1
|
Lin L, Wang X, Cao L, Xu M. Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases in Pseudomonas putida. Environ Microbiol 2020; 21:1847-1863. [PMID: 30882973 DOI: 10.1111/1462-2920.14593] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 11/28/2022]
Abstract
Lignin is one of the largest carbon reservoirs in the environment, playing an important role in the global carbon cycle. However, lignin degradation in bacteria, especially non-model organisms, has not been well characterized either enzymatically or genetically. Here, a lignin-degrading bacterial strain, Pseudomonas putida A514, was used as the research model. Genomic and proteomic analyses suggested that two B subfamily dye-decolorizing peroxidases (DypBs) were prominent in lignin depolymerization, while the classic O2 -dependent ring cleavage strategy was utilized in central pathways to catabolize lignin-derived aromatic compounds that were funnelled by peripheral pathways. These enzymes, together with a range of transporters, sequential and expression-dose dependent regulation and stress response systems coordinated for lignin metabolism. Catalytic assays indicated these DypBs show unique Mn2+ independent lignin depolymerization activity, while Mn2+ oxidation activity is absent. Furthermore, a high synergy between DypB enzymes and A514 cells was observed to promote cell growth (5 × 1012 cfus/ml) and lignin degradation (27%). This suggested DypBs are competitive lignin biocatalysts and pinpointed limited extracellular secretion capacity as the rate-limiting factor in bacterial lignin degradation. DypB production was, therefore, optimized in recombinant strains and a 14,141-fold increase in DypB activity (56,565 U/l) was achieved, providing novel insights for lignin bioconversion.
Collapse
Affiliation(s)
- Lu Lin
- Institute of Marine Science and Technology, Shandong University, Jinan, China.,Ocean College, Zhejiang University, Hangzhou, China
| | | | - Lanfang Cao
- Ocean College, Zhejiang University, Hangzhou, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
2
|
Kant R, Bhatt G, Patel VK, Ganguli A, Singh D, Nayak M, Mishra K, Gupta A, Gangopadhyay K, Gangopadhyay S, Ramanathan G, Bhattacharya S. Synchronized Electromechanical Shock Wave-Induced Bacterial Transformation. ACS OMEGA 2019; 4:8512-8521. [PMID: 31459941 PMCID: PMC6648450 DOI: 10.1021/acsomega.9b00202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/06/2019] [Indexed: 05/28/2023]
Abstract
We report a simple device that generates synchronized mechanical and electrical pressure waves for carrying out bacterial transformation. The mechanical pressure waves are produced by igniting a confined nanoenergetic composite material that provides ultrahigh pressure. Further, this device has an arrangement through which a synchronized electric field (of a time-varying nature) is initiated at a delay of ≈85 μs at the full width half-maxima point of the pressure pulse. The pressure waves so generated are incident to a thin aluminum-polydimethylsiloxane membrane that partitions the ignition chamber from the column of the mixture containing bacterial cells (Escherichia coli BL21) and 4 kb transforming DNA. A combination of mechanical and electrical pressure pulse created through the above arrangement ensures that the transforming DNA transports across the cell membrane into the cell, leading to a transformation event. This unique device has been successfully operated for efficient gene (∼4 kb) transfer into cells. The transformation efficacy of this device is found comparable to the other standard methods and protocols for carrying out the transformation.
Collapse
Affiliation(s)
- Rishi Kant
- Microsystems
Fabrication Laboratory, Department of Mechanical Engineering and Department of
Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Geeta Bhatt
- Microsystems
Fabrication Laboratory, Department of Mechanical Engineering and Department of
Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Vinay Kumar Patel
- Microsystems
Fabrication Laboratory, Department of Mechanical Engineering and Department of
Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Anurup Ganguli
- Microsystems
Fabrication Laboratory, Department of Mechanical Engineering and Department of
Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Deepak Singh
- Microsystems
Fabrication Laboratory, Department of Mechanical Engineering and Department of
Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Monalisha Nayak
- Microsystems
Fabrication Laboratory, Department of Mechanical Engineering and Department of
Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Keerti Mishra
- Microsystems
Fabrication Laboratory, Department of Mechanical Engineering and Department of
Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Ankur Gupta
- Microsystems
Fabrication Laboratory, Department of Mechanical Engineering and Department of
Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Keshab Gangopadhyay
- Department
of Electrical and Computer Engineering, University of Missouri Columbia, Columbia, Missouri 65211, United States
| | - Shubhra Gangopadhyay
- Department
of Electrical and Computer Engineering, University of Missouri Columbia, Columbia, Missouri 65211, United States
| | - Gurunath Ramanathan
- Microsystems
Fabrication Laboratory, Department of Mechanical Engineering and Department of
Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Shantanu Bhattacharya
- Microsystems
Fabrication Laboratory, Department of Mechanical Engineering and Department of
Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
3
|
Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing. Appl Environ Microbiol 2018; 84:AEM.01469-18. [PMID: 30030226 DOI: 10.1128/aem.01469-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 11/20/2022] Open
Abstract
Cell growth and polyhydroxyalkanoate (PHA) biosynthesis are two key traits in PHA production from lignin or its derivatives. However, the links between them remain poorly understood. Here, the transcription levels of key genes involved in PHA biosynthesis were tracked in Pseudomonas putida strain A514 grown on vanillic acid as the sole carbon source under different levels of nutrient availability. First, enoyl-coenzyme A (CoA) hydratase (encoded by phaJ4) is stress induced and likely to contribute to PHA synthesis under nitrogen starvation conditions. Second, much higher expression levels of 3-hydroxyacyl-acyl carrier protein (ACP) thioesterase (encoded by phaG) and long-chain fatty acid-CoA ligase (encoded by alkK) under both high and low nitrogen (N) led to the hypothesis that they likely not only have a role in PHA biosynthesis but are also essential to cell growth. Third, 40 mg/liter PHA was synthesized by strain AphaJ4C1 (overexpression of phaJ4 and phaC1 in strain A514) under low-N conditions, in contrast to 23 mg/liter PHA synthesized under high-N conditions. Under high-N conditions, strain AalkKphaGC1 (overexpression of phaG, alkK, and phaC1 in A514) produced 90 mg/liter PHA with a cell dry weight of 667 mg/liter, experimentally validating our hypothesis. Finally, further enhancement in cell growth (714 mg/liter) and PHA titer (246 mg/liter) was achieved in strain Axyl_alkKphaGC1 via transcription level optimization, which was regulated by an inducible strong promoter with its regulator, XylR-PxylA, from the xylose catabolic gene cluster of the A514 genome. This study reveals genetic features of genes involved in PHA synthesis from a lignin derivative and provides a novel strategy for rational engineering of these two traits, laying the foundation for lignin-consolidated bioprocessing.IMPORTANCE With the recent advances in processing carbohydrates in lignocellulosics for bioproducts, almost all biological conversion platforms result in the formation of a significant amount of lignin by-products, representing the second most abundant feedstock on earth. However, this resource is greatly underutilized due to its heterogeneity and recalcitrant chemical structure. Thus, exploiting lignin valorization routes would achieve the complete utilization of lignocellulosic biomass and improve cost-effectiveness. The culture conditions that encourage cell growth and polyhydroxyalkanoate (PHA) accumulation are different. Such an inconsistency represents a major hurdle in lignin-to-PHA bioconversion. In this study, we traced and compared transcription levels of key genes involved in PHA biosynthesis pathways in Pseudomonas putida A514 under different nitrogen concentrations to unveil the unusual features of PHA synthesis. Furthermore, an inducible strong promoter was identified. Thus, the molecular features and new genetic tools reveal a strategy to coenhance PHA production and cell growth from a lignin derivative.
