1
|
Sherwood LJ, Hayhurst A. Hapten mediated display and pairing of recombinant antibodies accelerates assay assembly for biothreat countermeasures. Sci Rep 2012; 2:807. [PMID: 23150778 PMCID: PMC3495282 DOI: 10.1038/srep00807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/17/2012] [Indexed: 11/14/2022] Open
Abstract
A bottle-neck in recombinant antibody sandwich immunoassay development is pairing, demanding protein purification and modification to distinguish captor from tracer. We developed a simple pairing scheme using microliter amounts of E. coli osmotic shockates bearing site-specific biotinylated antibodies and demonstrated proof of principle with a single domain antibody (sdAb) that is both captor and tracer for polyvalent Marburgvirus nucleoprotein. The system could also host pairs of different sdAb specific for the 7 botulinum neurotoxin (BoNT) serotypes, enabling recognition of the cognate serotype. Inducible supE co-expression enabled sdAb populations to be propagated as either phage for more panning from repertoires or expressed as soluble sdAb for screening within a single host strain. When combined with streptavidin-g3p fusions, a novel transdisplay system was formulated to retrofit a semi-synthetic sdAb library which was mined for an anti-Ebolavirus sdAb which was immediately immunoassay ready, thereby speeding up the recombinant antibody discovery and utilization processes.
Collapse
Affiliation(s)
- Laura J. Sherwood
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Andrew Hayhurst
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
2
|
Efficient decoding of the UAG triplet as a full-fledged sense codon enhances the growth of a prfA-deficient strain of Escherichia coli. J Bacteriol 2012; 194:2606-13. [PMID: 22427623 DOI: 10.1128/jb.00195-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reassigned the amber UAG stop triplet as a sense codon in Escherichia coli by expressing a UAG-decoding tRNA and knocking out the prfA gene, encoding release factor 1. UAG triplets were left at the ends of about 300 genes in the genome. In the present study, we showed that the detrimental effect of UAG reassignment could be alleviated by increasing the efficiency of UAG translation instead of reducing the number of UAGs in the genome. We isolated an amber suppressor tRNA(Gln) variant displaying enhanced suppression activity, and we introduced it into the prfA knockout strain, RFzero-q, in place of the original suppressor tRNA(Gln). The resulting strain, RFzero-q3, translated UAG to glutamine almost as efficiently as the glutamine codons, and it proliferated faster than the parent RFzero-q strain. We identified two major factors in this growth enhancement. First, the sucB gene, which is involved in energy regeneration and has two successive UAG triplets at the end, was expressed at a higher level in RFzero-q3 than RFzero-q. Second, the ribosome stalling that occurred at UAG in RFzero-q was resolved in RFzero-q3. The results revealed the importance of "backup" stop triplets, UAA or UGA downstream of UAG, to avoid the deleterious impact of UAG reassignment on the proteome.
Collapse
|
3
|
Köhrer C, Sullivan EL, RajBhandary UL. Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res 2004; 32:6200-11. [PMID: 15576346 PMCID: PMC535668 DOI: 10.1093/nar/gkh959] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/08/2004] [Accepted: 11/08/2004] [Indexed: 11/13/2022] Open
Abstract
We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells.
Collapse
Affiliation(s)
- Caroline Köhrer
- Department of Biology, Room 68-671, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
4
|
Abstract
BACKGROUND The addition of new amino acids to the genetic code of Escherichia coli requires an orthogonal suppressor tRNA that is uniquely acylated with a desired unnatural amino acid by an orthogonal aminoacyl-tRNA synthetase. A tRNA(Tyr)(CUA)-tyrosyl-tRNA synthetase pair imported from Methanococcus jannaschii can be used to generate such a pair. In vivo selections have been developed for selecting mutant suppressor tRNAs with enhanced orthogonality, which can be used to site-specifically incorporate unnatural amino acids into proteins in E. coli. RESULTS A library of amber suppressor tRNAs derived from M. jannaschii tRNA(Tyr) was generated. tRNA(Tyr)(CUA)s that are substrates for endogenous E. coli aminoacyl-tRNA synthetases were deleted from the pool by a negative selection based on suppression of amber nonsense mutations in the barnase gene. The remaining tRNA(Tyr)(CUA)s were then selected for their ability to suppress amber nonsense codons in the beta-lactamase gene in the presence of the cognate M. jannaschii tyrosyl-tRNA synthetase (TyrRS). Four mutant suppressor tRNAs were selected that are poorer substrates for E. coli synthetases than M. jannaschii tRNA(Tyr)(CUA), but still can be charged efficiently by M. jannaschii TyrRS. CONCLUSIONS The mutant suppressor tRNA(Tyr)(CUA) together with the M. jannaschii TyrRS is an excellent orthogonal tRNA-synthetase pair for the in vivo incorporation of unnatural amino acids into proteins. This general approach may be expanded to generate additional orthogonal tRNA-synthetase pairs as well as probe the interactions between tRNAs and their cognate synthetases.
