1
|
Watanabe M, Kojima H, Okano K, Fukui M. Mariniplasma anaerobium gen. nov., sp. nov., a novel anaerobic marine mollicute, and proposal of three novel genera to reclassify members of Acholeplasma clusters II-IV. Int J Syst Evol Microbiol 2021; 71. [PMID: 34874244 DOI: 10.1099/ijsem.0.005138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel strictly anaerobic chemoorganotrophic bacterium, designated Mahy22T, was isolated from sulfidic bottom water of a shallow brackish meromictic lake in Japan. Cells of the strain were Gram-stain-negative, non-motile and coccoid in shape with diameters of about 600-800 nm. The temperature range for growth was 15-37 °C, with optimum growth at 30-32 °C. The pH range for growth was pH 6.2-8.9, with optimum growth at pH 7.2-7.4. The strain grew with NaCl concentrations of 5% or below (optimum, 2-3%). Growth of the strain was enhanced by the addition of thiosulfate. The major cellular fatty acids were C16:0 and anteiso-C15:0. Respiratory quinones were not detected. The complete genome sequence of strain Mahy22T possessed a 1 885 846 bp circular chromosome and a 12 782 bp circular genetic element. The G+C content of the genome sequence was 30.1 mol%. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the family Acholeplasmataceae, class Mollicutes. The closest relative of strain Mahy22T with a validly published name was Acholeplasma palmae J233T with a 16S rRNA gene sequence similarity of 90.5%. Based on the results of polyphasic analysis, the name Mariniplasma anaerobium gen. nov., sp. nov. is proposed to accommodate strain Mahy22T, along with reclassification of some Acholeplasma species into Alteracholeplasma gen. nov., Haploplasma gen. nov. and Paracholeplasma gen. nov.
Collapse
Affiliation(s)
- Miho Watanabe
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan.,Department of Biological Environment, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Kunihiro Okano
- Department of Biological Environment, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
2
|
Maquelin K, Hoogenboezem T, Jachtenberg JW, Dumke R, Jacobs E, Puppels GJ, Hartwig NG, Vink C. Raman spectroscopic typing reveals the presence of carotenoids in Mycoplasma pneumoniae. Microbiology (Reading) 2009; 155:2068-2077. [DOI: 10.1099/mic.0.026724-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Raman spectroscopy has previously been demonstrated to be a highly useful methodology for the identification and/or typing of micro-organisms. In this study, we set out to evaluate whether this technology could also be applied as a tool to discriminate between isolates of Mycoplasma pneumoniae, which is generally considered to be a genetically highly uniform species. In this evaluation, a total of 104 strains of M. pneumoniae were analysed, including two reference strains (strains M129 and FH), and 102 clinical isolates, which were isolated between 1973 and 2005 and originated from various countries. By Raman spectral analysis (Raman typing) of this strain collection, we were able to reproducibly distinguish six different clusters of strains. An unequivocal correlation between Raman typing and P1 genotyping, which is based on sequence differences in the P1 (or MPN141) gene of M. pneumoniae, was not observed. In the two major Raman clusters that we identified (clusters 3 and 6, which together harboured 81 % of the strains), the different P1 subtypes were similarly distributed, and ∼76 % isolates were of subtype 1, ∼20 % of subtype 2 and ∼5 % of variant 2a. Nevertheless, a relatively high prevalence of P1 subtype 2 strains was found in clusters 2 and 5 (100 %), as well as in cluster 1 (75 %) and cluster 4 (71 %); these clusters, however, harboured a small number of strains. Only two of the strains (2 %) could not be typed correctly. Interestingly, analysis of the Raman spectra revealed the presence of carotenoids in M. pneumoniae. This finding is in line with the identification of M. pneumoniae genes that have similarity with genes involved in a biochemical pathway leading to carotenoid synthesis, i.e. the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Therefore, we hypothesize that M. pneumoniae hosts an MEP-like pathway for carotenoid synthesis. We conclude that Raman spectroscopy is a convenient tool for discriminating between M. pneumoniae strains, and that it presents a promising supplement to the current methods for typing of this bacterium.