Collapse
|
4
|
Asif A, Mohsin H, Tanvir R, Rehman Y. Revisiting the Mechanisms Involved in Calcium Chloride Induced Bacterial Transformation. Front Microbiol 2017; 8:2169. [PMID: 29163447 PMCID: PMC5681917 DOI: 10.3389/fmicb.2017.02169] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/23/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Azka Asif
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Hareem Mohsin
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Rabia Tanvir
- University Diagnostic Lab, Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yasir Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Yang B, Liu Z, Deng B, Zeng Y, Hu J, Li W, Hu Z. Isolation and genetic improvement of Pseudomonas sp. strain HUT-78, capable of enzymatic production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid. J GEN APPL MICROBIOL 2012; 57:379-86. [PMID: 22353743 DOI: 10.2323/jgam.57.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microorganisms able to bioconvert DL-2-amino-Δ(2)-thiazoline-4-carboxylic acid (DL-ATC) into L-cysteine were originally isolated from 10 soil samples with DL-ATC as the sole nitrogen source. Ninety-seven L-cysteine-producing bacterial strains were screened out and obtained in pure culture. Among them, a strain, designated as HUT-78, was selected as the best producer, with a molar bioconversion rate of 60%. Based on the 16S rRNA gene sequence analysis, this isolate was placed within the genus Pseudomonas. A novel mutant of this strain with a significantly reduced activity of L-cysteine desulfhydrase, a L-cysteine-decomposing enzyme, was derived by UV-mutagenesis. This mutant, designated as mHUT-78, exhibited a 42% increase in L-cysteine producing activity. Moreover, the bioconversion reactions in both the parent and the mutant strain were significantly accelerated by co-overexpression of the two key enzymes, AtcB and AtcC, involved in the bioconversion reaction.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Divya Prakash G, Anish RV, Jagadeesh G, Chakravortty D. Bacterial transformation using micro-shock waves. Anal Biochem 2011; 419:292-301. [PMID: 21939633 DOI: 10.1016/j.ab.2011.08.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 12/19/2022]
Abstract
Shock waves are one of the most competent mechanisms of energy dissipation observed in nature. We have developed a novel device to generate controlled micro-shock waves using an explosive-coated polymer tube. In this study, we harnessed these controlled micro-shock waves to develop a unique bacterial transformation method. The conditions were optimized for the maximum transformation efficiency in Escherichia coli. The maximum transformation efficiency was obtained when we used a 30 cm length polymer tube, 100 μm thick metal foil, 200 mM CaCl(2), 1 ng/μl plasmid DNA concentration, and 1×10(9) cell density. The highest transformation efficiency achieved (1×10(-5) transformants/cell) was at least 10 times greater than the previously reported ultrasound-mediated transformation (1×10(-6) transformants/cell). This method was also successfully employed for the efficient and reproducible transformation of Pseudomonas aeruginosa and Salmonella typhimurium. This novel method of transformation was shown to be as efficient as electroporation with the added advantage of better recovery of cells, reduced cost (40 times cheaper than a commercial electroporator), and growth phase independent transformation.
Collapse
Affiliation(s)
- G Divya Prakash
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|
7
|
Conibear TCR, Willcox MDP, Flanagan JL, Zhu H. Characterization of protease IV expression in Pseudomonas aeruginosa clinical isolates. J Med Microbiol 2011; 61:180-190. [PMID: 21921113 DOI: 10.1099/jmm.0.034561-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Expression of protease IV by Pseudomonas aeruginosa during ocular infections contributes significantly to tissue damage. However, several P. aeruginosa strains isolated from ocular infections or inflammatory events produce very low levels of protease IV. The aim of the present study was to characterize, genetically and phenotypically, the presence and expression of the protease IV gene in a group of clinical isolates that cause adverse ocular events of varying degrees, and to elucidate the possible control mechanisms of expression associated with this virulence factor. Protease IV gene sequences from seven clinical isolates of P. aeruginosa were determined and compared to P. aeruginosa strains PAO1 and PA103-29. Production and enzyme activity of protease IV were measured in test strains and compared to that of quorum-sensing gene (lasRI) mutants and the expression of other virulence factors. Protease IV gene sequence similarities between the isolates were 97.5-99.5 %. The strains were classified into two distinct phylogenetic groups that correlated with the presence of exo-enzymes from type three secretion systems (TTSS). Protease IV concentrations produced by PAOΔlasRI mutants and the two clinical isolates with a lasRI gene deficiency were restored to levels comparable to strain PAO1 following complementation of the quorum-sensing gene deficiencies. The protease IV gene is highly conserved in P. aeruginosa clinical isolates that cause a range of adverse ocular events. Observed variations within the gene sequence appear to correlate with presence of specific TTSS genes. Protease IV expression was shown to be regulated by the Las quorum-sensing system.
Collapse
Affiliation(s)
- Tim C R Conibear
- The Vision Co-operative Research Centre, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Mark D P Willcox
- Brien Holden Vision Institute, Sydney, Australia
- The Vision Co-operative Research Centre, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | | | - Hua Zhu
- Brien Holden Vision Institute, Sydney, Australia
- The Vision Co-operative Research Centre, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
8
|
Zaas DW, Swan ZD, Brown BJ, Li G, Randell SH, Degan S, Sunday ME, Wright JR, Abraham SN. Counteracting signaling activities in lipid rafts associated with the invasion of lung epithelial cells by Pseudomonas aeruginosa. J Biol Chem 2009; 284:9955-64. [PMID: 19211560 DOI: 10.1074/jbc.m808629200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa has the capacity to invade lung epithelial cells by co-opting the intrinsic endocytic properties of lipid rafts, which are rich in cholesterol, sphingolipids, and proteins, such as caveolin-1 and -2. We compared intratracheal Pseudomonas infection in wild type and caveolin-deficient mice to investigate the role of caveolin proteins in the pathogenesis of Pseudomonas pneumonia. Unlike wild type mice, which succumb to pneumonia, caveolin-deficient mice are resistant to Pseudomonas. We observed that Pseudomonas invasion of lung epithelial cells is dependent on caveolin-2 but not caveolin-1. Phosphorylation of caveolin-2 by Src family kinases is an essential event for Pseudomonas invasion. Our studies also reveal the existence of a distinct signaling mechanism in lung epithelial cells mediated by COOH-terminal Src kinase (Csk) that negatively regulates Pseudomonas invasion. Csk migrates to lipid raft domains, where it decreases phosphorylation of caveolin-2 by inactivating c-Src. Whereas Pseudomonas co-opts the endocytic properties of caveolin-2 for invasion, there also exists in these cells an intrinsic Csk-dependent cellular defense mechanism aimed at impairing this activity. The success of Pseudomonas in co-opting lipid raft-mediated endocytosis to invade lung epithelial cells may depend on the relative strengths of these counteracting signaling activities.
Collapse
Affiliation(s)
- David W Zaas
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
A β Strand Lock Exchange for Signal Transduction in TonB-Dependent Transducers on the Basis of a Common Structural Motif. Structure 2007; 15:1383-91. [DOI: 10.1016/j.str.2007.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/27/2007] [Accepted: 08/27/2007] [Indexed: 11/24/2022]
|
10
|
|
11
|
Imanaka T. Application of recombinant DNA technology to the production of useful biomaterials. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 33:1-27. [PMID: 2944355 DOI: 10.1007/bfb0002451] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Omori K, Isoyama-Tanaka J, Ihara F, Yamada Y, Nihira T. Active lactonizing lipase (LipL) efficiently overproduced by Pseudomonas strains as heterologous expression hosts. J Biosci Bioeng 2005; 100:323-30. [PMID: 16243284 DOI: 10.1263/jbb.100.323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 06/11/2005] [Indexed: 11/17/2022]
Abstract
Pseudomonas sp. strain 109 secretes lactonizing lipase (LipL), which catalyzes efficient intramolecular transesterification of omega-hydroxyfatty acid esters to form macrocyclic lactones. Because Escherichia coli was found to be unsuitable as an expression host due to the predominant formation of inactive LipL-inclusion bodies and a lack of proper secretion machinery which is also required for the formation of active LipL, Pseudomonas strains were surveyed as expression hosts. Pseudomonas sp. strain 109, an original LipL producer, showed a 7.1-fold higher level of active LipL when the lipL gene under the control of tac-lacUV5 tandem promoter was introduced together with a limL gene encoding a LipL-specific chaperon. Pseudomonas aeruginosa ADD 1976 containing a T7 RNA polymerase gene in the chromosome and plasmid-borne lipL-limL genes under the control of T7 promoter showed a 13-fold higher level of active LipL. Several combinations in the number of lipL and/or limL genes on the plasmid were investigated, and (lipL)3-limL was found to be most efficient, yielding a 67-fold greater production of active LipL than that obtained by the wild-type Pseudomonas sp. strain 109.