Collapse
Affiliation(s)
- L Wang
- Department of Chemistry, University of California at Berkeley, 94720, USA
| | | |
Collapse
|
5
|
Liu DR, Schultz PG. Progress toward the evolution of an organism with an expanded genetic code. Proc Natl Acad Sci U S A 1999; 96:4780-5. [PMID: 10220370 PMCID: PMC21768 DOI: 10.1073/pnas.96.9.4780] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several significant steps have been completed toward a general method for the site-specific incorporation of unnatural amino acids into proteins in vivo. An "orthogonal" suppressor tRNA was derived from Saccharomyces cerevisiae tRNA2Gln. This yeast orthogonal tRNA is not a substrate in vitro or in vivo for any Escherichia coli aminoacyl-tRNA synthetase, including E. coli glutaminyl-tRNA synthetase (GlnRS), yet functions with the E. coli translational machinery. Importantly, S. cerevisiae GlnRS aminoacylates the yeast orthogonal tRNA in vitro and in E. coli, but does not charge E. coli tRNAGln. This yeast-derived suppressor tRNA together with yeast GlnRS thus represents a completely orthogonal tRNA/synthetase pair in E. coli suitable for the delivery of unnatural amino acids into proteins in vivo. A general method was developed to select for mutant aminoacyl-tRNA synthetases capable of charging any ribosomally accepted molecule onto an orthogonal suppressor tRNA. Finally, a rapid nonradioactive screen for unnatural amino acid uptake was developed and applied to a collection of 138 amino acids. The majority of glutamine and glutamic acid analogs under examination were found to be uptaken by E. coli. Implications of these results are discussed.
Collapse
Affiliation(s)
- D R Liu
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
6
|
Tsai F, Curran JF. tRNA(2Gln) mutants that translate the CGA arginine codon as glutamine in Escherichia coli. RNA (NEW YORK, N.Y.) 1998; 4:1514-1522. [PMID: 9848650 PMCID: PMC1369722 DOI: 10.1017/s1355838298981274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a novel missense suppression system for the selection of tRNA(2GIn) mutants that can efficiently translate the CGA (arginine) codon as glutamine. tRNA(2Gln) mutants were cloned from a partially randomized synthetic gene pool using a plasmid vector that simultaneously expresses the tRNA gene and, to ensure efficient aminoacylation, the glutamine aminoacyl-tRNA synthetase gene (glnS). tRNA mutants that insert glutamine at CGA were selected as missense suppressors of a lacZ mutant (lacZ625(CGA)) that contains CGA substituted for an essential glutamine codon. Preliminary characterizations of four suppressors is presented. All of them contain two anticodon mutations: C-->U at position 34 and U-->C at position 35, which allow for cognate translation of CGA. U35 was previously shown to be an important determinant for glutaminylation of tRNA(2Gln) in vitro; suppression in vivo requires overexpression of the glutaminyl-tRNA synthetase gene (glnS). One tRNA variant contains no further mutations and has the highest missense suppression activity (8%). Three other isolates each contain an additional point mutation that alters suppression efficiency. This system will be useful for further studies of tRNA structure and function. In addition, because relatively efficient translation of the rare CGA codon as glutamine is not toxic for Escherichia coli, it may be possible to translate this sense codon with other alternate meanings, a property which could greatly facilitate protein engineering.
Collapse
Affiliation(s)
- F Tsai
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, USA
| | | |
Collapse
|
7
|
Liu DR, Magliery TJ, Pastrnak M, Schultz PG. Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A 1997; 94:10092-7. [PMID: 9294168 PMCID: PMC23315 DOI: 10.1073/pnas.94.19.10092] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/1997] [Indexed: 02/05/2023] Open
Abstract
In an effort to expand the scope of protein mutagenesis, we have completed the first steps toward a general method to allow the site-specific incorporation of unnatural amino acids into proteins in vivo. Our approach involves the generation of an "orthogonal" suppressor tRNA that is uniquely acylated in Escherichia coli by an engineered aminoacyl-tRNA synthetase with the desired unnatural amino acid. To this end, eight mutations were introduced into tRNA2Gln based on an analysis of the x-ray crystal structure of the glutaminyl-tRNA aminoacyl synthetase (GlnRS)-tRNA2Gln complex and on previous biochemical data. The resulting tRNA satisfies the minimal requirements for the delivery of an unnatural amino acid: it is not acylated by any endogenous E. coli aminoacyl-tRNA synthetase including GlnRS, and it functions efficiently in protein translation. Repeated rounds of DNA shuffling and oligonucleotide-directed mutagenesis followed by genetic selection resulted in mutant GlnRS enzymes that efficiently acylate the engineered tRNA with glutamine in vitro. The mutant GlnRS and engineered tRNA also constitute a functional synthetase-tRNA pair in vivo. The nature of the GlnRS mutations, which occur both at the protein-tRNA interface and at sites further away, is discussed.
