1
|
Dorman CJ. Variable DNA topology is an epigenetic generator of physiological heterogeneity in bacterial populations. Mol Microbiol 2023; 119:19-28. [PMID: 36565252 PMCID: PMC10108321 DOI: 10.1111/mmi.15014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
Transcription is a noisy and stochastic process that produces sibling-to-sibling variations in physiology across a population of genetically identical cells. This pattern of diversity reflects, in part, the burst-like nature of transcription. Transcription bursting has many causes and a failure to remove the supercoils that accumulate in DNA during transcription elongation is an important contributor. Positive supercoiling of the DNA ahead of the transcription elongation complex can result in RNA polymerase stalling if this DNA topological roadblock is not removed. The relaxation of these positive supercoils is performed by the ATP-dependent type II topoisomerases DNA gyrase and topoisomerase IV. Interference with the action of these topoisomerases involving, inter alia, topoisomerase poisons, fluctuations in the [ATP]/[ADP] ratio, and/or the intervention of nucleoid-associated proteins with GapR-like or YejK-like activities, may have consequences for the smooth operation of the transcriptional machinery. Antibiotic-tolerant (but not resistant) persister cells are among the phenotypic outliers that may emerge. However, interference with type II topoisomerase activity can have much broader consequences, making it an important epigenetic driver of physiological diversity in the bacterial population.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
2
|
Ahmed W, Menon S, Karthik PV, Nagaraja V. Reduction in DNA topoisomerase I level affects growth, phenotype and nucleoid architecture of Mycobacterium smegmatis. MICROBIOLOGY-SGM 2014; 161:341-353. [PMID: 25516959 DOI: 10.1099/mic.0.000014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The steady-state negative supercoiling of eubacterial genomes is maintained by the action of DNA topoisomerases. Topoisomerase distribution varies in different species of mycobacteria. While Mycobacterium tuberculosis (Mtb) contains a single type I (TopoI) and a single type II (Gyrase) enzyme, Mycobacterium smegmatis (Msm) and other members harbour additional relaxases. TopoI is essential for Mtb survival. However, the necessity of TopoI or other relaxases in Msm has not been investigated. To recognize the importance of TopoI for growth, physiology and gene expression of Msm, we have developed a conditional knock-down strain of TopoI in Msm. The TopoI-depleted strain exhibited extremely slow growth and drastic changes in phenotypic characteristics. The cessation of growth indicates the essential requirement of the enzyme for the organism in spite of having additional DNA relaxation enzymes in the cell. Notably, the imbalance in TopoI level led to the altered expression of topology modulatory proteins, resulting in a diffused nucleoid architecture. Proteomic and transcript analysis of the mutant indicated reduced expression of the genes involved in central metabolic pathways and core DNA transaction processes. RNA polymerase (RNAP) distribution on the transcription units was affected in the TopoI-depleted cells, suggesting global alteration in transcription. The study thus highlights the essential requirement of TopoI in the maintenance of cellular phenotype, growth characteristics and gene expression in mycobacteria. A decrease in TopoI level led to altered RNAP occupancy and impaired transcription elongation, causing severe downstream effects.
Collapse
Affiliation(s)
- Wareed Ahmed
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Shruti Menon
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Pullela V Karthik
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Valakunja Nagaraja
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
3
|
Abstract
The viability of the topA mutants lacking DNA topoisomerase I was thought to depend on the presence of compensatory mutations in Escherichia coli but not Salmonella typhimurium or Shigella flexneri. This apparent discrepancy in topA requirements in different bacteria prompted us to reexamine the topA requirements in E. coli. We find that E. coli strains bearing topA mutations, introduced into the strains by DNA-mediated gene replacement, are viable at 37 or 42 degrees C without any compensatory mutations. These topA(-) cells exhibit cold sensitivity in their growth, however, and this cold sensitivity phenotype appears to be caused by excessive negative supercoiling of intracellular DNA. In agreement with previous results (Zhu, Q., Pongpech, P., and DiGate, R. J. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 9766-9771), E. coli cells lacking both type IA DNA topoisomerases I and III are found to be nonviable, indicating that the two type IA enzymes share a critical cellular function.