Collapse
Affiliation(s)
- Ken Omori
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
13
|
Tsang JSH. Molecular biology of the Burkholderia cepacia complex. ADVANCES IN APPLIED MICROBIOLOGY 2004; 54:71-91. [PMID: 15251276 DOI: 10.1016/s0065-2164(04)54002-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jimmy S H Tsang
- Molecular Microbiology Laboratory, Department of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
14
|
Geckil H, Stark BC, Webster DA. Cell growth and oxygen uptake of Escherichia coli and Pseudomonas aeruginosa are differently effected by the genetically engineered Vitreoscilla hemoglobin gene. J Biotechnol 2001; 85:57-66. [PMID: 11164963 DOI: 10.1016/s0168-1656(00)00384-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitreoscilla hemoglobin is a good oxygen trapping agent and its presence in genetically engineered Escherichia coli helps this bacterium to grow better. Here, the potential use of this hemoglobin, for improving the growth and the oxygen transfer properties of Pseudomonas aeruginosa as well as Escherichia coli, was investigated. To stably maintain it in both bacteria, a broad-host range cosmid vector (pHG1), containing the entire coding sequence for Vitreoscilla hemoglobin gene and its native promoter on a 2.3 kb fragment, was constructed. Though at different levels, both bacteria produced hemoglobin and while the oxygen uptake rates of vgb-bearing strains were 2-3-fold greater than that of non-vgb-bearing strains in both bacteria, the growth advantage afforded by the presence of Vitreoscilla hemoglobin was somewhat varied. As an alternative to the traditional method of the improvement of oxygen transfer properties of the environment in which cells are grown, the genetic manipulation applied here improved the oxygen utilization properties of cells themselves.
Collapse
Affiliation(s)
- H Geckil
- Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, IIT Center, Chicago, IL 60616, USA.
| | | | | |
Collapse
|
15
|
Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R. Cloning and characterization of Pseudomonas aeruginosa fliF, necessary for flagellar assembly and bacterial adherence to mucin. Infect Immun 1996; 64:2130-6. [PMID: 8675317 PMCID: PMC174046 DOI: 10.1128/iai.64.6.2130-2136.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa adheres to the mucosal surfaces of the lungs. This process appears to be mediated by nonpilus adhesins which bind to mucin. To find this nonpilus adhesin(s), mutagenesis of a nonpiliated mutant of P. aeruginosa with transposon Tn5G, followed by a screen for mucin adhesion, was used to isolate a series of mutants unable to adhere to mucin. All of these mutants were also found to be defective in motility. One such mutant, PAK-RR20, is characterized here. The site of the transposon insertion in PAK-RR20 was localized to a gene which is homologous to the fliF gene of other organisms and was flanked by other motility-related genes, fliE and fliG. Both adhesion and motility defects in PAK-RR20 were complemented by providing the fliF gene in trans. Since complementation could have been due to the presence of an internal promoter in the fliF gene or in the Tn5G transposon, which allowed the transcription of the downstream genes, another chromosomal mutant of the fliF gene was constructed by insertional inactivation with an antibiotic resistance cassette. This mutant was also nonmotile and nonadhesive. However, the two defects in this new mutant could not be complemented by the fliF gene in trans, consistent with the interpretation that there is no internal fliF promoter but possibly a functional promoter in the Tn5G transposon. The complete nucleotide sequences of the fliE and fliF genes and a partial nucleotide sequence of the fliG gene of P. aeruginosa were determined. Control of the promoter upstream of the fliE gene was analyzed by construction of a fliE-lacZ fusion and the introduction of this construct into strains of P. aeruginosa with mutations in several regulatory genes. Beta-Galactosidase expression measurements indicated that the fliE promoter does not utilize RpoF (sigma(28)) or RpoN (sigma(54)) sigma factors. The characterization of this gene as being responsible for the loss of adhesion indicates that basal body structures are probably important for localization of the adhesin.
Collapse
Affiliation(s)
- S K Arora
- Department of Medicine/Infectious Diseases, University of Florida, Gainsville 32610, USA
| | | | | | | | | |
Collapse
|
16
|
Kukor JJ, Olsen RH. Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl Environ Microbiol 1996; 62:1728-40. [PMID: 8633871 PMCID: PMC167947 DOI: 10.1128/aem.62.5.1728-1740.1996] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We studied the degradation of toluene for bacteria isolated from hypoxic (i.e., oxygen-limited) petroleum-contaminated aquifers and compared such strains with other toluene degraders. Three Pseudomonas isolates, P. pickettii PKO1, Pseudomonas sp. strain W31, and P. fluorescens CFS215, grew on toluene when nitrate was present as an alternate electron acceptor in hypoxic environments. We examined kinetic parameters (K(m) and Vmax) for catechol 2,3-dioxygenase (C230), a key shared enzyme of the toluene-degradative pathway for these strains, and compared these parameters with those for the analogous enzymes from archetypal toluene-degrading pseudomonads which did not show enhanced, nitrate-dependent toluene degradation. C230 purified from strains W31, PKO1, and CFS215 had a significantly greater affinity for oxygen as well as a significantly greater rate of substrate turnover than found for the analogous enzymes from the TOL plasmid (pWW0) of Pseudomonas putida PaW1, from Pseudomonas cepacia G4, or from P. putida F1. Analysis of the nucleotide and deduced amino acid sequences of C23O from strain PKO1 suggests that this extradiol dioxygenase belongs to a new cluster within the subfamily of C23Os that preferentially cleave monocyclic substrates. Moreover, deletion analysis of the nucleotide sequence upstream of the translational start of the meta-pathway operon that contains tbuE, the gene that encodes the C230 of strain PKO1, allowed identification of sequences critical for regulated expression of tbuE, including a sequence homologous to the ANR-binding site of Pseudomonas aeruginosa PAO. When present in cis, this site enhanced expression of tbuE under oxygen-limited conditions. Taken together, these results suggest the occurrence of a novel group of microorganisms capable of oxygen-requiring but nitrate-enhanced degradation of benzene, toluene, ethylbenzene, and xylenes in hypoxic environments. Strain PKO1, which exemplifies this novel group of microorganisms, compensates for a low-oxygen environment by the development of an oxygen-requiring enzyme with kinetic parameters favorable to function in hypoxic environments, as well as by elevating synthesis of such an enzyme in response to oxygen limitation.
Collapse
Affiliation(s)
- J J Kukor
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | |
Collapse
|
17
|
Cunliffe HE, Merriman TR, Lamont IL. Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor. J Bacteriol 1995; 177:2744-50. [PMID: 7751284 PMCID: PMC176945 DOI: 10.1128/jb.177.10.2744-2750.1995] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cells of Pseudomonas aeruginosa secrete a fluorescent yellow-green siderophore, pyoverdine, when grown under iron-deficient conditions. We describe here the cloning and characterization of a gene, pvdS, which is required for this process. The pvdS gene is required for expression from promoters of at least two pyoverdine synthesis genes and can cause expression from these promoters in Escherichia coli, where they are otherwise inactive. Sequencing of pvdS revealed that it is a member of a subfamily of RNA polymerase sigma factors which direct the synthesis of extracellular products by bacteria. The pvdS gene is expressed only in iron-starved bacteria, and in E. coli cells at least, expression is regulated by the Fur repressor protein. We propose that in iron-rich cells of P. aeruginosa, Fur binds to the pvdS promoter and prevents expression of the gene; under conditions of iron starvation, repression is relieved and PvdS is made, reprogramming the cells for pyoverdine synthesis.
Collapse
Affiliation(s)
- H E Cunliffe
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
18
|
Rombel IT, McMorran BJ, Lamont IL. Identification of a DNA sequence motif required for expression of iron-regulated genes in pseudomonads. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:519-28. [PMID: 7891666 DOI: 10.1007/bf00290456] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many bacteria respond to a lack of iron in the environment by synthesizing siderophores, which act as iron-scavenging compounds. Fluorescent pseudomonads synthesize strain-specific but chemically related siderophores called pyoverdines or pseudobactins. We have investigated the mechanisms by which iron controls expression of genes involved in pyoverdine metabolism in Pseudomonas aeruginosa. Transcription of these genes is repressed by the presence of iron in the growth medium. Three promoters from these genes were cloned and the activities of the promoters were dependent on the amounts of iron in the growth media. Two of the promoters were sequenced and the transcriptional start site were identified by S1 nuclease analysis. Sequences similar to the consensus binding site for the Fur repressor protein, which controls expression of iron-repressible genes in several gram-negative species, were not present in the promoters, suggesting that they are unlikely to have a high affinity for Fur. However, comparison of the promoter sequences with those of iron-regulated genes from other Pseudomonas species and also the iron-regulated exotoxin gene of P. aeruginosa allowed identification of a shared sequence element, with the consensus sequence (G/C)CTAAAT-CCC, which is likely to act as a binding site for a transcriptional activator protein. Mutations in this sequence greatly reduced the activities of the promoters characterized here as well as those of other iron-regulated promoters. The requirement for this motif in the promoters of iron-regulated genes of different Pseudomonas species indicates that similar mechanisms are likely to be involved in controlling expression of a range of iron-regulated genes in pseudomonads.