Collapse
Affiliation(s)
- D R Liu
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
8
|
Liu DR, Magliery TJ, Schultz PG. Characterization of an 'orthogonal' suppressor tRNA derived from E. coli tRNA2(Gln). CHEMISTRY & BIOLOGY 1997; 4:685-91. [PMID: 9331409 DOI: 10.1016/s1074-5521(97)90224-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In an effort to expand further our ability to manipulate protein structure, we have completed the first step towards a general method that allows the site-specific incorporation of unnatural amino acids into proteins in vivo. Our approach involves the construction of an 'orthogonal' suppressor tRNA that is uniquely acylated in vivo, by an engineered aminoacyl-tRNA synthetase, with the desired unnatural amino acid. The Escherichia coli tRNA2(Gln)-glutaminyl-tRNA synthetase (GlnRS) pair provides a biochemically and structurally well-characterized starting point for developing this methodology. To generate the orthogonal tRNA, mutations were introduced into the acceptor stem, D-loop/stem, and anticodon loop of tRNA2(Gln). We report here the characterization of the properties of the resulting tRNAs and their suitability to severe as an orthogonal suppressor. Our efforts to generate an engineered synthetase are described elsewhere. RESULTS Mutant tRNAs were generated by runoff transcription and assayed for their ability to be aminoacylated by purified E. coli GlnRS and to suppress an amber codon in an in vitro transcription/translation reaction. One tRNA bearing eight mutations satisfies the minimal requirements for the delivery of an unnatural amino acid: it is not acylated by any endogenous E. coli aminoacyl-tRNA synthetase, including GlnRS, yet functions efficiently during protein translation. Mutations in the acceptor stem and D-loop/stem, when introduced in combination, had very different effects on the properties of the resulting tRNAs compared with the effects of the individual mutations. CONCLUSIONS Mutations at sites within tRNA2(Gln) separated by 23-31 A interact strongly with each other, often in a nonadditive fashion, to modulate both aminoacylation activities and translational efficiencies. The observed correlation between the effects of mutations at very distinct regions of the GlnRS-tRNA and possibly the ribosomal/tRNA complexes may contribute in part to the fidelity of protein biosynthesis.
Collapse
Affiliation(s)
- D R Liu
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley 94720, USA.
| | | | | |
Collapse
|
9
|
Kim CW, Michaels ML, Miller JH. Amino acid substitution analysis of E. coli thymidylate synthase: the study of a highly conserved region at the N-terminus. Proteins 1992; 13:352-63. [PMID: 1518803 DOI: 10.1002/prot.340130407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amino acid substitution analysis within a highly conserved region of Escherichia coli thymidylate synthase (TS), using suppression of amber mutations by tRNA suppressors, has yielded a bank of 124 new mutationally altered TS proteins. These mutant proteins have been used to study the structure-function relationship of the Escherichia coli TS protein at the N-terminus corresponding to residues 20 through 35. This region contains a block of amino acids whose sequence has been well conserved among other known TS proteins from various organisms. Positions 20 through 25 contain a surface loop structure and positions 26 through 35 encompass a beta-strand. We find that residues surrounding a beta-bulge structure within the beta-strand are particularly sensitive to amino acid substitution, suggesting that this structure is maintained by a highly ordered packing arrangement. Three residues in the surface loop that are present at the base of the substrate binding pocket are also sensitive to amino acid substitution. The remainder of the conserved sites, including those at the dimer interface, are tolerant to most, if not all, of the substitutions tested.
