1
|
Selikhanov G, Atamas A, Yukhimchuk D, Fufina T, Vasilieva L, Gabdulkhakov A. Stabilization of Cereibacter sphaeroides Photosynthetic Reaction Center by the Introduction of Disulfide Bonds. MEMBRANES 2023; 13:154. [PMID: 36837657 PMCID: PMC9967408 DOI: 10.3390/membranes13020154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The photosynthetic reaction center of the purple nonsulfur bacterium Cereibacter sphaeroides is a useful model for the study of mechanisms of photoinduced electron transfer and a promising component for photo-bio-electrocatalytic systems. The basic research and technological applications of this membrane pigment-protein complex require effective approaches to increase its structural stability. In this work, a rational design approach to genetically modify the reaction centers by introducing disulfide bonds is used. This resulted in significantly increasing the thermal stability of some of the mutant pigment-protein complexes. The formation of the S-S bonds was confirmed by X-ray crystallography as well as SDS-PAGE, and the optical properties of the reaction centers were studied. The genetically modified reaction centers presented here preserved their ability for photochemical charge separation and could be of interest for basic science and biotechnology.
Collapse
Affiliation(s)
- Georgii Selikhanov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russia
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, 142290 Pushchino, Moscow Region, Russia
| | - Anastasia Atamas
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russia
| | - Diana Yukhimchuk
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russia
| | - Tatiana Fufina
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, 142290 Pushchino, Moscow Region, Russia
| | - Lyudmila Vasilieva
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, 142290 Pushchino, Moscow Region, Russia
| | - Azat Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
2
|
Kaplan S. Photosynthesis genes and their expression in Rhodobacter sphaeroides 2.4.1: a tribute to my students and associates. PHOTOSYNTHESIS RESEARCH 2002; 73:95-108. [PMID: 16245109 DOI: 10.1023/a:1020437317471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This minireview traces the photosynthesis genes, their structure, function and expression in Rhodobacter sphaeroides 2.4.1, as applied to our understanding of the inducible photosynthetic intracytoplasmic membrane system or ICM. This focus has represented the research interests of this laboratory from the late 1960s to the present. This opportunity has been used to highlight the contributions of students and postdoctorals to this research effort. The work described here took place in a much greater and much broader context than what can be conveyed here. The 'timeline' begins with a clear acknowledgment of the work of June Lascelles and William Sistrom, whose foresight intuitively recognized the necessity of a 'genetic' approach to the study of photosynthesis in R. sphaeroides. The 'timeline' concludes with the completed genome sequence of R. sphaeroides 2.4.1. However, it is hoped the reader will recognize this event as not just a new beginning, but also as another hallmark describing this continuum.
Collapse
Affiliation(s)
- Samuel Kaplan
- Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, UT-Houston Medical School, 6431 Fannin St, JFB 1.765, Houston, TX, 77030-1501, USA,
| |
Collapse
|
3
|
Plano GV, Winkler HH. Identification and initial topological analysis of the Rickettsia prowazekii ATP/ADP translocase. J Bacteriol 1991; 173:3389-96. [PMID: 1904433 PMCID: PMC207950 DOI: 10.1128/jb.173.11.3389-3396.1991] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Rickettsia prowazekii ATP/ADP translocase was identified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and immunoblot analysis using antibodies raised against a synthetic peptide corresponding in sequence to the carboxyl-terminal 17 amino acids of the carrier. Both the translocase of R. prowazekii and that expressed by Escherichia coli transformants containing the rickettsial gene had an apparent molecular mass of 36,500 Da by SDS-PAGE analysis, a mass considerably less than that deduced from the sequence of the gene. The SDS-solubilized translocase aggregated upon heating at 100 degrees C in the presence of disulfide bond-reducing agents. Similar concentrations of disulfide bond-reducing agents inhibited the exchange transport of adenine nucleotides by both R. prowazekii and translocase-expressing E. coli. These data suggested that an intramolecular disulfide bond in the translocase was essential for transport activity. The antipeptide antibodies used for identification of the translocase bound preferentially to inside-out membrane vesicles of translocase-expressing E. coli relative to right-side-out spheroplasts, thus indicating that the carboxyl terminus of the carrier is located on the cytoplasmic side of the bacterial inner membrane. Protease studies were unable to localize the carboxyl terminus because of the resistance of this region of the native translocase to proteolytic cleavage. These data in conjunction with hydrophobicity analysis were used to construct an initial topological model of the translocase within the cell membrane.