Collapse
Affiliation(s)
- I T Rombel
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
19
|
Temple L, Sage A, Christie GE, Phibbs PV. Two genes for carbohydrate catabolism are divergently transcribed from a region of DNA containing the hexC locus in Pseudomonas aeruginosa PAO1. J Bacteriol 1994; 176:4700-9. [PMID: 8045900 PMCID: PMC196292 DOI: 10.1128/jb.176.15.4700-4709.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The hexC locus of Pseudomonas aeruginosa PAO1 was localized to a 247-bp segment of chromosomal DNA on the multicopy broad-host-range vector pRO1614. The presence of this plasmid (pPZ196) in strain PAO1 produced the so-called "hexC effect," a two- to ninefold increase in the activities of four carbohydrate catabolism enzymes, glucokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase. The extent of the hexC effect was restricted, since three independently regulated metabolic enzymes were not affected by the presence of the hexC plasmid. Furthermore, the hexC-containing plasmid did not suppress catabolite repression control. Nucleotide sequence analysis of the segment of DNA encompassing hexC revealed a 128-bp region rich in adenosine-plus-thymine (AT) content separating two divergent open reading frames (ORFs). Transcriptional start sites for these two genes were mapped to the intergenic region, demonstrating that this sequence contained overlapping divergent promoters. The intergenic region contained potential regulatory sequences such as dyad symmetry motifs, polydeoxyadenosine tracts, and a sequence matching the integration host factor recognition site in Escherichia coli. One of the ORFs encoded a 610-amino-acid protein with 55 to 60% identity to 6-phosphogluconate dehydratase from E. coli and Zymomonas mobilis. The second ORF coded for a protein of 335 amino acids that displayed 45 to 60% identity to the NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAP) family of enzymes. The NAD-dependent GAP gene on the P. aeruginosa chromosome was previously unmapped. GAP was found to exhibit the hexC-dependent increase in its basal activity, establishing it as a fifth catabolic enzyme in the multioperonic hex regulon.
Collapse
Affiliation(s)
- L Temple
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298
| | | | | | | |
Collapse
|
20
|
Olsen RH, Kukor JJ, Kaphammer B. A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J Bacteriol 1994; 176:3749-56. [PMID: 8206853 PMCID: PMC205564 DOI: 10.1128/jb.176.12.3749-3756.1994] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Plasmid pRO1957, which contains a 26.5-kb fragment from the chromosome of Pseudomonas pickettii PKO1, allows P. aeruginosa PAO1 to grow on toluene or benzene as a sole carbon and energy source. A subclone of pRO1957, designated pRO1966, when present in P. aeruginosa PAO1 grown in lactate-toluene medium, accumulates m-cresol in the medium, indicating that m-cresol is an intermediate of toluene catabolism. Moreover, incubation of such cells in the presence of 18O2 followed by gas chromatography-mass spectrometry analysis of m-cresol extracts showed that the oxygen in m-cresol was derived from molecular oxygen. Accordingly, this suggests that toluene-3-monooxygenation is the first step in the degradative pathway. Toluene-3-monooxygenase activity is positively regulated from a locus designated tbuT. Induction of the toluene-3-monooxygenase is mediated by either toluene, benzene, ethylbenzene, or m-cresol. Moreover, toluene-3-monooxygenase activity induced by these effectors also metabolizes benzene and ethylbenzene to phenol and 3-ethylphenol, respectively, and also after induction, o-xylene, m-xylene, and p-xylene are metabolized to 3,4-dimethylphenol, 2,4-dimethylphenol, and 2,5-dimethylphenol, respectively, although the xylene substrates are not effectors. Styrene and phenylacetylene are transformed into more polar products.
Collapse
Affiliation(s)
- R H Olsen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| | | | | |
Collapse
|
21
|
Wright A, Olsen RH. Self-mobilization and organization of the genes encoding the toluene metabolic pathway of Pseudomonas mendocina KR1. Appl Environ Microbiol 1994; 60:235-42. [PMID: 8117079 PMCID: PMC201294 DOI: 10.1128/aem.60.1.235-242.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The toluene metabolic pathway of Pseudomonas mendocina KR1 is chromosomally encoded, but the pathway could be transferred by conjugation from strain KR1 to the chromosome of P. aeruginosa or P. putida. Such transconjugants utilized toluene, p-cresol, and p-hydroxybenzaldehyde. However, transconjugants were unable to further transfer toluene genes to other recipients unless Pseudomonas sex factor R68.45 was present in trans. Although the genes encoding the upper pathway for toluene metabolism in P. mendocina KR1 are sufficiently linked to permit their coordinate mobilization, they were found to be encoded in three independently regulated units: one encoding toluene-4-monooxygenase, a second encoding p-cresol methylhydroxylase and p-hydroxybenzaldehyde dehydrogenase, and a third encoding p-hydroxybenzoate hydroxylase. The last two regulatory units were cloned from the chromosome of a P. aeruginosa transconjugant onto a plasmid designated pRO1999. Analysis of pRO1999 showed that genes encoding p-cresol methylhydroxylase and p-hydroxybenzaldehyde dehydrogenase are organized as an operon; the gene encoding p-hydroxybenzaldehyde dehydrogenase is transcribed first, and this is followed by transcription of the gene encoding p-cresol methylhydroxylase. This operon is regulated by a positively acting regulator. The P. mendocina KR1 gene encoding p-hydroxybenzoate hydroxylase was linked to, but independently regulated from, the genes encoding toluene-4-monooxygenase, p-cresol methylhydroxylase, and p-hydroxybenzaldehyde dehydrogenase.
Collapse
Affiliation(s)
- A Wright
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| | | |
Collapse
|
22
|
Zennaro E, Ciabatti I, Cutruzzola F, D'Alessandro R, Silvestrini MC. The nitrite reductase gene of Pseudomonas aeruginosa: Effect of growth conditions on the expression and construction of a mutant by gene disruption. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb06175.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Shaw KJ, Munayyer H, Rather PN, Hare RS, Miller GH. Nucleotide sequence analysis and DNA hybridization studies of the ant(4')-IIa gene from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1993; 37:708-14. [PMID: 8494365 PMCID: PMC187739 DOI: 10.1128/aac.37.4.708] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The ant(4')-IIa gene was previously cloned from Pseudomonas aeruginosa on a 1.6-kb DNA fragment (G. A. Jacoby, M. J. Blaser, P. Santanam, H. Hächler, F. H. Kayser, R. S. Hare, and G. H. Miller, Antimicrob. Agents Chemother. 34:2381-2386, 1990). In the current study, the ant(4')-IIa gene was localized by gamma-delta mutagenesis. A region of approximately 600 nucleotides which contained the ant(4')-IIa gene was identified, and DNA sequence analysis revealed two overlapping open reading frames (ORFs) within this region. Northern (RNA) blot analysis demonstrated expression of both ORFs in P. aeruginosa; therefore, site-directed mutagenesis was used to identify the ORF which encodes the ant(4')-IIa gene. No homology was found between ant(4')-IIa and ant(4')-Ia DNA sequences. Hybridization experiments confirmed that the ant(4')-Ia probe hybridized only to gram-positive presumptive ANT(4')-I strains and that the ant(4')-IIa probe hybridized only to gram-negative strains presumed to carry ANT(4')-II. Seven gram-negative strains which had been classified as having ANT(4')-II resistance profiles did not hybridize with probes for either ant(4')-Ia or ant(4')-IIa, suggesting that at least one additional ant(4') gene may exist. The predicted amino-terminal sequences of the ANT(4')-Ia and ANT(4')-IIa proteins showed significant sequence similarity between residues 38 and 63 of the ANT(4')-Ia protein and residues 26 and 51 of the ANT(4')-IIa protein.