Collapse
Affiliation(s)
- C W Kim
- Molecular Biology Institute, University of California, Los Angeles 90024
| | | | | |
Collapse
|
10
|
Rogers MJ, Adachi T, Inokuchi H, Söll D. Switching tRNA(Gln) identity from glutamine to tryptophan. Proc Natl Acad Sci U S A 1992; 89:3463-7. [PMID: 1565639 PMCID: PMC48888 DOI: 10.1073/pnas.89.8.3463] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The middle base (U35) of the anticodon of tRNA(Gln) is a major element ensuring the accuracy of aminoacylation by Escherichia coli glutaminyl-tRNA synthetase (GlnRS). An opal suppressor of tRNA(Gln) (su+2UGA) containing C35 (anticodon UCA) was isolated by genetic selection and mutagenesis. Suppression of a UGA mutation in the E. coli fol gene followed by N-terminal sequence analysis of purified dihydrofolate reductase showed that this tRNA was an efficient suppressor that inserted predominantly tryptophan. Mutations of the 3-70 base pair (U70 and A3U70) were made. These mutants of su+2UGA are less efficient suppressors and inserted predominantly tryptophan in vivo; alanine insertion was not observed. Mutations of the discriminator nucleotide (A73, U73, C73) result in very weak opal suppressors. Aminoacylation in vitro by E. coli TrpRS of tRNA(Gln) transcripts mutated in the anticodon demonstrate that TrpRS recognizes all three nucleotides of the anticodon. The results show the interchangeability of the glutamine and tryptophan identities by base substitutions in their respective tRNAs. The amber suppressor (anticodon CUA) tRNA(Trp) was known previously to insert predominantly glutamine. We show that the opal suppressor (anticodon UCA) tRNA(Gln) inserts mainly tryptophan. Discrimination by these synthetases for tRNA includes position 35, with recognition of C35 by TrpRS and U35 by GlnRS. As the use of the UGA codon as tryptophan in mycoplasma and in yeast mitochondria is conserved, recognition of the UCA anticodon by TrpRS may also be maintained in evolution.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon/genetics
- Base Sequence
- Cloning, Molecular
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Genes, Bacterial
- Genes, Suppressor
- Genes, Synthetic
- Glutamine/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/metabolism
- Suppression, Genetic
- Tetrahydrofolate Dehydrogenase/biosynthesis
- Tetrahydrofolate Dehydrogenase/genetics
- Tetrahydrofolate Dehydrogenase/isolation & purification
- Tryptophan/metabolism
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- M J Rogers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | | | |
Collapse
|
11
|
Abstract
The use of suppressed nonsense mutations to generate altered proteins can greatly simplify studies in which a large number of defined mutant proteins are sought. If site-directed mutagenesis is used to generate specific mutations, than for every amber (UAG) mutation constructed, as many as 13 different amino acids can be inserted at the corresponding site in the protein. This allows a rapid screening of many altered proteins for those with interesting properties. Once identified, the interesting substitutions can be regenerated by missense changes, to avoid some of the potential problems of the method. Nonsense suppression has been used to generate more than 3300 amino acid replacements in the E. coli lac repressor, and close to 250 amino acid substitutions in E. coli thymidylate synthase.
Collapse
|
12
|
Declerck N, Joyet P, Gaillardin C, Masson J. Use of amber suppressors to investigate the thermostability of Bacillus licheniformis alpha-amylase. Amino acid replacements at 6 histidine residues reveal a critical position at His-133. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55421-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Kleina LG, Masson JM, Normanly J, Abelson J, Miller JH. Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. J Mol Biol 1990; 213:705-17. [PMID: 2193162 DOI: 10.1016/s0022-2836(05)80257-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using synthetic oligonucleotides, we have constructed 17 tRNA suppressor genes from Escherichia coli representing 13 species of tRNA. We have measured the levels of in vivo suppression resulting from introducing each tRNA gene into E. coli via a plasmid vector. The suppressors function at varying efficiencies. Some synthetic suppressors fail to yield detectable levels of suppression, whereas others insert amino acids with greater than 70% efficiency. Results reported in the accompanying paper demonstrate that some of these suppressors insert the original cognate amino acid, whereas others do not. We have altered some of the synthetic tRNA genes in order to improve the suppressor efficiency of the resulting tRNAs. Both tRNA(CUAHis) and tRNA(CUAGlu) were altered by single base changes, which generated -A-A- following the anticodon, resulting in a markedly improved efficiency of suppression. The tRNA(CUAPro) was inactive, but a hybrid suppressor tRNA consisting of the tRNA(CUAPhe) anticodon stem and loop together with the remainder of the tRNA(Pro) proved highly efficient at suppressing nonsense codons. Protein chemistry results reported in the accompanying paper show that the altered tRNA(CUAHis) and the hybrid tRNA(CUAPro) insert only histidine and proline, respectively, whereas the altered tRNA(CUAGlu) inserts principally glutamic acid but some glutamine. Also, a strain deficient in release factor I was employed to increase the efficiency of weak nonsense suppressors.