Collapse
Affiliation(s)
- Vera A Stupina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
4
|
Wu HY, Fang M. DNA supercoiling and transcription control: a model from the study of suppression of the leu-500 mutation in Salmonella typhimurium topA- strains. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 73:43-68. [PMID: 12882514 DOI: 10.1016/s0079-6603(03)01002-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA supercoiling is known to modulate gene expression. The functional relationship between DNA supercoiling and transcription initiation has been established genetically and biochemically. The molecular mechanism whereby DNA supercoiling regulates gene expression remains unclear however. Quite commonly, the same gene responds to the same DNA supercoiling change differently when the gene is positioned at different locations. Such strong positional effects on gene expression suggest that rather than the overall DNA supercoiling change, the variation of DNA supercoiling at a local site might be important for transcription control. We have started to understand the local DNA supercoiling dynamic on the chromosome. As a primary source of local DNA supercoiling fluctuation, transcription-driven DNA supercoiling is important in determining the chromosome supercoiling dynamic and theoretically, therefore, for transcription control as well. Indeed, by studying the coordinated expression of genes in the ilvIH-leuO-leuABCD gene cluster, we found that transcription-driven DNA supercoiling governs the expression of a group of functionally related genes in a sequential manner. Based on the findings in this model system, we put forward the possible mechanisms whereby DNA supercoiling plays its role in transcription control.
Collapse
Affiliation(s)
- Hai-Young Wu
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
5
|
Chen CC, Ghole M, Majumder A, Wang Z, Chandana S, Wu HY. LeuO-mediated transcriptional derepression. J Biol Chem 2003; 278:38094-103. [PMID: 12871947 DOI: 10.1074/jbc.m300461200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the coordination of gene expression in the Salmonella typhimurium ilvIH-leuO-leuABCD gene cluster, we had previously identified a 72-bp AT-rich (78% A+T) DNA sequence element, AT4, which was capable of silencing transcription in a promoter nonspecific manner. LeuO protein provided in trans relieved (derepressed) AT4-mediated gene silencing (transcriptional repression), but underlying mechanisms remained unclear. In the present communication, the 72-bp DNA sequence element is further dissected into two functional elements, AT7 and AT8. LeuO binds to the 25-bp AT7, which lies closest to the leuO promoter in the AT4 DNA. After deletion of the AT7 DNA sequence responsible for LeuO binding from AT4, the remaining 47-bp AT-rich (85% A+T) DNA sequence, termed AT8, retains the full bi-directional gene-silencing activity, which is no longer relieved by LeuO. LeuO-mediated transcriptional derepression is restored when the LeuO binding site, AT7, is placed within close proximity to the gene silencer AT8. As a pair of functionally coupled transcription elements, the presence of an equal copy number of AT7 and AT8 within proximity is important for the transcription control. The characterization provides clues for future elucidation of the molecular details whereby LeuO negates the gene-silencing activity.
Collapse
Affiliation(s)
- Chien-Chung Chen
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
6
|
Chen CC, Fang M, Majumder A, Wu HY. A 72-base pair AT-rich DNA sequence element functions as a bacterial gene silencer. J Biol Chem 2001; 276:9478-85. [PMID: 11121424 DOI: 10.1074/jbc.m010501200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that sequential activation of the bacterial ilvIH-leuO-leuABCD gene cluster involves a promoter-relay mechanism. In the current study, we show that the final activation of the leuABCD operon is through a transcriptional derepression mechanism. The leuABCD operon is transcriptionally repressed by the presence of a 318-base pair AT-rich upstream element. LeuO is required for derepressing the repressed leuABCD operon. Deletion analysis of the repressive effect of the 318-bp element has led to the identification of a 72-bp AT-rich (78% A+T) DNA sequence element, AT4, which is capable of silencing a number of unrelated promoters in addition to the leuABCD promoter. AT4-mediated gene silencing is orientation-independent and occurs within a distance of 300 base pairs. Furthermore, an increased gene-silencing effect was observed with a tandemly repeated AT4 dimer. The possible mechanism of AT4-mediated gene silencing in bacteria is discussed.