Collapse
Affiliation(s)
- K J Shaw
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033
| | | | | | | | | |
Collapse
|
24
|
Bej AK, Molin S, Perlin M, Atlas RM. Maintenance and killing efficiency of conditional lethal constructs in Pseudomonas putida. ACTA ACUST UNITED AC 1992; 10:79-85. [PMID: 1368479 DOI: 10.1007/bf01583839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conditional lethal (suicidal) genetic constructs were designed and employed in strains of Pseudomonads as models for containment of genetically-engineered microbes that may be deliberately released into the environment. A strain of Pseudomonas putida was formed with a suicide vector designated pBAP24h that was constructed by cloning the host killing gene (hok) into the RSF1010 plasmid pVDtac24 and placing it under the control of the tac promoter. After hok induction in P. putida only 40% of surviving cells continued to bear the hok sequences within 4 h of induction; in contrast, 100% of the cells in uninduced controls bore hok. A few survivors that demonstrated resistance to hok-induced killing developed in P. putida, which may have been due to a mutation or physiological adaptation that rendered the membrane 'resistant' to hok. Conditional lethal strains of P. putida also were formed by inserting gef (a chromosomal homolog of hok) under the control of the tac promoter into the chromosome using a transposon. Constructs with chromosomal gef, as well as an RK2-derived plasmid construct containing gef, were only marginally more stable than the hok constructs; they were effective in killing P. putida when induced and within 2 h post-induction killing from either gef construct resulted in a 10(3)-10(5)-fold reduction in viable cell count compared to uninduced controls.
Collapse
Affiliation(s)
- A K Bej
- Department of Biology, University of Louisville, Kentucky 40292
| | | | | | | |
Collapse
|
25
|
Kukor JJ, Olsen RH. Complete nucleotide sequence of tbuD, the gene encoding phenol/cresol hydroxylase from Pseudomonas pickettii PKO1, and functional analysis of the encoded enzyme. J Bacteriol 1992; 174:6518-26. [PMID: 1400204 PMCID: PMC207615 DOI: 10.1128/jb.174.20.6518-6526.1992] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The gene (tbuD) encoding phenol hydroxylase, the enzyme that converts cresols or phenol to the corresponding catechols, has been cloned from Pseudomonas pickettii PKO1 as a 26.5-kbp BamHI-cleaved DNA fragment, designated pRO1957, which allowed the heterogenetic recipient Pseudomonas aeruginosa PAO1c to grow on phenol as the sole source of carbon. Two subclones of pRO1957 carried in trans have shown phenol hydroxylase activity in cell extracts of P. aeruginosa. The nucleotide sequence was determined for one of these subclones, a 3.1-kbp HindIII fragment, and an open reading frame that would encode a peptide of 73 kDa was found. The size of this deduced peptide is consistent with the size of a novel peptide that had been detected in extracts of phenol-induced cells of P. aeruginosa carrying pRO1959, a partial HindIII deletion subclone of pRO1957. Phenol hydroxylase purified from phenol-plus-Casamino Acid-grown cells of P. aeruginosa carrying pRO1959 has an absorbance spectrum characteristic of a simple flavoprotein; moreover, the enzyme exhibits a broad substrate range, accommodating phenol and the three isomers of cresol equally well. Sequence comparisons revealed little overall homology with other flavoprotein hydroxylases, supporting the novelty of this enzyme, although three conserved domains were apparent.
Collapse
Affiliation(s)
- J J Kukor
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| | | |
Collapse
|
26
|
Ohgama H, Izumi K, Hasegawa Y, Obata H, Tokuyama T. Expression of the ice nucleation active gene of a novel plasmid pNVR-1 from Pseudomonas viridiflava in Escherichia coli and Pseudomonas aeruginosa. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0922-338x(92)80003-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Temple L, Cuskey SM, Perkins RE, Bass RC, Morales NM, Christie GE, Olsen RH, Phibbs PV. Analysis of cloned structural and regulatory genes for carbohydrate utilization in Pseudomonas aeruginosa PAO. J Bacteriol 1990; 172:6396-402. [PMID: 2121713 PMCID: PMC526825 DOI: 10.1128/jb.172.11.6396-6402.1990] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Five of the genes required for phosphorylative catabolism of glucose in Pseudomonas aeruginosa were ordered on two different chromosomal fragments. Analysis of a previously isolated 6.0-kb EcoRI fragment containing three structural genes showed that the genes were present on a 4.6-kb fragment in the order glucose-binding protein (gltB)-glucokinase (glk)-6-phosphogluconate dehydratase (edd). Two genes, glucose-6-phosphate dehydrogenase (zwf) and 2-keto-3-deoxy-6-phosphogluconate aldolase (eda), shown by transductional analysis to be linked to gltB and edd, were cloned on a separate 11-kb BamHI chromosomal DNA fragment and then subcloned and ordered on a 7-kb fragment. The 6.0-kb EcoRI fragment had been shown to complement a regulatory mutation, hexR, which caused noninducibility of four glucose catabolic enzymes. In this study, hexR was mapped coincident with edd. A second regulatory function, hexC, was cloned within a 0.6-kb fragment contiguous to the edd gene but containing none of the structural genes. The phenotypic effect of the hexC locus, when present on a multicopy plasmid, was elevated expression of glucokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase activities in the absence of inducer.
Collapse
Affiliation(s)
- L Temple
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kaphammer B, Olsen RH. Cloning and characterization of tfdS, the repressor-activator gene of tfdB, from the 2,4-dichlorophenoxyacetic acid catabolic plasmid pJP4. J Bacteriol 1990; 172:5856-62. [PMID: 2170329 PMCID: PMC526904 DOI: 10.1128/jb.172.10.5856-5862.1990] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Plasmid pRO101, a derivative of plasmid pJP4 which contains Tn1721 inserted into a nonessential region, is inducible for 2,4-dichlorophenol hydroxylase (DCPH) encoded by tfdB. Plasmid pRO103, which has a deletion in the BamHI-F--BamHI-E region of plasmid pRO101, has elevated basal levels of DCPH but is uninducible. The regulatory gene for tfdB, designated tfdS, was cloned as an 8.3-kilobase-pair EcoRI-E fragment. When the cloned tfdS gene was in trans with plasmid pRO103, the baseline DCPH levels were repressed to normal uninduced levels and were fully induced when this strain was grown in the presence of 2,4-dichlorophenoxyacetic acid, 2,4-dichlorophenol, or 4-chlorocatechol. However, when tfdS was in trans with tfdB in the absence of tfdCDEF, tfdB was repressed but could not be induced. When tfdS and tfdC1, which encodes chlorocatechol 1,2-dioxygenase, are in trans with tfdB, tfdB remained uninduced, indicating that a downstream metabolite of chloro-cis,cis-muconate, either 2-cis-chlorodiene lactone or chloromaleylacetic acid, is the effector. Collectively, these data demonstrate that the gene product of tfdS acts as a repressor of tfdB in the absence of an effector and as an activator of tfdB when an effector is present.
Collapse
Affiliation(s)
- B Kaphammer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109
| | | |
Collapse
|
29
|
Farinha MA, Kropinski AM. High efficiency electroporation of Pseudomonas aeruginosa using frozen cell suspensions. FEMS Microbiol Lett 1990; 58:221-5. [PMID: 2121587 DOI: 10.1111/j.1574-6968.1990.tb13982.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High efficiency transformation of Pseudomonas aeruginosa was achieved using frozen cell suspensions and high voltage electroporation. We have obtained frequencies as high as 5.8 x 10(8) transformants/micrograms of plasmid DNA using PA01 strain OT684 and a buffer of 15% glycerol-1 mM MOPS. The method allows for easy and reproducible production of frozen cell suspensions for rapid transformation of P. aeruginosa.