Collapse
MESH Headings
- Anticodon
- Base Sequence
- Cloning, Molecular
- Escherichia coli/genetics
- Genes, Bacterial
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plasmids
- RNA, Transfer/genetics
- RNA, Transfer, Glu/genetics
- RNA, Transfer, His/genetics
- RNA, Transfer, Pro/genetics
- Suppression, Genetic
Collapse
Affiliation(s)
- L G Kleina
- Department of Biology, University of California, Los Angeles 90024
| | | | | | | | | |
Collapse
|
14
|
Lenfant F, Labia R, Masson JM. Probing the active site of beta-lactamase R-TEM1 by informational suppression. Biochimie 1990; 72:495-503. [PMID: 2124150 DOI: 10.1016/0300-9084(90)90073-p] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using a new extended set of 13 amber suppressors in E coli, systematic amino-acid replacements were performed at positions 104(E) and 238(G) of TEM-1 beta-lactamase from PUC19. The enzyme is tolerant to most substitutions tested at position 104. Missense revertants E104K, E104S or E104Y exhibited only minor changes in enzyme activity with respect to wild-type TEM-1. Several substitutions at position 238 resulted in a new cefotaxime hydrolysing capacity, but to an extent that did not confer cefotaxime resistance for the bacteria producing the mutated enzymes. Only when the mutations at codons 104 and 238 were combined on the same gene, did a true cefotaxime resistant phenotype appear, mimicking the situation encountered with 3rd generation cephalosporins resistant clinical isolates.
Collapse
Affiliation(s)
- F Lenfant
- INSA, Laboratoire de Génie Biochimique et Alimentaire, CNRS UA 544, Toulouse, France
| | | | | |
Collapse
|
15
|
Michaels ML, Kim CW, Matthews DA, Miller JH. Escherichia coli thymidylate synthase: amino acid substitutions by suppression of amber nonsense mutations. Proc Natl Acad Sci U S A 1990; 87:3957-61. [PMID: 2187197 PMCID: PMC54023 DOI: 10.1073/pnas.87.10.3957] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
By using site-directed oligonucleotide mutagenesis, amber nonsense stop codons (5'-TAG-3') have been introduced at 20 sites in the Escherichia coli thymidylate synthase gene. By transforming the thyA mutant plasmids into 13 strains, each of which harbor different amber suppressor tRNAs, we were able to generate over 245 amino acid substitutions in E. coli thymidylate synthase (EC 2.1.1.45). Growth characteristics of these mutants have been studied, yielding a body of information that includes some surprising results in light of the recently published crystal structure of the enzyme.
Collapse
Affiliation(s)
- M L Michaels
- Molecular Biology Institute, University of California, Los Angeles 90024
| | | | | | | |
Collapse
|
16
|
Kleina LG, Miller JH. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J Mol Biol 1990; 212:295-318. [PMID: 2157024 DOI: 10.1016/0022-2836(90)90126-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have altered the amino acid sequence of the lac repressor one residue at a time by utilizing a collection of nonsense suppressors that permit the insertion of 13 different amino acids in response to the amber (UAG) codon, as well as an additional amino acid in response to the UGA codon. We used this collection to suppress nonsense mutations at 141 positions in the lacI gene, which encodes the 360 amino acid long lac repressor, including 53 new nonsense mutations which we constructed by oligonucleotide-directed mutagenesis. This method has generated over 1600 single amino acid substitutions in the lac repressor. We have cataloged the effects of these replacements and have interpreted the results with the objective of gaining a better understanding of lac repressor structure, and protein structure in general. The DNA binding domain of the repressor, involving the amino-terminal 59 amino acids, is extremely sensitive to substitution, with 70% of the replacements resulting in the I- phenotype. However, the remaining 301 amino acid core of the repressor is strikingly tolerant of substitutions, with only 30% of the amino acids introduced causing the I- phenotype. This analysis reveals the location of sites in the protein involved in inducer binding, tighter binding to operator and thermal stability, and permits a virtual genetic image reconstruction of the lac repressor protein.