Collapse
Affiliation(s)
- C C Chen
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
7
|
El Hanafi D, Bossi L. Activation and silencing of leu-500 promoter by transcription-induced DNA supercoiling in the Salmonella chromosome. Mol Microbiol 2000; 37:583-94. [PMID: 10931352 DOI: 10.1046/j.1365-2958.2000.02015.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The notion that transcription can generate supercoils in the DNA template largely stems from work with small circular plasmids. In the present work, we tested this model in the bacterial chromosome using a supercoiling-sensitive promoter as a functional sensor of superhelicity changes. The leu-500 promoter of Salmonella typhimurium is a mutant and inactive variant of the leucine operon promoter that regains activity if negative DNA supercoiling rises above normal levels, typically as a result of mutations affecting DNA topoisomerase I (topA mutants). Activation of the leu-500 promoter was analysed in topA mutant cells harbouring transcriptionally inducible tet or cat gene cassettes inserted in the region upstream from the leu operon. Some insertions inhibited leu-500 promoter activation in the absence of inducer. This effect is dramatic in the interval between 1.7 kb and 0.6 kb from the leu operon, suggesting that the insertions physically interfere with the mechanism responsible for activation. Superimposed on these effects, transcription of the inserted gene stimulated or inhibited leu-500 promoter activity depending on whether this gene was oriented divergently from the leu operon or in the same direction respectively. Interestingly, transcription-mediated inhibition of leu-500 promoter was observed with inserts as far as 5 kb from the leu operon, and it could be relieved by the introduction of a strong gyrase site between the inserted element and the leu-500 promoter. These results are consistent with the idea that transcriptionally generated positive and negative supercoils can diffuse along chromosomal DNA and, depending on their topological sign, elicit opposite responses from the leu-500 promoter.
Collapse
Affiliation(s)
- D El Hanafi
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
8
|
Krasilnikov AS, Podtelezhnikov A, Vologodskii A, Mirkin SM. Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol 1999; 292:1149-60. [PMID: 10512709 DOI: 10.1006/jmbi.1999.3117] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The scale of negative DNA supercoiling generated by transcription in Top(+) Escherichia coli cells was assessed from the efficiency of cruciform formation upstream of a regulated promoter. An increase in negative supercoiling upon promoter induction led to cruciform formation, which was quantitatively measured by chemical probing of intracellular DNA. By placing a cruciform-forming sequence at varying distances from the promoter, we found that the half-dissociation length of transcription supercoiling wave is approximately 800 bp. This is the first proof that transcription can affect DNA structure on such a remarkably large scale in vivo. Moreover, cooperative binding of the cI repressor to the upstream promoter DNA did not preclude efficient diffusion of transcriptional supercoiling. Finally, our plasmids appeared to contain discrete domains of DNA supercoiling, defined by the features and relative orientation of different promoters.
Collapse
Affiliation(s)
- A S Krasilnikov
- Department of Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
9
|
Fang M, Wu HY. Suppression of leu-500 mutation in topA+ Salmonella typhimurium strains. The promoter relay at work. J Biol Chem 1998; 273:29929-34. [PMID: 9792711 DOI: 10.1074/jbc.273.45.29929] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Suppression of leu-500 mutation in Salmonella typhimurium topA- strains has been one of the most fascinating examples for the DNA supercoiling effect on transcription initiation control. Previous studies have indicated possible involvement of transcription-driven DNA supercoiling in the activation of the leu-500 promoter in topA- strains. Our recent studies have shown that ilvIH transcription activity located 1.9 kilobase pairs upstream is the initial supercoiling signal for leu-500 activation via a promoter relay mechanism. In the present communication, we show that the ilvIH transcription activity-initiated promoter relay can result in leu-500 activation in topA+ strains. In addition, suppression of the chromosomal leu-500 mutation correlates with the transcription activities of ilvIH and leuO rather than the TopA level in the topA+ strain. It appears that the leu-500 suppression in a topA- strain is due to the constant ilvIH transcription activity.
Collapse
Affiliation(s)
- M Fang
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
10
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
11
|
Abstract
The effect of DNA supercoiling on gene expression is dependent not only on specific genes but also on the sequence context of the genes. This position-dependent supercoiling effect on gene activation is best illustrated in the study of the suppression of the leu-500 mutation of the leuABCD operon in a Salmonella typhimurium topA mutant. In this communication, we report a novel promoter relay mechanism whereby several genes are sequentially expressed in a position-dependent manner: the ilvIH promoter (pilvIH) activates a cryptic leuO promoter (pleuO) located between the two divergently arrayed ilvIH and leu-500 promoters. Both the cis-acting pleuO activity and the trans-acting LeuO protein are necessary for subsequent activation of the leu-500 promoter (pleu-500). Furthermore, pleuO can be functionally replaced with the inducible tac promoter (ptac) for leu-500 activation, suggesting that transcription-driven DNA supercoiling underlies the relay mechanism. This is the first example of several related genes communicating via a promoter relay mechanism for their coordinated expression.