Collapse
Affiliation(s)
- G V Plano
- Department of Microbiology and Immunology, University of South Alabama, College of Medicine, Mobile 36688
| | | |
Collapse
|
4
|
Kiley PJ, Varga A, Kaplan S. Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides. J Bacteriol 1988; 170:1103-15. [PMID: 3277945 PMCID: PMC210879 DOI: 10.1128/jb.170.3.1103-1115.1988] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Two mutants of Rhodobacter sphaeroides defective in formation of light-harvesting spectral complexes were examined in detail. Mutant RS103 lacked the B875 spectral complex despite the fact that substantial levels of the B875-alpha polypeptide (and presumably the beta polypeptide) were present. The B800-850 spectral complex was derepressed in RS103, even at high light intensities, and the growth rate was near normal at high light intensity but decreased relative to the wild type as the light intensity used for growth decreased. Mutant RS104 lacked colored carotenoids and the B800-850 spectral complex, as well as the cognate apoproteins. This strain grew normally at high light intensity and, as with RS103, the growth rate decreased as the light intensity used for growth decreased. At very low light intensities, however, RS104 would grow, whereas RS103 would not. Structural analysis of these mutants as well as others revealed that the morphology of the intracytoplasmic membrane invaginations is associated with the presence or absence of the B800-850 complex as well as of carotenoids. A low-molecular-weight intracytoplasmic membrane polypeptide, which may play a role in B800-850 complex formation, is described, as is a 62,000-dalton polypeptide whose abundance is directly related to light intensity as well as the absence of either of the light-harvesting spectral complexes. These data, obtained from studies of mutant strains and the wild type, are discussed in light of photosynthetic membrane formation and the abundance of spectral complexes per unit area of membrane. Finally, a method for the bulk preparation of the B875 complex from wild-type strain 2.4.1 is reported.
Collapse
Affiliation(s)
- P J Kiley
- Department of Microbiology, University of Illinois at Urbana-Champaign 61801
| | | | | |
Collapse
|
5
|
Bassel-Duby R, Nibert ML, Homcy CJ, Fields BN, Sawutz DG. Evidence that the sigma 1 protein of reovirus serotype 3 is a multimer. J Virol 1987; 61:1834-41. [PMID: 3553613 PMCID: PMC254187 DOI: 10.1128/jvi.61.6.1834-1841.1987] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this report, we study the reovirus serotype 3 (strain Dearing) sigma 1 protein obtained from various sources: from Escherichia coli expressing sigma 1 protein, from reovirus-infected mouse L cells, and from purified reovirions. We demonstrate that the sigma 1 protein is a multimer in its undisrupted form and present biochemical evidence suggesting that the multimer is made up of four sigma 1 subunits.
Collapse
|
6
|
Donohue TJ, Hoger JH, Kaplan S. Cloning and expression of the Rhodobacter sphaeroides reaction center H gene. J Bacteriol 1986; 168:953-61. [PMID: 3023292 PMCID: PMC213577 DOI: 10.1128/jb.168.2.953-961.1986] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Rhodobacter sphaeroides structural gene (puhA) for the reaction center H polypeptide has been identified and cloned by using restriction fragements specific for the analogous Rhodobacter capsulatus gene as a heterologous hybridization probe. The presence of puhA on a 1.45-kilobase BamHI restriction fragment was confirmed by partial DNA sequence analysis and by the synthesis of an immunoreactive Mr-28,000 reaction center H polypeptide in an R. sphaeroides coupled transcription-translation system. Approximately 450 base pairs of DNA upstream of the puhA gene were sufficient for expression of this protein in vitro. Northern RNA-DNA blot analysis with an internal puhA-specific probe identified at least two, apparently monocistronic, transcripts present at different cellular levels under physiological conditions known to affect the cellular content of both reaction center complexes and photosynthetic membrane. Northern blot analysis with specific upstream restriction fragment probes revealed that the 1,400-nucleotide puhA-specific mRNA had a 5' terminus upstream of the 1,130-nucleotide transcript. Both puhA-specific mRNA and immunoreactive reaction center H protein were detectable in chemoheterotrophically grown cells which lacked detectable bacteriochlorophyll and photosynthetic membrane.