Collapse
Affiliation(s)
- M A Farinha
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
30
|
Kaphammer B, Kukor JJ, Olsen RH. Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4. J Bacteriol 1990; 172:2280-6. [PMID: 2158967 PMCID: PMC208860 DOI: 10.1128/jb.172.5.2280-2286.1990] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The closely linked structural genes tfdCDEF borne on the 2,4-dichlorophenoxyacetic acid (TFD) catabolic plasmid, pRO101, were cloned into vector pRO2321 as a 12.6-kilobase-pair BamHI C fragment and designated pRO2334. The first gene in this cluster, tfdC, encodes chlorocatechol 1,2-dioxygenase and was expressed constitutively. Chlorocatechol 1,2-dioxygenase expression by pRO2334 was repressed in trans by the negative regulatory element, tfdR, on plasmid pRO1949. Derepression of tfdC was achieved when Pseudomonas aeruginosa PAO4032 containing both plasmids pRO2334 and pRO1949 was grown in minimal glucose medium containing TFD, 2,4-dichlorophenol, or 4-chlorocatechol, suggesting that TFD and other pathway intermediates can act as inducing compounds. Genetic organization of the tfdCDEF cluster was established by deletion of the tfdC gene, which resulted in the loss of tfdD and tfdE activity, suggesting that genes tfdCDEF are organized in an operon transcribed from the negatively regulated promoter of tfdC. Deletion subcloning of pRO1949 was used to localize tfdR to a 1.2-kilobase-pair BamHI-XhoI region of the BamHI E fragment of plasmid pRO101. The tfdR gene product was shown not to regulate the expression of tfdB, which encodes 2,4-dichlorophenol hydroxylase.
Collapse
Affiliation(s)
- B Kaphammer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109
| | | | | |
Collapse
|
31
|
Sokol PA, Dennis JJ, MacDougall PC, Sexton M, Woods DE. Cloning and expression of the Pseudomonas aeruginosa exoenzyme S toxin gene. Microb Pathog 1990; 8:243-57. [PMID: 2117226 DOI: 10.1016/0882-4010(90)90051-q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The gene for exoenzyme S, an ADP-ribosyl transferase, was cloned from Pseudomonas aeruginosa strain DG1 using an oligonucleotide probe based on the partial N-terminal amino acid sequence to screen a library of DG1 SstI fragments inserted into pKT230 in Escherichia coli DH1. A positive clone, designated pPD3, hybridized with the oligonucleotide probe and contained a 15 kb SstI insert. In E. coli minicells pPD3 expressed a single protein of Mr 68,000. This protein was localized primarily in the periplasm in E. coli. A 3.6 kb HindIII-BamHI fragment was subcloned into the vector pT7-4 which contains the promoter from bacteriophage T7 to construct pT7-4HB. In E. coli strains expressing the T7 RNA polymerase on a second plasmid, the Mr 68,000 protein was expressed and shown to react with antibodies to exoenzyme S. No enzymatic activity was detected in cell sonicates or culture supernatants of E. coli (pPD3). Cell sonicates of E. coli (pT7-4HB) however were cytotoxic to HeLa cells and this cytotoxicity was neutralizable with anti-exoenzyme S antiserm. Thus, exoenzyme S expressed in E. coli is toxic but not enzymatically active. When plasmids carrying the exoenzyme S gene were introduced into P. aeruginosa, there was a significant increase in ADP-ribosyl transferase activity, indicating that the plasmid encoded protein is enzymatically active in P. aeruginosa.
Collapse
Affiliation(s)
- P A Sokol
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, Alberta, Canada
| | | | | | | | | |
Collapse
|
32
|
Shaw KJ, Cramer CA, Rizzo M, Mierzwa R, Gewain K, Miller GH, Hare RS. Isolation, characterization, and DNA sequence analysis of an AAC(6')-II gene from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1989; 33:2052-62. [PMID: 2515793 PMCID: PMC172821 DOI: 10.1128/aac.33.12.2052] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gene encoding a 6'-N-acetyltransferase, AAC(6')-II, was cloned from Pseudomonas aeruginosa plasmid pSCH884. This gene mediates resistance to gentamicin, tobramycin, and netilmicin but not amikacin or isepamicin. The DNA sequence of the gene and flanking regions was determined. The 5'- and 3'-flanking sequences showed near identity to sequences found abutting a variety of different genes encoding resistance determinants. It is likely that the current structure arose by the integration of the 572-base-pair sequence containing the AAC(6')-II gene into a Tn21-related sequence at the recombinational hot spot, AAAGTT. We have compared the sequence of the AAC(6')-II gene to genes of other 6'-N-acetyltransferases. An AAC(6')-Ib protein (encoded by the aacA4 gene; G. Tran Van Nhieu and E. Collatz, J. Bacteriol. 169:5708-5714, 1987) that results in resistance to amikacin but not gentamicin was found to share 82% sequence similarity with the AAC(6')-II protein. We speculate that these two genes arose from a common ancestor and that the processes of selection and dissemination have led to the observed differences in the spectrum of aminoglycoside resistance.
Collapse
Affiliation(s)
- K J Shaw
- Schering-Plough Research, Bloomfield, New Jersey 07003
| | | | | | | | | | | | | |
Collapse
|
33
|
Zylstra GJ, Olsen RH, Ballou DP. Cloning, expression, and regulation of the Pseudomonas cepacia protocatechuate 3,4-dioxygenase genes. J Bacteriol 1989; 171:5907-14. [PMID: 2808302 PMCID: PMC210453 DOI: 10.1128/jb.171.11.5907-5914.1989] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The genes for the alpha and beta subunits of the enzyme protocatechuate 3,4-dioxygenase (EC 1.13.11.3) were cloned from the Pseudomonas cepacia DBO1 chromosome on a 9.5-kilobase-pair PstI fragment into the broad-host-range cloning vector pRO2317. The resultant clone was able to complement protocatechuate 3,4-dioxugenase mutations in P. cepacia, Pseudomonas aeruginosa, and Pseudomonas putida. Expression studies showed that the genes were constitutively expressed and subject to catabolite repression in the heterologous host. Since the cloned genes exhibited normal induction patterns when present in P. cepacia DBO1, it was concluded that induction was subject to negative control. Regulatory studies with P. cepacia wild-type and mutant strains showed that protocatechuate 3,4-dioxygenase is induced either by protocatechuate or by beta-carboxymuconate. Further studies of P. cepacia DBO1 showed that p-hydroxybenzoate hydroxylase (EC 1.14.13.2), the preceding enzyme in the pathway, is induced by p-hydroxybenzoate and that beta-carboxymuconate lactonizing enzyme, which catalyzes the reaction following protocatechuate 3,4-dioxygenase, is induced by both p-hydroxybenzoate and beta-ketoadipate.
Collapse
Affiliation(s)
- G J Zylstra
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor 48109-0620
| | | | | |
Collapse
|
34
|
Zylstra GJ, Olsen RH, Ballou DP. Genetic organization and sequence of the Pseudomonas cepacia genes for the alpha and beta subunits of protocatechuate 3,4-dioxygenase. J Bacteriol 1989; 171:5915-21. [PMID: 2808303 PMCID: PMC210454 DOI: 10.1128/jb.171.11.5915-5921.1989] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The locations of the genes for the alpha and beta subunits of protocatechuate 3,4-dioxygenase (EC 1.13.11.3) on a 9.5-kilobase-pair PstI fragment cloned from the Pseudomonas cepacia DBO1 chromosome were determined. This was accomplished through the construction of several subclones into the broad-host-range cloning vectors pRO2317, pRO2320, and pRO2321. The ability of each subclone to complement mutations in protocatechuate 3,4-dioxygenase (pcaA) was tested in mutant strains derived from P. cepacia, Pseudomonas aeruginosa, and Pseudomonas putida. These complementation studies also showed that the two subunits were expressed from the same promoter. The nucleotide sequence of the region encoding for protocatechuate 3,4-dioxygenase was determined. The deduced amino acid sequence matched that determined by N-terminal analysis of regions of the isolated enzyme. Although over 400 nucleotides were sequenced before the start of the genes, no homology to known promoters was found. However, a terminator stem-loop structure was found immediately after the genes. The deduced amino acid sequence showed extensive homology with the previously determined amino acid sequence of protocatechuate 3,4-dioxygenase from another Pseudomonas species.