Collapse
Affiliation(s)
- M Fang
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
12
|
Spirito F, Bossi L. Long-distance effect of downstream transcription on activity of the supercoiling-sensitive leu-500 promoter in a topA mutant of Salmonella typhimurium. J Bacteriol 1996; 178:7129-37. [PMID: 8955393 PMCID: PMC178624 DOI: 10.1128/jb.178.24.7129-7137.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Expression of the lacZ gene from the supercoiling-sensitive leu-500 promoter on a plasmid in topA mutant cells was stimulated by activating a divergently oriented Tac promoter, 400 bp upstream from leu-500. The stimulation was approximately threefold regardless of whether the Tac promoter drove the expression of the tet gene, whose product is membrane bound, or of the cat gene, whose product is cytosolic. Putting a second copy of the Tac promoter downstream from lacZ, approximately 3,000 bp from leu-500 in the same orientation as the latter, resulted in 30-fold increase in lacZ expression upon isopropyl-beta-D-thiogalactopyranoside induction. Again, these effects were independent of the nature of the gene upstream from leu-500 (tet or cat). With both tet- and cat-harboring constructs, activation of the two Tac promoter copies caused plasmid DNA to become hypernegatively supercoiled in topA mutant cells. Thus, neither leu-500 activation nor hypernegative plasmid DNA supercoiling appears to require membrane anchoring of DNA in this system. Replacing the downstream copy of Tac with a constitutive promoter resulted in high-level lacZ expression even when the upstream copy was repressed. Under these conditions, no hypernegative DNA supercoiling was observed, indicating that the activity of plasmid-borne leu-500 in topA mutant cells does not necessarily correlate with the linking deficit of plasmid DNA. The response of the leu-500-lacZ fusion to downstream transcription provides a sensitive assay for transcriptional supercoiling in bacteria.
Collapse
Affiliation(s)
- F Spirito
- Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
13
|
Lilley DM, Chen D, Bowater RP. DNA supercoiling and transcription: topological coupling of promoters. Q Rev Biophys 1996; 29:203-25. [PMID: 8968111 DOI: 10.1017/s0033583500005825] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA supercoiling is a consequence of the double-stranded nature of DNA. When a linear DNA molecule is ligated into a covalently closed circle, the two strands become intertwined like the links of a chain, and will remain so unless one of the strands is broken. The number of times one strand is linked with the other is described by a fundamental property of DNA supercoiling, the linking number (Lk).
Collapse
MESH Headings
- Base Sequence
- Biophysical Phenomena
- Biophysics
- DNA Topoisomerases, Type I/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Leucine/genetics
- Models, Biological
- Mutation
- Promoter Regions, Genetic
- Salmonella typhimurium/drug effects
- Salmonella typhimurium/genetics
- Salmonella typhimurium/metabolism
- Tetracycline Resistance/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- D M Lilley
- Department of Biochemistry, University of Dundee, UK
| | | | | |
Collapse
|
14
|
Wu HY, Tan J, Fang M. Long-range interaction between two promoters: activation of the leu-500 promoter by a distant upstream promoter. Cell 1995; 82:445-51. [PMID: 7634334 DOI: 10.1016/0092-8674(95)90433-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The leu-500 mutation can be suppressed in S. typhimurium topA. Previous studies have demonstrated that the plasmid-borne leu-500 minimal promoter cannot be activated in topA mutants unless adjacent (< 250 bp) transcription occurs away from the leu-500 promoter (short-range promoter interaction). To search for a potential upstream promoter responsible for activation of leu-500 in the chromosomal context, we have identified the ilvlH promoter, located 1.9 kb upstream of leu-500 (long-range promoter interaction). Different from short-range promoter interaction, which is abolished by DNA sequence insertions, the long-range promoter interaction is mediated by the intervening DNA sequence. These studies suggest that the long-range interaction between a pair of divergently arrayed promoters is probably mediated by a complex process involving relay of DNA supercoiling by the DNA sequence located between the two promoters.