Collapse
|
7
|
Hoger JH, Chory J, Kaplan S. In vitro biosynthesis and membrane association of photosynthetic reaction center subunits from Rhodopseudomonas sphaeroides. J Bacteriol 1986; 165:942-50. [PMID: 3512531 PMCID: PMC214520 DOI: 10.1128/jb.165.3.942-950.1986] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The reaction center of Rhodopseudomonas sphaeroides is an integral membrane protein complex responsible for primary photochemical charge separation in photosynthesis. We report the synthesis of two of the three subunits of the photosynthetic reaction center using a DNA-directed in vitro transcription-translation system prepared from R. sphaeroides. The in vitro-synthesized polypeptides, as resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, had apparent Mrs of 24,000 and 21,000 and were shown to be synthesized in equimolar amounts. This corresponds precisely to the in vivo reaction center subunits M and L, respectively. The in vitro-synthesized polypeptides were immunoprecipitated with antibody prepared against whole native reaction centers. In addition, the identity of the in vitro-synthesized polypeptides as L and M was verified by comparing the protease digestion products of in vivo- with in vitro-synthesized reaction center subunits. Both of the in vitro-synthesized polypeptides were also found to partition with the particulate material in the transcription-translation system and to associate with added membranes.
Collapse
|
8
|
Barassi CA, Kranz RG, Gennis RB. Succinate dehydrogenase in Rhodopseudomonas sphaeroides: subunit composition and immunocross-reactivity with other related bacteria. J Bacteriol 1985; 163:778-82. [PMID: 3874866 PMCID: PMC219190 DOI: 10.1128/jb.163.2.778-782.1985] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Antibodies were raised against the succinate dehydrogenase (SDH) present in the chromatophores of phototrophically grown Rhodopseudomonas sphaeroides. Crossed immunoelectrophoresis experiments indicated that the SDH present in the cytoplasmic membranes of heterotrophically grown R. sphaeroides is probably the same enzyme observed in the chromatophores. The enzyme was extracted by Triton X-100 in a form which consisted of only two subunits (molecular weight, 68,000 and 30,000) and was not associated with a cytochrome b. The antibodies directed against SDH from R. sphaeroides showed no immunocross-reactivity with SDH from phylogenetically related bacterial species, including Rhodopseudomonas capsulata, Paracoccus denitrificans, Rhodopseudomonas palustris, Rhodospirillum rubrum, and Rhodospirillum fulvum.
Collapse
|
9
|
Hoger JH, Kaplan S. Topology and neighbor analysis of the photosynthetic reaction center from Rhodopseudomonas sphaeroides. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)88869-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Nano FE, Shepherd WD, Watkins MM, Kuhl SA, Kaplan S. Broad-host-range plasmid vector for the in vitro construction of transcriptional/translational lac fusions. Gene 1985; 34:219-26. [PMID: 3924739 DOI: 10.1016/0378-1119(85)90130-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A broad-host-range plasmid was constructed that allows the in vitro formation of beta-galactosidase fusions. DNA from the photosynthetic bacterium Rhodopseudomonas sphaeroides was cloned into this plasmid and a number of R. sphaeroides isolates were recovered that had varying levels of beta-galactosidase activity. beta-galactosidase antigenic activity from the fusion strains could be localized immunologically in polypeptides with an Mr of 120 000 or greater. Expression of beta-galactosidase activity under control of fusion derivatives was either very low or nonexistent in Escherichia coli relative to R. sphaeroides, indicating that R. sphaeroides promoters or translational start signals function poorly in E. coli.