Collapse
Affiliation(s)
- G J Zylstra
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor 48109-0620
| | | | | |
Collapse
|
35
|
Darzins A, Casadaban MJ. In vivo cloning of Pseudomonas aeruginosa genes with mini-D3112 transposable bacteriophage. J Bacteriol 1989; 171:3917-25. [PMID: 2544563 PMCID: PMC210143 DOI: 10.1128/jb.171.7.3917-3925.1989] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The transposition properties of the Pseudomonas aeruginosa mutator bacteriophage D3112 were exploited to develop an in vivo cloning system. Mini-D replicon derivatives of D3112 were constructed by incorporating broad host range plasmid replicons between short terminal D3112 sequences. These elements were made with small replication regions from the RK2, Sa, and pVS1 plasmids and selectable genes for tetracycline, carbenicillin, kanamycin, and gentamicin resistance. Some of the mini-D replicons also contain the RK2 oriT origin-of-transfer sequence, which allows them to be mobilized by conjugation to many different species of gram-negative bacteria. These elements were used to clone DNA by preparing lysates from P. aeruginosa cells harboring an inducible D3112 cts prophage and a mini-D replicon plasmid. These lysates were used to infect sensitive P. aeruginosa recipients and select recombinant plasmids as drug-resistant transductant colonies. These transductants form a gene library from which particular clones can be selected, such as by their ability to complement specific mutations. This system was used to clone nine different genes from the PAO chromosome. The ability of this system to precisely identify a gene was demonstrated by isolating clones of the argF+ and cys-59+ genes. Restriction maps of clones of these genes, which have different amounts of flanking DNA, located the positions of these genes. The sizes of the chromosomal DNA segments from 10 individual clones examined ranged from 6 to 21 kilobases (kb), with an average of about 10 kb. This is consistent with the approximately 40-kb DNA-packaging size of the D3112 phage.
Collapse
Affiliation(s)
- A Darzins
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
36
|
Castric PA, Sidberry HF, Sadoff JC. Cloning and sequencing of the Pseudomonas aeruginosa 1244 pilin structural gene. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:75-80. [PMID: 2499765 DOI: 10.1007/bf00332233] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The pilin structural gene of Pseudomonas aeruginosa 1244 was cloned in both cosmids and lambda. Expression of the cloned gene was detected in P. aeruginosa strains PAO2003, PA103, and 653A by an immunoblot reaction utilizing monoclonal antibodies. Western blot analysis showed that pilin expressed from the cloned gene was slightly larger than native 1244 pilin when produced in strains PAO2003 and 653A, but distinctly smaller in PA103. Bacteriophages specific for the 1244 pilus did not lyse strain PAO2003 containing the cloned 1244 pilin gene, indicating that functional 1244 pili were not assembled in this recombinant strain. Nucleotide sequencing revealed a coding region which when translated would produce a 15,615 dalton peptide. The amino-terminal region of this peptide is identical with published pilin sequences. While the rest of the peptides are generally dissimilar, common residues are seen within potentially antigenic regions.
Collapse
Affiliation(s)
- P A Castric
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282
| | | | | |
Collapse
|
37
|
Miller RV, Kokjohn TA. Cloning and characterization of the c1 repressor of Pseudomonas aeruginosa bacteriophage D3: a functional analog of phage lambda cI protein. J Bacteriol 1987; 169:1847-52. [PMID: 3106321 PMCID: PMC212034 DOI: 10.1128/jb.169.5.1847-1852.1987] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We cloned the gene (c1) which encodes the repressor of vegetative function of Pseudomonas aeruginosa bacteriophage D3. The cloned gene was shown to inhibit plating of D3 and the induction of D3 lysogens by UV irradiation. The efficiency of plating and prophage induction of the heteroimmune P. aeruginosa phage F116L were not affected by the presence of the cloned c1 gene of D3. When the D3 DNA fragment containing c1 was subcloned into pBR322 and introduced into Escherichia coli, it was shown to specifically inhibit the plating of phage lambda and the induction of the lambda prophage by mitomycin C. The plating of lambda imm434 phage was not affected. Analysis in minicells indicated that these effects correspond to the presence of a plasmid-encoded protein of 36,000 molecular weight. These data suggest the possibility that coliphage lambda and the P. aeruginosa phage D3 evolved from a common ancestor. The conservation of the functional similarities of their repressors may have occurred because of the advantage to these temperate phages of capitalizing on the potential of the evolutionarily conserved RecA protein to monitor the level of damage to the host genome.
Collapse
|
38
|
Tn1721-induced mutation in an isoprenol degrading plasmid fromPseudomonas putida. J Ind Microbiol Biotechnol 1986. [DOI: 10.1007/bf01569282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Kwon M, Chung I, Kim Y. Role of a small plasmid in the modification of carbon monoxide dehydrogenase inPseudomonas carboxydovorans. FEMS Microbiol Lett 1986. [DOI: 10.1111/j.1574-6968.1986.tb01777.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
Mucha DK, Farrand SK. Diversity of determinants encoding carbenicillin, gentamicin, and tobramycin resistance in nosocomial Pseudomonas aeruginosa. Antimicrob Agents Chemother 1986; 30:281-9. [PMID: 3021051 PMCID: PMC180535 DOI: 10.1128/aac.30.2.281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plasmid pFMH1010, an 89-megadalton R plasmid, is endemic among members of the family Enterobacteriaceae at Hines Veterans Administration Hospital, Hines, Ill. It encodes resistance to nine antibiotics, including resistance to carbenicillin (Cb), gentamicin (Gm), and tobramycin (Tm). Pseudomonas aeruginosa strains resistant to carbenicillin, gentamicin, and tobramycin were isolated from five patients at Hines Veterans Administration Hospital from whom Serratia marcescens strains harboring pFMH1010 were also obtained. The P. aeruginosa strains were investigated to determine whether their Cb, Gm, and Tm characteristics derived from pFMH1010. One of the isolates, Ps559, was shown by Southern hybridization to contain approximately 76% of pFMH1010. Several lines of evidence suggested that the pFMH1010 sequences in Ps559 are integrated in the chromosome. Southern hybridization also demonstrated that the beta-lactam resistance of pFMH1010 is most probably due to the presence of sequences homologous with Tn3 and that these sequences are retained in Ps559. In two other Pseudomonas isolates, resistance to carbenicillin, gentamicin, tobramycin, and kanamycin was encoded by R plasmids unrelated to pFMH1010. In the last two isolates, resistance to gentamicin and tobramycin and several other antibiotics appeared to be chromosomally encoded, and it was rescuable from one of these strains by RP4-mediated mobilization.
Collapse
|
41
|
Cuskey SM, Wolff JA, Phibbs PV, Olsen RH. Cloning of genes specifying carbohydrate catabolism in Pseudomonas aeruginosa and Pseudomonas putida. J Bacteriol 1985; 162:865-71. [PMID: 3922954 PMCID: PMC215855 DOI: 10.1128/jb.162.3.865-871.1985] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A 6.0-kilobase EcoRI fragment of the Pseudomonas aeruginosa PAO chromosome containing a cluster of genes specifying carbohydrate catabolism was cloned into the multicopy plasmid pRO1769. The vector contains a unique EcoRI site for cloning within a streptomycin resistance determinant and a selectable gene encoding gentamicin resistance. Mutants of P. aeruginosa PAO transformed with the chimeric plasmid pRO1816 regained the ability to grow on glucose, and the following deficiencies in enzyme or transport activities corresponding to the specific mutations were complemented: glcT1, glucose transport and periplasmic glucose-binding protein; glcK1, glucokinase; and edd-1, 6-phosphogluconate dehydratase. Two other carbohydrate catabolic markers that are cotransducible with glcT1 and edd-1 were not complemented by plasmid pRO1816: zwf-1, glucose-6-phosphate dehydrogenase; and eda-9001, 2-keto-3-deoxy-6-phosphogluconate aldolase. However, all five of these normally inducible activities were expressed at markedly elevated basal levels when transformed cells of prototrophic strain PAO1 were grown without carbohydrate inducer. Vector plasmid pRO1769 had no effect on the expression of these activities in transformed mutant or wild-type cells. Thus, the chromosomal insert in pRO1816 contains the edd and glcK structural genes, at least one gene (glcT) that is essential for expression of the glucose active transport system, and other loci that regulate the expression of the five clustered carbohydrate catabolic genes. The insert in pRO1816 also complemented the edd-1 mutation in a glucose-negative Pseudomonas putida mutant but not the eda-1 defect in another mutant. Moreover, pRO1816 caused the expression of high specific activities of glucokinase, an enzyme that is naturally lacking in these strains of Pseudomonas putida.
Collapse
|
42
|
Prince AS, Barlam T. Isolation of a DNA fragment containing replication functions from IncP2 megaplasmid pMG2. J Bacteriol 1985; 161:792-4. [PMID: 3968043 PMCID: PMC214958 DOI: 10.1128/jb.161.2.792-794.1985] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Replication functions with IncP2 specificity were identified on a 3-kilobase DNA fragment isolated from the 400-kilobase Pseudomonas megaplasmid pMG2.