Collapse
Affiliation(s)
- L G Kleina
- Molecular Biology Institute, University of California, Los Angeles 90024
| | | |
Collapse
|
17
|
Rogers MJ, Söll D. Inaccuracy and the recognition of tRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 39:185-208. [PMID: 2247608 DOI: 10.1016/s0079-6603(08)60627-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- M J Rogers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | |
Collapse
|
18
|
Gutman GA, Hatfield GW. Nonrandom utilization of codon pairs in Escherichia coli. Proc Natl Acad Sci U S A 1989; 86:3699-703. [PMID: 2657727 PMCID: PMC287207 DOI: 10.1073/pnas.86.10.3699] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have analyzed protein-coding sequences of Escherichia coli and find that codon-pair utilization is highly biased, reflecting overrepresentation or underrepresentation of many pairs compared with their random expectations. This effect is over and above that contributed by nonrandomness in the use of amino acid pairs, which itself is highly evident; it is much weaker when nonadjacent codon pairs are examined and virtually disappears when pairs separated by two or three intervening codons are evaluated. There appears to be a high degree of directionality in this bias: any codon that participates in many nonrandom pairs tends to make both over- and underrepresented pairs, but preferentially as a left- or right-hand member. We show a relationship between codon-pair utilization patterns and levels of gene expression: genes encoding proteins expressed at high levels tend to contain more abundant, but more highly underrepresented, codon pairs, relative to genes expressed at low levels. The nonrandom utilization of codon pairs may be a consequence of their effects on translational efficiency, which in turn may be related to the compatibility of adjacent aminoacyl-tRNA isoacceptors at the A and P sites of a translating ribosome.
Collapse
Affiliation(s)
- G A Gutman
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine 92717
| | | |
Collapse
|
19
|
Eggertsson G, Söll D. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiol Rev 1988; 52:354-74. [PMID: 3054467 PMCID: PMC373150 DOI: 10.1128/mr.52.3.354-374.1988] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Smith D, Breeden L, Farrell E, Yarus M. The bases of the tRNA anticodon loop are independent by genetic criteria. Nucleic Acids Res 1987; 15:4669-86. [PMID: 3295781 PMCID: PMC340888 DOI: 10.1093/nar/15.11.4669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We employed two methods to study the translational role of interactions between anticodon loop nucleotides. Starting with a set of previously constructed weakly-suppressing anticodon loop mutants of Su7, we searched for second-site revertants that increase amber suppressor efficiency. Though hundreds of revertants were characterized, no second-site revertants were found in the anticodon loop. Second site reversion was detected in the D-stem, thereby demonstrating the efficacy of the search method. As a second method for detecting interactions, we used site-directed mutagenesis to construct multiple mutations in the anticodon loop. These multiple mutants are very weak suppressors and have translational activities that are equal to or lower than that predicted for the independent action of single mutations. We conclude that although the anticodon loop sequence of Su7 has an optimal structure for the translation of amber codons, we find no evidence that interactions between loop bases can enhance translational efficiency.
Collapse
|
21
|
Mendenhall MD, Leeds P, Fen H, Mathison L, Zwick M, Sleiziz C, Culbertson MR. Frameshift suppressor mutations affecting the major glycine transfer RNAs of Saccharomyces cerevisiae. J Mol Biol 1987; 194:41-58. [PMID: 3039147 DOI: 10.1016/0022-2836(87)90714-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mutations have been identified in Saccharomyces cerevisiae glycine tRNA genes that result in suppression of +1 frameshift mutations in glycine codons. Wild-type and suppressor alleles of genes encoding the two major glycine tRNAs, tRNA(GCC) and tRNA(UCC), were examined in this study. The genes were identified by genetic complementation and by hybridization to a yeast genomic library using purified tRNA probes. tRNA(UCC) is encoded by three genes, whereas approximately 15 genes encode tRNA(GCC). The frameshift suppressor genes suf1+, suf4+ and suf6+ were shown to encode the wild-type tRNA(UCC) tRNA. The suf1+ and suf4+ genes were identical in DNA sequence, whereas the suf6+ gene, whose DNA sequence was not determined, was shown by a hybridization experiment to encode tRNA(UCC). The ultraviolet light-induced SU F1-1 and spontaneous SU F4-1 suppressor mutations were each shown to differ from wild-type at two positions in the anticodon, including a +1 base-pair insertion and a base-pair substitution. These changes resulted in a CCCC four-base anticodon rather than the CCU three-base anticodon found in wild-type. The RNA sequence of tRNA(UCC) was shown to contain a modified uridine in the wobble position. Mutant tRNA(CCCC) isolated from a SU F1-1 strain lacked this modification. Three unlinked genes that encode wild-type tRNA(GCC), suf20+, trn2, and suf17+, were identical in DNA sequence to the previously described suf16+ frameshift suppressor gene. Spontaneous suppressor mutations at the SU F20 and SU F17 loci were analyzed. The SU F20-2 suppressor allele contained a CCCC anticodon. This allele was derived in two serial selections through two independent mutational events, a +1 base insertion and a base substitution in the anticodon. Presumably, the original suppressor allele, SU F20-1, contained the single base insertion. The SU F17-1 suppressor allele also contained a CCCC anticodon resulting from two mutations, a +1 insertion and a base substitution. However, this allele contained an additional base substitution at position 33 adjacent to the 5' side of the four-base anticodon. The possible origin and significance of multiple mutations leading to frameshift suppression is discussed.