Collapse
Affiliation(s)
- Kees Maquelin
- River Diagnostics BV, Marconistraat 16, 3029 AK Rotterdam, The Netherlands
- Erasmus MC, Center for Optical Diagnostics and Therapy, Department of Medical Microbiology and Infectious Diseases, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Erasmus MC, Center for Optical Diagnostics and Therapy, Department of Dermatology, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Theo Hoogenboezem
- Erasmus MC, Laboratory of Pediatrics, Pediatric Infectious Diseases, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | - Roger Dumke
- Technical University Dresden, Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Enno Jacobs
- Technical University Dresden, Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Gerwin J. Puppels
- River Diagnostics BV, Marconistraat 16, 3029 AK Rotterdam, The Netherlands
- Erasmus MC, Center for Optical Diagnostics and Therapy, Department of Dermatology, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Nico G. Hartwig
- Erasmus MC, Laboratory of Pediatrics, Pediatric Infectious Diseases, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Cornelis Vink
- Erasmus MC, Laboratory of Pediatrics, Pediatric Infectious Diseases, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
3
|
Pollack JD, Williams MV, McElhaney RN. The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. Crit Rev Microbiol 1998; 23:269-354. [PMID: 9439886 DOI: 10.3109/10408419709115140] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mollicutes or mycoplasmas are a class of wall-less bacteria descended from low G + C% Gram-positive bacteria. Some are exceedingly small, about 0.2 micron in diameter, and are examples of the smallest free-living cells known. Their genomes are equally small; the smallest in Mycoplasma genitalium is sequenced and is 0.58 mb with 475 ORFs, compared with 4.639 mb and 4288 ORFs for Escherichia coli. Because of their size and apparently limited metabolic potential, Mollicutes are models for describing the minimal metabolism necessary to sustain independent life. Mollicutes have no cytochromes or the TCA cycle except for malate dehydrogenase activity. Some uniquely require cholesterol for growth, some require urea and some are anaerobic. They fix CO2 in anaplerotic or replenishing reactions. Some require pyrophosphate not ATP as an energy source for reactions, including the rate-limiting step of glycolysis: 6-phosphofructokinase. They scavenge for nucleic acid precursors and apparently do not synthesize pyrimidines or purines de novo. Some genera uniquely lack dUTPase activity and some species also lack uracil-DNA glycosylase. The absence of the latter two reactions that limit the incorporation of uracil or remove it from DNA may be related to the marked mutability of the Mollicutes and their tachytelic or rapid evolution. Approximately 150 cytoplasmic activities have been identified in these organisms, 225 to 250 are presumed to be present. About 100 of the core reactions are graphically linked in a metabolic map, including glycolysis, pentose phosphate pathway, arginine dihydrolase pathway, transamination, and purine, pyrimidine, and lipid metabolism. Reaction sequences or loci of particular importance are also described: phosphofructokinases, NADH oxidase, thioredoxin complex, deoxyribose-5-phosphate aldolase, and lactate, malate, and glutamate dehydrogenases. Enzymatic activities of the Mollicutes are grouped according to metabolic similarities that are taxonomically discriminating. The arrangements attempt to follow phylogenetic relationships. The relationships of putative gene assignments and enzymatic function in My. genitalium, My. pneumoniae, and My. capricolum subsp. capricolum are specially analyzed. The data are arranged in four tables. One associates gene annotations with congruent reports of the enzymatic activity in these same Mollicutes, and hence confirms the annotations. Another associates putative annotations with reports of the enzyme activity but from different Mollicutes. A third identifies the discrepancies represented by those enzymatic activities found in Mollicutes with sequenced genomes but without any similarly annotated ORF. This suggests that the gene sequence is significantly different from those already deposited in the databanks and putatively annotated with the same function. Another comparison lists those enzymatic activities that are both undetected in Mollicutes and not associated with any ORF. Evidence is presented supporting the theory that there are relatively small gene sequences that code for functional centers of multiple enzymatic activity. This property is seemingly advantageous for an organism with a small genome and perhaps under some coding restraint. The data suggest that a concept of "remnant" or "useless genes" or "useless enzymes" should be considered when examining the relationship of gene annotation and enzymatic function. It also suggests that genes in addition to representing what cells are doing or what they may do, may also identify what they once might have done and may never do again.
Collapse
Affiliation(s)
- J D Pollack
- Department of Medical Microbiology and Immunology, Ohio State University, Columbus 43210, USA.
| | | | | |
Collapse
|
4
|
Ourisson G, Nakatani Y. The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. CHEMISTRY & BIOLOGY 1994; 1:11-23. [PMID: 9383366 DOI: 10.1016/1074-5521(94)90036-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Terpenoids have an apparently essential function in modern cellular membranes, reinforcing them against shear stresses. Primitive membranes could initially have been formed by simple terpenoids, and vesicles formed from these membranes may have evolved into progressively more complex units, more and more similar to protocells.
Collapse
Affiliation(s)
- G Ourisson
- Laboratoire de Chimie Organique des Substances Naturelles CNRS, Université Louis Pasteur, Centre de Neurochimie, Strasbourg, France
| | | |
Collapse
|
9
|
Abstract
The total lipid content of Acholeplasma oculi comprises 13.3% of the dry weight of the organism and is about equally distributed between the neutral lipids plus glycolipids and the phospholipids. The phospholipids were identified as phosphatidyl glycerol and diphosphatidyl glycerol. The glycolipid fraction contained O-alpha-D-glucopyranosyl-(1 leads to 1)-2,3-diacyl glycerol and O-alpha-D-glucopyranosyl-(1 leads to 2)-O-alpha-D-glucopyranosyl-(1 leads to 1)-2,3-diacyl glycerol. The neutral lipid contained pigmented carotenoids. Hot aqueous phenol extraction of lipid-extracted whole cells yielded a polymeric carbohydrate comprising 2.3% of the dry weight of the organism. The A. oculi lipopolysaccharide was found to contain only neutral sugars and no amino sugar, in contrast to other acholeplasmas. The neutral sugars consisted of fucose, galactose, and glucose in a ratio of 2:19:3.
Collapse
|