Collapse
|
43
|
Abstract
The Pseudomonas plasmid pVS1, which has about seven copies, was reduced to a minimal replicon and used to construct stable gene-cloning vehicles. The host for all cloning experiments was P. aeruginosa strain PAO. Two nonmobilizable plasmids, pME260 and pME290, and one RP1-mobilizable plasmid, pME285, were constructed. The vectors pME260 (6.3 kb) and pME290 (6.8 kb) carry the Tn801 bla gene specifying carbenicillin (Cb) resistance, a good selective marker in Pseudomonas, and the Tn903 aph gene encoding kanamycin (Km) resistance, with useful restriction sites for insertional inactivation. The Mob+ vector pME285 (10.6 kb) carries the aph gene and the Tn501-derived merRTCA genes coding for mercuric ion resistance, another good selective marker in Pseudomonas. The hypothetical merD gene, which may follow the merA gene in Tn501 but is absent from pME285, appeared to be dispensable for mercuric ion resistance in P. aeruginosa. The Mob- vector pME290 could be introduced by transformation and maintained in strains of P. aeruginosa, P. fluorescens, P. putida, P. acidovorans, P. stutzeri, P. mendocina, P. cepacia, and P. syringae. The plasmid was compatible with IncP-1 and IncP-4 replicons.
Collapse
|
44
|
Barth PT, Ellis K, Bechhofer DH, Figurski DH. Involvement of kil and kor genes in the phenotype of a host-range mutant of RP4. MOLECULAR & GENERAL GENETICS : MGG 1984; 197:236-43. [PMID: 6097793 DOI: 10.1007/bf00330969] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Plasmid pRP761 is a derivative of the promiscuous plasmid RP4, which has a Tn76 insert 1.8 kb from its EcoRI site within the trfB region (Barth 1979). This mutation was pleiotropic, having three effects: the plasmid is unstably maintained in E. coli, it reduces the growth rate of its host and it has suffered a reduction in host-range. We show that pRP761 has reduced expression from both its korA and korB genes and that Tn76 has inserted between them. Fragment exchange experiments showed that this is the only mutant region in pRP761 and is therefore solely responsible for the pleiotropic effects. A spontaneous deletion derivative pRP761-6 has lost Tn76 and its adjacent kilA and korA genes: it has reacquired stability, does not inhibit host growth but is still reduced in its host-range. The provision of cloned korA+ in trans complements the first two phenotypic effects in pRP761 to a large extent, but neither korA+ alone nor korA+ with korB+ complements the host-range reduction in pRP761 or pRP761-6. A possible explanation for these results is that there is a site between korA and korB, affected by the Tn76 insert, that is essential to stable replication of these plasmids in some of their bacterial hosts.
Collapse
|
45
|
Bryan LE, O'Hara K, Wong S. Lipopolysaccharide changes in impermeability-type aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1984; 26:250-5. [PMID: 6207771 PMCID: PMC284130 DOI: 10.1128/aac.26.2.250] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Clinical isolates of Pseudomonas aeruginosa were examined for the basis of impermeability-type aminoglycoside resistance. Two apparently related burn isolate strains with high-level (strain 8803) and low-level (strain 13934) gentamicin resistance each had a plasmid. Transformation of the plasmid from either strain to P. aeruginosa PAO503 resulted in low-level gentamicin resistance. No mechanism for this resistance could be determined. Low-level gentamicin and streptomycin resistance from strain 8803 (but not 13934) was transduced with phage E79.tv2 to PAO503 without transfer of plasmid DNA. Transductants like strain 8803 showed absence or reduction of the lipopolysaccharide (LPS) "ladder" pattern of PAO503, had a change in chemical composition of LPS, and, like strain 8803, had a reduced capability to accumulate streptomycin. Comparison of the resistant clinical isolates 8803 and P10 with the apparently related but less-resistant strains 13934 and P10R, respectively, showed the latter strains had LPS ladder patterns and the former strains did not. Strain 8803 had normal outer membrane protein profiles, electron transport components, and transmembrane electrical potential relative to PAO503 and has been previously shown to have no detectable gentamicin-modifying enzymes and normal protein synthesis. We conclude that low-level impermeability-type aminoglycoside resistance in P. aeruginosa results from conversion of smooth LPS to superficial or deeper rough LPS phenotypes. High-level resistance apparently results from a plasmid-specified, but as yet unknown, mechanism combined with the preceding change in LPS structure.
Collapse
|
46
|
Hughes EJ, Bayly RC, Skurray RA. Characterization of a TOL-like plasmid from Alcaligenes eutrophus that controls expression of a chromosomally encoded p-cresol pathway. J Bacteriol 1984; 158:73-8. [PMID: 6325399 PMCID: PMC215381 DOI: 10.1128/jb.158.1.73-78.1984] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Alcaligenes eutrophus wild-type strain 345 metabolizes m- and p-toluate via a catechol meta-cleavage pathway. DNA analysis, curing studies, and transfer of this phenotype by conjugation and transformation showed that the degradative genes are encoded on a self-transmissible 85-kilobase plasmid, pRA1000. HindIII and XhoI restriction endonuclease analysis of pRA1000 showed it to be similar to the archetypal TOL plasmid, pWWO, differing in the case of HindIII only by the absence of fragments B and D present in pWWO. In strain 345, the presence of pRA1000 prevented the expression of chromosomally encoded enzymes required for the degradation of p-cresol, whereas these enzymes were expressed in strains cured of pRA1000. On the basis of studies with an R68.45-pRA1000 cointegrate plasmid, pRA1001, we conclude that the gene(s) responsible for the effect of p-cresol degradation resides within or near the m- and p-toluate degradative region on pRA1000.
Collapse
|
47
|
Day DL, Yasinow D, McDonough J, Shuster CW. Use of ureidopenicillins for selection of plasmid vector transformants in Pseudomonas aeruginosa and Pseudomonas putida. J Bacteriol 1984; 157:937-9. [PMID: 6321446 PMCID: PMC215350 DOI: 10.1128/jb.157.3.937-939.1984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Broad-host-range plasmids coding for beta-lactamase were successfully selected after transformation of Pseudomonas strains. Transformants of both Pseudomonas aeruginosa and Pseudomonas putida containing plasmid pRO1614 were isolated in media containing low concentrations of piperacillin. These strains were also susceptible to other ureidopenicillins. Similar selections of transformants with carbenicillin, ampicillin, or ticarcillin required high concentrations of antibiotics and yielded backgrounds of spontaneous resistant mutants.
Collapse
|
48
|
|
49
|
McCombie WR, Hansen JB, Zylstra GJ, Maurer B, Olsen RH. Pseudomonas streptomycin resistance transposon associated with R-plasmid mobilization. J Bacteriol 1983; 155:40-8. [PMID: 6305919 PMCID: PMC217649 DOI: 10.1128/jb.155.1.40-48.1983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Plasmid pMG1 encodes resistance to gentamicin, streptomycin, sulfonamides, and mercuric ions and also mobilizes pRO161, a transfer-deficient plasmid derived from RP1. Upon mobilization, pRO161 acquires streptomycin resistance (Smr) and can subsequently be remobilized by pMG1 at significantly higher frequencies than pRO161 itself. Both the initial acquisition of Smr and the subsequent mobilization of the transfer-deficient plasmid are recA independent: thus, the Smr determinant appears to be located on a transposon, disignated Tn904. Tn904 transposes to a variety of other plasmids, including RP1, FP2, R388, K, pRO1600, and pBR322, and in some cases the acquisition of this transposon accompanied deletions in the target plasmid. When no deletion occurred, target plasmids gained 5.2 kilobase pairs of DNA and new restriction endonuclease cleavage sites for AvaI, BglII, PstI, SmaI, and SstI. Physical analysis of such plasmids showed that the Tn904 termini are inverted repeat DNA sequences of approximately 124 base pairs. After cloning into vector pRO1723, a single site for restriction endonuclease AvaI was identified within the Smr determinant of Tn904. In Escherichia coli, but not in Pseudomonas aeruginosa. Tn904 shows a gene dosage-dependent expression of streptomycin resistance.
Collapse
|
50
|
|