Collapse
|
22
|
Yarus M, Cline SW, Wier P, Breeden L, Thompson RC. Actions of the anticodon arm in translation on the phenotypes of RNA mutants. J Mol Biol 1986; 192:235-55. [PMID: 2435916 DOI: 10.1016/0022-2836(86)90362-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In previous publications, we have shown that it is practical to study the translational activity of tRNAs by replacement and alteration of the anticodon arm sequence of the genus on a plasmid clone. Experiments in which the anticodon arm sequence is transplanted between tRNA genes suggest that the translational activity is determined by these sequences. We have therefore made every variant of the anticodon loop and the three base-pairs of the stem proximal to the loop, in order to resolve the relation between the structure of Su7Am tRNATrp, and its function. All derivatives conserved the normal secondary structure of the molecule, which was known to be essential for translational activity. The probability of translation of the amber codon by these suppressors is measured in this work. This translational activity in vivo is rationalized in terms of data on the copy numbers of the plasmid clones, the nucleotide modifications of the tRNAs, the steady-state level of the mature tRNA, and the aminoacylation of these molecules. Nucleotide modification levels vary among these tRNAs, giving information about the specificities of modification systems that make O-methylribose, pseudouridine, and modified A in the anticodon arm. However, for this series of tRNAs, none of these modifications has a strong effect on translational efficiency of the tRNAs. A few of the substitutions reduce aminoacylation of the tRNAs with glutamine, as determined by comparison of suppression in normal strains and related strains, which have 25-fold elevated levels of the glutaminyl-tRNA synthetase (GlnRS). The substitutions that have the largest effect on GlnRS action are, unexpectedly, purines for conserved pyrimidines on the 5' side of the anticodon loop. Data on the concentrations of tRNA in vivo suggest that the anticodon loop and helix contribute similarly to the determination of the steady-state level of the tRNAs. This level varies sevenfold, though all tRNAs are processed from a homologous precursor made from the same transcription unit. Effects on levels appear to be mediated by changes in anticodon arm structure. A robust equation that relates aminoacyl-tRNA levels to suppressor efficiency is developed in order to resolve effects on tRNA levels and on ribosomal steps: E = A/(K + A), where E is efficiency, A is aminoacyl-tRNA concentration, and K is the effective concentration, or cellular tRNA content required for an individual tRNA to have an efficiency of 0.50. The tRNAs vary in their intrinsic ability to function on the ribosome (represented by K), after other influences have been normalized.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
23
|
Winey M, Mendenhall MD, Cummins CM, Culbertson MR, Knapp G. Splicing of a yeast proline tRNA containing a novel suppressor mutation in the anticodon stem. J Mol Biol 1986; 192:49-63. [PMID: 3546704 DOI: 10.1016/0022-2836(86)90463-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The intron-containing proline tRNAUGG genes in Saccharomyces cerevisiae can mutate to suppress +1 frameshift mutations in proline codons via a G to U base substitution mutation at position 39. The mutation alters the 3' splice junction and disrupts the bottom base-pair of the anticodon stem which presumably allows the tRNA to read a four-base codon. In order to understand the mechanism of suppression and to study the splicing of suppressor pre-tRNA, we determined the sequences of the mature wild-type and mutant suppressor gene products in vivo and analyzed splicing of the corresponding pre-tRNAs in vitro. We show that a novel tRNA isolated from suppressor strains is the product of frameshift suppressor genes. Sequence analysis indicated that suppressor pre-tRNA is spliced at the same sites as wild-type pre-tRNA. The tRNA therefore contains a four-base anticodon stem and nine-base anticodon loop. Analysis of suppressor pre-tRNA in vitro revealed that endonuclease cleavage at the 3' splice junction occurred with reduced efficiency compared to wild-type. In addition, reduced accumulation of mature suppressor tRNA was observed in a combined cleavage and ligation reaction. These results suggest that cleavage at the 3' splice junction is inefficient but not abolished. The novel tRNA from suppressor strains was shown to be the functional agent of suppression by deleting the intron from a suppressor gene. The tRNA produced in vivo from this gene is identical to that of the product of an intron+ gene, indicating that the intron is not required for proper base modification. The product of the intron- gene is a more efficient suppressor than the product of an intron+ gene. One interpretation of this result is that inefficient splicing in vivo may be limiting the steady-state level of mature suppressor tRNA.