Collapse
|
11
|
Metz JG, Seibert M. Presence in Photosystem II Core Complexes of a 34-Kilodalton Polypeptide Required for Water Photolysis. PLANT PHYSIOLOGY 1984; 76:829-32. [PMID: 16663933 PMCID: PMC1064382 DOI: 10.1104/pp.76.3.829] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Photosystem II (PSII) reaction center core complexes have been isolated and characterized from wild type (WT) Scenedesmus obliquus and from its LF-1 mutant. LF-1 thylakoids are blocked on the oxidizing side of PSII and have a reduced Mn content. Visible absorption and low temperature fluorescence spectra of both core complexes are identical and resemble those reported for spinach (Satoh, Butler 1978 Plant Physiol 61: 373-379). Lithium dodecyl sulfate-polycrylamide gel electrophoresis reveals that a protein alteration, originally observed in thylakoid membranes (Metz, Wong, Bishop 1980 FEBS Lett 114: 61-66), is retained in the PSII core particles. That is, a 34-kilodalton (kD) polypeptide, present in the WT core complex, is missing in the mutant, and the core complex of the mutant contains a 36-kD protein not present in the WT. The 34-kD intrinsic protein is also observed in O(2)-evolving PSII preparations and PSII core complexes from spinach. It is distinct from the 33-kD extrinsic protein first reported by T. Kuwabara and N. Murata (1979 Biochim Biophys Acta 581: 228-236). We suggest that the 34-kD protein is a site of Mn binding in the PSII membrane.
Collapse
Affiliation(s)
- J G Metz
- Photoconversion Research Branch, Solar Energy Research Institute , Golden, Colorado 80401
| | | |
Collapse
|
12
|
Tai SP, Kaplan S. Purification and properties of a phospholipid transfer protein from Rhodopseudomonas sphaeroides. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(20)71336-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Seftor RE, Thornber J. The photochemical reaction center of the bacteriochlorophyll b-containing organism Thiocapsa pfennigii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90024-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Shepherd WD, Kaplan S. Effect of cerulenin on macromolecule synthesis in chemoheterotrophically and photoheterotrophically grown Rhodopseudomonas sphaeroides. J Bacteriol 1983; 156:1322-31. [PMID: 6196350 PMCID: PMC217983 DOI: 10.1128/jb.156.3.1322-1331.1983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The antibiotic cerulenin causes the immediate cessation of phospholipid biosynthesis in both chemoheterotrophic and photoheterotrophic cultures of Rhodopseudomonas sphaeroides. Macromolecule biosynthesis in photoheterotrophic cells was unaffected by cerulenin for the first 2 h after antibiotic addition and then continued at a reduced rate for an additional 8 h. In contrast, macromolecule biosynthesis in chemoheterotrophic cells was severely affected by cerulenin within the first 2 h of treatment. Pulse-labeling of protein after cerulenin addition revealed that all subcellular fractions were equally affected by the action of cerulenin with chemoheterotrophic cell fractions more profoundly affected than those derived from photoheterotrophic cells. Protein insertion into the intracytoplasmic membrane of photoheterotrophic cells continued for up to 6 h after the onset of cerulenin treatment. Residual macromolecule synthesis was correlated with the presence of the photosynthetic membrane system under all conditions of growth.
Collapse
|
15
|
Deal CD, Kaplan S. Solubilization, isolation, and immunochemical characterization of the major outer membrane protein from Rhodopseudomonas sphaeroides. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32443-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Jacob JS, Miller KR. Structure of a bacterial photosynthetic membrane. Isolation, polypeptide composition, and selective proteolysis. Arch Biochem Biophys 1983; 223:282-90. [PMID: 6859862 DOI: 10.1016/0003-9861(83)90593-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A procedure for the isolation of highly purified bacterial photosynthetic membranes from Rhodopseudomonas viridis is described. The purity of the final membrane fraction has been confirmed by electron microscopy. Seven major polypeptide bands are associated with the photosynthetic membranes, and all seven are resistant to solubilization in Triton X-100 detergent. Two pigmented bands with apparent molecular weights of 44K and 41K are thought to be cytochromes. The three polypeptides with apparent molecular weights of 38K, 32K, and 28K have been reported in reaction center preparations of other laboratories. Two low-molecular-weight (16K and 11K) bands bind bacteriochlorophyll b and may represent light-harvesting bacteriochlorophyll-protein complexes. The structures that were isolated seem to represent complete photosynthetic membranes, consisting of reaction center, electron transport, and light-harvesting components, all arranged in the regular lattice characteristic of viridis. Selective proteolysis of these membranes indicates that all membrane components are accessible to digestion by trypsin and pronase, except for the light-harvesting complexes.