Collapse
Affiliation(s)
- H Y Wu
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
15
|
Free A, Dorman CJ. Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV overexpression on tyrT promoter function. Mol Microbiol 1994; 14:151-61. [PMID: 7830553 DOI: 10.1111/j.1365-2958.1994.tb01275.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have investigated the in vivo DNA supercoiling sensitivity of the Escherichia coli tRNA(1tyr) gene (tyrT) promoter in its normal chromosomal location. Here, the native tyrT promoter is found to be exquisitely sensitive to mutations and to drugs which alter the level of DNA supercoiling. We show that the response of the tyrT promoter to supercoiling is qualitatively similar to that of a known supercoiling-sensitive tRNA gene promoter, hisR. Specifically, treatments which increase in vivo DNA supercoiling levels enhance transcription of these tRNA genes. Particularly striking is the strong enhancement of expression from both promoters by a transposon insertion mutation in the topA gene encoding DNA toposisomerase I. This phenotypic effect can be complemented by providing active topoisomerase I in trans from a recombinant plasmid. Interestingly, it can also be complemented by overexpression of the genes encoding the subunits of DNA topoisomerase IV. We believe that this is the first demonstration that DNA topoisomerase IV can influence gene expression and it suggests that DNA topoisomerase I is partially redundant, at least in E. coli.
Collapse
Affiliation(s)
- A Free
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Republic of Ireland
| | | |
Collapse
|
16
|
Bowater RP, Chen D, Lilley DM. Elevated unconstrained supercoiling of plasmid DNA generated by transcription and translation of the tetracycline resistance gene in eubacteria. Biochemistry 1994; 33:9266-75. [PMID: 8049227 DOI: 10.1021/bi00197a030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Our previous studies have indicated that the leu-500 promoter of Salmonella typhimurium is activated by local supercoiling arising from the transcription of a divergent promoter (Chen et al., 1992). For this to occur on a plasmid, we have shown that the transcribing RNA polymerase must be anchored to the cell membrane by transcription, translation, and export of the tetA gene and that the cell background must be topA. In this study we have used (AT)n reporter sequences to analyze changes in unconstrained supercoiling of plasmid DNA under the circumstances in which the leu-500 promoter becomes activated. (AT)n sequences undergo a structural transition to a cruciform at a threshold level of negative supercoiling that is determined by the length of the tract, and this can be detected in the cellular DNA by in situ chemical probing. These studies have shown that there is elevated unconstrained supercoiling in tetA-carrying plasmids in either Escherichia coli or S. typhimurium cells in exponential growth. This oversupercoiling depends on the function of the tetA gene in cis and the delta topA cell background. These are exactly the conditions that lead to the activation of the leu-500 promoter, supporting the proposed mechanism for the suppression of the leu-500 mutation by topA. Use of (AT)n sequences of different lengths has permitted us to estimate the extent of oversupercoiling. When the tetA gene was initiated using the strong tac promoter, we were able to detect increased unconstrained DNA supercoiling even in topA+ E. coli cells.
Collapse
Affiliation(s)
- R P Bowater
- CRC Nucleic Acid Structure Research Group, Department of Biochemistry, The University, Dundee, U.K
| | | | | |
Collapse
|
17
|
Abstract
The leu-500 mutation is an A-to-G point mutation in the -10 region of the promoter controlling the leuABCD operon of Salmonella typhimurium. Suppression of the leu-500 mutation in an S. typhimurium topA mutant has demonstrated the functional dependency of this mutated promoter on negative supercoiling. A plasmid bearing a minimal leu-500 promoter region (positions -80 to +87) failed to restore its expression in the S. typhimurium topA mutant. We showed that transcription-mediated local negative supercoiling can activate the leu-500 promoter on a plasmid. The coupled transcription and translation process is required for this activation, but peptide-mediated membrane anchorage may not be involved in this activation. Although the effect of negative supercoiling generated during transcription away from the promoter is limited to a short distance of 250 bp, it can activate the negative-supercoiling-dependent leu-500 promoter from positions either 5' or 3' of the leu-500 promoter. In the presence of a parallel-oriented lac promoter which transcribed away from the 3' end of the leu-500 promoter, transcriptional activation of the leu-500 promoter is a strong indication of cooperativity during the transcriptional initiation process.