Collapse
|
24
|
Yarus M, Cline S, Raftery L, Wier P, Bradley D. The translational efficiency of tRNA is a property of the anticodon arm. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67412-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Sullivan MA, Bock RM. Isolation and characterization of antisuppressor mutations in Escherichia coli. J Bacteriol 1985; 161:377-84. [PMID: 3918006 PMCID: PMC214882 DOI: 10.1128/jb.161.1.377-384.1985] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nonsense mutations in lacI have been shown to be useful as indicators of the efficiency of nonsense suppression. From strains containing supE and a lacI nonsense mutation, selection for LacI- mutants has resulted in the isolation of four antisuppressor mutations. Tn10 insertions linked to these mutations were isolated and used to group the four mutations into three loci. The asuA1 and asuA2 mutations are linked to trp, reduce suppression by supE approximately twofold, and affect a variety of suppressors. The asuB3 mutation was mapped by P1 cotransduction to rpsL but does not confer resistance to streptomycin. The asuC4 mutation reduced suppression by supE by 95% and was shown biochemically to result in the loss of two pseudouridine modifications from the 3' side of the anticodon stem and loop of tRNA2Gln. This mutation is linked to purF, suggesting that it is a new allele of hisT.
Collapse
|
26
|
Raftery LA, Egan JB, Cline SW, Yarus M. Defined set of cloned termination suppressors: in vivo activity of isogenetic UAG, UAA, and UGA suppressor tRNAs. J Bacteriol 1984; 158:849-59. [PMID: 6327642 PMCID: PMC215519 DOI: 10.1128/jb.158.3.849-859.1984] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have cloned an isogenetic set of UAG, UAA, and UGA suppressors. These include the Su7 -UAG, Su7 -UAA, and Su7 -UGA suppressors derived from base substitutions in the anticodon of Escherichia coli tRNATrp and also Su9 , a UGA suppressor derived from a base substitution in the D-arm of the same tRNA. These genes are cloned on high-copy-number plasmids under lac promoter control. The construction of the Su7 -UAG plasmid and the wild-type trpT plasmid have been previously described ( Yarus , et al., Proc. Natl. Acad. Sci. U.S.A. 77:5092-5097, 1980). Su7 -UAA ( trpT177 ) is a weak suppressor which recognizes both UAA and UAG nonsense codons and probably inserts glutamine. Su7 -UGA ( trpT176 ) is a strong UGA suppressor which may insert tryptophan. Su9 ( trpT178 ) is a moderately strong UGA suppressor which also recognizes UGG (Trp) codons, and it inserts tryptophan. The construction of these plasmids is detailed within. Data on the DNA sequences of these trpT alleles and on amino acid specificity of the suppressors are presented. The efficiency of the cloned suppressors at certain nonsense mutations has been measured and is discussed with respect to the context of these codons.
Collapse
|
27
|
Petrullo LA, Gallagher PJ, Elseviers D. The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1983; 190:289-94. [PMID: 6410151 DOI: 10.1007/bf00330653] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Readthrough and suppression of nonsense codons was compared in Escherichia coli strains with and without a miaA mutation, which confers a loss of the isopentenyladenosine modification in transfer RNA. Generally speaking, our results conform to predictions based on previous literature. In addition, we showed that the miaA mutation in strain TRPX is itself a UAA mutation. An antagonism between miaA and rpsL mutations, which confer streptomycin resistance, was also discovered. Our data further suggest that slight alterations of the translation apparatus are easily detectable by monitoring readthrough and suppression of nonsense codons. Our findings are discussed in the context of old and recent reports.
Collapse
|
28
|
Abstract
Transfer RNA's are probably very strongly selected for translational efficiency. In this article, the argument is presented that the coding performance of the triplet anticodon is enhanced by selection of a matching anticodon loop and stem sequence. the anticodon plus these nearby sequence features (the extended anticodon) therefore contains more coding information than the anticodon alone and can perform more efficiently and accurately at the ribosome. This idea successfully accounts for the relative efficiencies of many transfer RNA's.
Collapse
|
29
|
Breeden L, Yarus M. Amber suppression relaxes stringent control by elongating stringent factor. ACTA ACUST UNITED AC 1982. [DOI: 10.1007/bf00331127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|