Collapse
|
17
|
Newhall WJ, Jones RB. Disulfide-linked oligomers of the major outer membrane protein of chlamydiae. J Bacteriol 1983; 154:998-1001. [PMID: 6841322 PMCID: PMC217558 DOI: 10.1128/jb.154.2.998-1001.1983] [Citation(s) in RCA: 141] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The major outer membrane protein of chlamydial elementary bodies was identified in dimer, trimer, and other multimeric forms. These natural multimers were stabilized by disulfide-mediated cross-linking. Such cross-linking of outer membrane proteins may play an important role in the formation and evolution of chlamydial cell wall structure.
Collapse
|
18
|
Chory J, Kaplan S. Light-dependent regulation of the synthesis of soluble and intracytoplasmic membrane proteins of Rhodopseudomonas sphaeroides. J Bacteriol 1983; 153:465-74. [PMID: 6600232 PMCID: PMC217395 DOI: 10.1128/jb.153.1.465-474.1983] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cells of Rhodopseudomonas sphaeroides grown under saturating light conditions (30 W/m2) and then shifted to low light intensity (3 W/m2) required 2.5 h to adapt to the new lower light conditions. After the shift, cell growth, whole cell protein accumulation, and bacteriochlorophyll accumulation ceased immediately. Approximately midway into the adaptation period, bacteriochlorophyll synthesis commenced at a new, higher rate, which continued through the beginning of the low-light growth period until new steady-state levels were reached. Immediately after the downshift, the rate of cellular protein synthesis declined to 22% of its preshift rate. Pulse-labeling of protein throughout the adaptation period and comparison with a steady-state prelabel culture revealed that synthesis of two of the three light-harvesting proteins, as well as two additional high-molecular-weight photosynthetic membrane proteins, was derepressed three- to fivefold compared with bulk cellular protein. Finally, the synthesis of at least three soluble proteins showed light-dependent regulation after the light downshift. These results are discussed in terms of the light-dependent regulation of synthesis of the photosynthetic membrane macromolecular components and the division of protein synthesis between the photosynthetic membranes and the soluble cell phase.
Collapse
|
19
|
The in vitro transcription-translation of DNA and RNA templates by extracts of Rhodopseudomonas sphaeroides. Optimization and comparison of template specificity with Escherichia coli extracts and in vivo synthesis. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33400-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Yen GS, Wraight CA, Kaplan S. Fusion of chromatophores derived from Rhodopseudomonas sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1982. [DOI: 10.1016/0005-2736(82)90372-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Shepherd WD, Kaplan S, Park JT. Penicillin-binding proteins of Rhodopseudomonas sphaeroides and their membrane localization. J Bacteriol 1981; 147:354-61. [PMID: 6973568 PMCID: PMC216053 DOI: 10.1128/jb.147.2.354-361.1981] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cytoplasmic membranes (CM) prepared from both chemotrophic and phototrophic cells of Rhodopseudomonas sphaeroides possess penicillin-binding proteins (PBPs), as demonstrated by binding of [125]furazlocillin to isolated membranes, the subsequent separation of the constituent PBPs by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their detection by autoradiography. The major PBP present in CM from R. sphaeroides corresponds in molecular weight to PBP-5, the predominant PBP present in CM of Escherichia coli. In contrast, the outer membrane of R. sphaeroides shows only low-level furazlocillin-binding activity on a per milligram of protein basis compared with chemotrophic CM. The intracytoplasmic membrane (ICM) derived from phototrophic cells contains less than 5% of the furazlocillin-binding activity of the CM. Based on the specific localization of PBPs in the CM, it is possible to provide quantitative estimates of the extent of CM present in preparations of ICM. This method demonstrates that highly purified preparations of ICM contain less than 5% CM. Additionally, the assay for PBPs demonstrates that during ICM remodeling, which occurs upon a shift from phototrophic to chemotrophic growth, there is no significant insertion of PBPs into the ICM over the first two generations after a shift to chemotrophic growth.