Collapse
Affiliation(s)
- J Tan
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201
| | | | | |
Collapse
|
18
|
Tse-Dinh YC. Biochemistry of bacterial type I DNA topoisomerases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29A:21-37. [PMID: 7826860 DOI: 10.1016/s1054-3589(08)60538-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Y C Tse-Dinh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595
| |
Collapse
|
19
|
Spirito F, Figueroa-Bossi N, Bossi L. The relative contributions of transcription and translation to plasmid DNA supercoiling in Salmonella typhimurium. Mol Microbiol 1994; 11:111-22. [PMID: 7511771 DOI: 10.1111/j.1365-2958.1994.tb00294.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutations affecting DNA topoisomerase I (topA) in Salmonella typhimurium were isolated and graded on the basis of their ability to reverse the effects of gyrB mutations on his operon expression. Different topA and gyrB alleles (in otherwise isogenic strains) were used to gather insights into the transcription-dependent variability of plasmid DNA-linking deficit in growing bacteria. This study showed that modulation of DNA supercoiling by transcription results from the action of two components: one is highly dependent on the coupling of translation to RNA-chain elongation; and the other is unrelated to protein synthesis and entirely dependent on promoter determinants. The former greatly predominates in DNA topoisomerase I mutants (topA and topA gyrB) while the latter is the sole contributor to plasmid DNA-linking deficit in wild-type cells. Altogether, these data suggest that whereas translation acts by enhancing the formation of twin supercoiled domains during elongation, the promoter-dependent effects bear no relation to the twin-supercoiled-domain model and are better explained by a mechanism which responds to the binding/unwinding of template DNA by RNA polymerase.
Collapse
MESH Headings
- Alleles
- Base Sequence
- Blotting, Northern
- DNA Gyrase
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/metabolism
- Gene Expression Regulation, Bacterial/genetics
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Plasmids/genetics
- Plasmids/isolation & purification
- Protein Biosynthesis
- RNA, Bacterial/analysis
- Salmonella typhimurium/enzymology
- Salmonella typhimurium/genetics
- Transcription, Genetic
- Transduction, Genetic
Collapse
Affiliation(s)
- F Spirito
- Centre de Génétique Moléculaire, Université P. et M. Curie, Gif-sur-Yvette, France
| | | | | |
Collapse
|
20
|
Menzel R, Gellert M. The biochemistry and biology of DNA gyrase. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29A:39-69. [PMID: 7826864 DOI: 10.1016/s1054-3589(08)60539-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R Menzel
- Bristol-Myers Squibb Pharmaceutical Institute, Princeton, New Jersey 08540
| | | |
Collapse
|
21
|
Chen D, Bowater R, Dorman CJ, Lilley DM. Activity of a plasmid-borne leu-500 promoter depends on the transcription and translation of an adjacent gene. Proc Natl Acad Sci U S A 1992; 89:8784-8. [PMID: 1326763 PMCID: PMC50005 DOI: 10.1073/pnas.89.18.8784] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
leu-500 is a chromosomal promoter mutation in Salmonella typhimurium that normally causes the promoter to be inactive in the initiation of RNA synthesis. But in a strain that has mutations in topA, the gene encoding DNA topoisomerase I, the mutant promoter becomes active. We show that the leu-500 promoter can function on a plasmid when it is adjacent to the tetracycline-resistance gene tetA. Activation of the leu-500 promoter requires that the tetA gene is transcribed and translated and that the host cell is topA. We propose that the A----G mutation in the -10 region of the leu-500 promoter is compensated by local negative supercoiling arising from transcription of the tetA gene, which may reach elevated levels in a topA background, provided that diffusional dissipation is reduced due to anchoring of the TetA peptide in the membrane. This is a clear example of the modulation of the activity of a promoter by the activity of another promoter in cis, when they can be coupled through the topology of the template.
Collapse
Affiliation(s)
- D Chen
- Department of Biochemistry, University, Dundee, United Kingdom
| | | | | | | |
Collapse
|
22
|
Droffner ML, Yamamoto N. The leucine operon carrying theleu-500 promoter mutation is expressed under anaerobic conditions. Curr Microbiol 1991. [DOI: 10.1007/bf02091957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Abstract
Many promoters are sensitive to DNA supercoiling, and it is becoming apparent that this may play an important role in gene regulation. The twin supercoiled-domain hypothesis (Liu and Wang, 1987) proposes that transcription can lead to local variation in supercoiling. The mutant leu-500 promoter has presented a long-standing problem to the understanding of the control of promoter function by DNA supercoiling. This promoter is activated by mutations in the gene encoding topoisomerase I, but is apparently unaffected by mutations in the genes encoding DNA gyrase. We propose a model to explain the anomalous regulation of this promoter, based on the twin supercoiled-domain model. This allows us to account for the unusual properties of the leu-500 promoter, and confirms the biological importance of the twin supercoiled-domain model. We suggest that such topological coupling between promoters may be general, leading to co-operativity and anti-co-operativity between divergent promoter pairs.
