually to approximately the same number of projections on EBs.
Collapse
|
21
|
Matsumoto A. Isolation and electron microscopic observations of intracytoplasmic inclusions containing Chlamydia psittaci. J Bacteriol 1981; 145:605-12. [PMID: 6257643 PMCID: PMC217310 DOI: 10.1128/jb.145.1.605-612.1981] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Intracytoplasmic inclusions containing Chlamydia psittaci were isolated by a newly established method. Infected L-cells at 20 h after infection were suspended in 0.25 M sucrose-tris(hydroxymethyl)aminomethane buffer containing ethylene-diaminetetraacetic acid, homogenized in a Dounce tissue grinder, and filtered through a 2,000-mesh screen. Isolated inclusions were stabilized in 5% bovine serum albumin in 10 mM tris(hydroxymethyl)aminomethane buffer. Electron microscopic observations revealed the presence of surface projections on the vegetative, reticulate bodies and a direct connection between the reticulate bodies and the inclusion membrane by means of projections.
Collapse
|
22
|
Louis C, Nicolas G, Eb F, Lefebvre JF, Orfila J. Modifications of the envelope of Chlamydia psittaci during its developmental cycle: freeze-fracture study of complementary replicas. J Bacteriol 1980; 141:868-75. [PMID: 7364718 PMCID: PMC293698 DOI: 10.1128/jb.141.2.868-875.1980] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Examination of complementary replicas obtained by freeze-fracture of Chlamydia psittaci revealed, at the level of the plasma membrane, a progressive differentiation of "crate-like formations," which likely correspond to transmembranal pores. Recognition of "early" and "late" stages observed in the intermediate bodies permitted detailed study of the developmental cycle of this chlamydia.
Collapse
|
23
|
Louis C, Morel G, Nicolas G, Kuhl G. [Comparative study of arthropod rickettsiae ultrastructural characteristics by freeze-etching and cytochemistry]. JOURNAL OF ULTRASTRUCTURE RESEARCH 1979; 66:243-53. [PMID: 439192 DOI: 10.1016/s0022-5320(79)90122-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
|
25
|
Storz J, Spears P. Chlamydiales: properties, cycle of development and effect on eukaryotic host cells. Curr Top Microbiol Immunol 1977; 76:167-214. [PMID: 334482 DOI: 10.1007/978-3-642-66653-7_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Palmer EL, Martin ML, Mallavia L. Ultrastucture of the surface of Rickettsia prowazeki and Rickettsia akari. Appl Microbiol 1974; 28:713-6. [PMID: 4138139 PMCID: PMC186803 DOI: 10.1128/am.28.4.713-716.1974] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Negative-contrast electron microscopy revealed that the outer layer of the envelope of rickettsiae is composed of a matrix of tetragonally arranged subunits. The layer projects approximately 7 nm from the cell wall. It is suggested that this outer layer is analogous to the structure considered capsule-like in morphology.
Collapse
|