Collapse
|
22
|
Cohen L, Kaplan S. The non-detergent solubilization and isolation of intracytoplasmic membrane polypeptides from Rhodopseudomonas sphaeroides. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69294-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Baumgardner D, Deal C, Kaplan S. Protein composition of Rhodopseudomonas sphaeroides outer membrane. J Bacteriol 1980; 143:265-73. [PMID: 6967483 PMCID: PMC294223 DOI: 10.1128/jb.143.1.265-273.1980] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The outer membrane polypeptide profile of Rhodopseudmonas sphaeroides was characterized. Solubilization of the outer membrane at 75 or 100 degrees C as opposed to room temperature resulted in the dissociation of 75-, 72-, and 68-kilodalton (kdal) polypeptide aggregates into 29-, 26.5-, and 21.5-kdal polypeptides, respectively, and a shared 47-kdal subunit. Similarly, an 88.5-kdal polypeptide dissociates into a 45-kdal monomeric form, and the electrophoretic mobility of a 58.5-kdal polypeptide was altered to 83 kdal. Lysozyme treatment of outer membrane fractions altered the 21.5-kdal polypeptide mobility to 23 kdal. The presence of lipid in both the 47-kdal polypeptide and an 8- to 10-kdal polypeptide was demonstrated by lipid staining and [14C]acetate incorporation. The lipid component of the 47-kdal polypeptide was neither lipopolysaccharide nor phospholipid. The 8- to 10-kdal polypeptide may be the equivalent of the Braun lipoprotein. Outer membrane fractions isolated from R. sphaeroides-specific phage RS1-resistant mutants were deficient in several of the high-molecular-weight aggregates involving the 47-kdal polypeptide.
Collapse
|
24
|
Wakim B, Schrader M, Oelze J. Characterization of cell-envelope fractions of chemotrophically and phototrophically grown Rhodospirillum tenue. Arch Microbiol 1979. [DOI: 10.1007/bf00406663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Abstract
The chromatophores of Chromatium vinosum, as well as six other photosynthetic bacteria, contained two or more proteins which were insoluble when heated in the presence of sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (beta-ME). When the chromatophores were dissolved at room temperature in SDS-beta-ME, these proteins were present in the SDS-polyacrylamide gel electrophoresis profiles, but when the samples were dissolved at 100 degrees C, they were absent or considerably diminished. When one-dimensional gels of chromatophores solubilized at room temperature were soaked in the SDS-beta-ME solution and heated to 100 degrees C and the gels were run in a second dimension, the proteins became immobilized in the original first-dimension gel, where they could be detected by staining. The two major proteins so affected in C. vinosum had apparent molecular weights of 28,000 and 21,000. The chromatophores of several other photosynthetic bacteria also contained predominant proteins between 30,000 and 19,000 molecular weight, which became insoluble when heated in the presence of SDS and beta-ME. In at least two of the species examined, these appeared to be reaction center proteins. The conditions causing the proteins to become insoluble were complex and involved temperature, SDS concentration, and the presence of sulfhydryl reagents. The chromatophores of four of the Chromatiaceae species and two strains of one of the Rhodospirillaceae species examined had a protein-pigment complex that was visible in SDS-polyacrylamide gel profiles of samples dissolved at room temperature but was absent in samples dissolved at 100 degrees C.
Collapse
|
26
|
Shepherd WD, Kaplan S. A rapid method for the isolation of intracytoplasmic membranes from Rhodopseudomonas sphaeroides using an air-driven ultracentrifuge. Anal Biochem 1978; 91:194-8. [PMID: 9762099 DOI: 10.1016/0003-2697(78)90831-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A method has been developed for the isolation intracytoplasmic (ICM) vesicles (chromatophores) from Rhodopseudomonas sphaeroides using an air-driven ultracentrifuge. Application of conventional techniques used for preparative scale equipment to the air-driven ultracentrifuge allows the rapid isolation of ICM vesicles from reduced quantities of starting material. Sodium dodecyl sulfatepolyacrylamide gel electrophoresis profiles of ICM vesicles isolated in this fashion are essentially indistinguishable from those isolated by conventional means.
Collapse
Affiliation(s)
- W D Shepherd
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|