Collapse
Affiliation(s)
- D M Lilley
- Department of Biochemistry, University of Dundee, UK
| | | |
Collapse
|
24
|
DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infect Immun 1991; 59:745-9. [PMID: 1997427 PMCID: PMC258322 DOI: 10.1128/iai.59.3.745-749.1991] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
25
|
Zimmer C, Störl K, Störl J. Microbial DNA topoisomerases and their inhibition by antibiotics. J Basic Microbiol 1990; 30:209-24. [PMID: 2164580 DOI: 10.1002/jobm.3620300312] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Supercoiling of bacterial DNA is regulated by topoisomerases and influences most of the metabolic processes involving DNA. The present review is devoted to a brief outline of the supercoiled state of DNA in bacteria and to all microbial topoisomerases hitherto described. Recent studies on topoisomerases of archaebacteria led to the discovery of a so-called reverse gyrase, the properties of which are also discussed. Special emphasis is given to a selective treatment of the effects of those antibiotics which act as gyrase inhibitors.
Collapse
Affiliation(s)
- C Zimmer
- Akademie der Wissenschaften der DDR
| | | | | |
Collapse
|
26
|
Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR, May G, Bremer E. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 1988; 52:569-84. [PMID: 2830029 DOI: 10.1016/0092-8674(88)90470-9] [Citation(s) in RCA: 554] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The proU locus encodes an osmotically inducible glycine betaine transport system that is important in the adaptation to osmotic stress. We present evidence that DNA supercoiling plays a key role in the osmotic induction of proU transcription. An increase in extracellular osmolarity increases in vivo DNA supercoiling, and the expression of proU is highly sensitive to these changes. Furthermore, topA mutations can mimic an increase in osmolarity, facilitating proU expression even in media of low osmolarity in which it is not normally expressed. Selection for trans-acting mutations that affect proU expression has yielded only mutations that alter DNA supercoiling, either in topA or a new genetic locus, osmZ, which strongly influences in vivo supercoiling. Mutations in osmZ are highly pleiotropic, affecting expression of a variety of chromosomal genes including ompF, ompC, fimA, and the bgl operon, as well as increasing the frequency of site-specific DNA inversions that mediate fimbrial phase variation.
Collapse
Affiliation(s)
- C F Higgins
- Department of Biochemistry, University of Dundee, Scotland
| | | | | | | | | | | | | |
Collapse
|
27
|
Andoh T, Ishii K, Suzuki Y, Ikegami Y, Kusunoki Y, Takemoto Y, Okada K. Characterization of a mammalian mutant with a camptothecin-resistant DNA topoisomerase I. Proc Natl Acad Sci U S A 1987; 84:5565-9. [PMID: 3039492 PMCID: PMC298903 DOI: 10.1073/pnas.84.16.5565] [Citation(s) in RCA: 205] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA topoisomerase I was purified to near homogeneity from a clonal line of human lymphoblastic leukemia cells, RPMI 8402, that is resistant to camptothecin, a cytotoxic alkaloid from Camptotheca acuminata, and compared with that of the parent wild-type cells. As assayed by relaxation of the supercoiled plasmid DNA and by formation of enzyme-linked DNA breaks, the purified enzyme from the resistant cells was shown to be greater than 125-fold as resistant to camptothecin as the wild-type enzyme, comparable to a cellular resistance index of about 300. Therefore, the cellular resistance appears to be due to the resistance of the enzyme. The amount of the immunoreactive enzyme protein in whole extract appeared to be reduced to less than half that of the wild-type enzyme. These results establish that DNA topoisomerase I is the cellular target of camptothecin and that DNA topoisomerase I is essential for the survival of mammalian cells.
Collapse
|
28
|
|
29
|
|
30
|
Pruss GJ. DNA topoisomerase I mutants. Increased heterogeneity in linking number and other replicon-dependent changes in DNA supercoiling. J Mol Biol 1985; 185:51-63. [PMID: 2995687 DOI: 10.1016/0022-2836(85)90182-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plasmid pBR322 DNA isolated from Salmonella typhimurium supX (topoisomerase I) mutants exhibits a novel supercoiling distribution characterized by extreme heterogeneity in linking number and the presence of highly negatively supercoiled topoisomers. The most negatively supercoiled topoisomers isolated from one supX mutant have more than twice the wild-type level of supercoiling; the distribution as a whole has a median superhelix density about 1.3 times that of wild type. Surprisingly, the supercoiling distribution of plasmid pUC9 DNA isolated from supX mutants differs from that of pBR322. Escherichia coli topoisomerase I mutants have been shown to acquire compensatory mutations that reduce bacterial chromosome supercoiling to below the wild-type level even in the absence of topoisomerase I. We find that such a compensatory mutation in an E. coli topoisomerase I deletion mutant does not reduce pBR322 DNA supercoiling to a level below that of wild type. Thus, the effects of topoisomerase mutations on supercoiling depend on the replicon.
Collapse
|
31
|
The Escherichia coli supX locus is topA, the structural gene for DNA topoisomerase I. Proc Natl Acad Sci U S A 1985; 82:5437-41. [PMID: 2991925 PMCID: PMC390584 DOI: 10.1073/pnas.82.16.5437] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutations in the supX locus, which result in the absence of DNA topoisomerase I enzyme activity in both Salmonella typhimurium and Escherichia coli, are all selected as suppressors of the leu-500 promoter mutation in S. typhimurium. To determine whether the supX locus is the structural gene topA for the DNA topoisomerase I enzyme or is a positive-acting regulator/activator gene for a nearby topA structural gene, nonsense mutations were selected in the E. coli supX gene carried on an F' episome in S. typhimurium cells. The cysB-topA region of the episomes with nonsense-mutant supX alleles were then cloned onto plasmid pBR322 and transformed into E. coli cells lacking a chromosomal supX gene. Three such E. coli strains, each carrying cloned DNA from episomes with different nonsense-mutant supX alleles, all lacked DNA topoisomerase I activity but expressed antigenic determinants specific to the enzyme; control cells lacked both enzyme activity and antigenic determinants. Maxicell studies of plasmid-coded proteins demonstrated the absence of the DNA topoisomerase I protein (100 kDa) in the three strains but the appearance of a new smaller peptide in each (36, 47, and 64 kDa). These new peptides must represent fragments of the enzyme resulting from translation termination at the supX nonsense codons and confirm the interpretation that the supX gene is topA, the structural gene for DNA topoisomerase I.
Collapse
|
32
|
Genetic analysis of mutations that compensate for loss of Escherichia coli DNA topoisomerase I. J Bacteriol 1985; 162:1173-9. [PMID: 2987184 PMCID: PMC215900 DOI: 10.1128/jb.162.3.1173-1179.1985] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A transposon Tn10 insertion in topA, the structural gene of Escherichia coli DNA topoisomerase I, behaves as an excluded marker in genetic crosses with many strains of E. coli. However, derivative strains that accept this mutant topA allele are readily selected. We show that many of these topA mutant strains contain additional mutations that compensate for the loss of DNA topoisomerase I. Genetic methods for mapping and manipulating such compensatory mutations are described. These methods include a plate-mating test for the ability of strains to accept a topA::Tn10 allele and a powerful indirect selection for transferring compensatory mutations from male strains into non-compensatory female strains. One collection of spontaneous compensatory mutants is analyzed in detail and is shown to include compensatory mutations at three distinct loci: gyrA and gyrB, the genes that encode the subunits of DNA gyrase, and a previously unidentified locus near tolC. Mutations at this third locus, referred to as toc (topoisomerase one compensatory) mutations, do not behave as point mutations in transductional crosses and do not result in lowered DNA gyrase activity. These results show that wild-type strains of E. coli require DNA topoisomerase I, and at least one class of compensatory mutations can relieve this requirement by a mechanism other than reduction of DNA gyrase activity.
Collapse
|
33
|
|
34
|
Fishel RA, Kolodner R. Escherichia coli strains containing mutations in the structural gene for topoisomerase I are recombination deficient. J Bacteriol 1984; 160:1168-70. [PMID: 6094504 PMCID: PMC215837 DOI: 10.1128/jb.160.3.1168-1170.1984] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mutations in the gene encoding topoisomerase I of Escherichia coli were tested for their effect on plasmid recombination. Recombination was decreased 1,000-fold at 30 and 37 degrees C and occurred at approximately wild-type frequencies at 42 degrees C. The suppression of topA mutations at 42 degrees C did not appear to be a result of increased topoisomerase I activity at 42 degrees C.
Collapse
|
35
|
|
36
|
Patterson T, Bauerle R. A specialized host-vector system for the in vivo cloning of the trp operon of wild-type and mutant strains of Salmonella typhimurium by generalized transduction. Plasmid 1984; 12:149-60. [PMID: 6098902 DOI: 10.1016/0147-619x(84)90039-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Using in vitro methods, a 14.2-kb EcoRI fragment of the Salmonella typhimurium chromosome containing the trp operon plus associated flanking sequences from deletion mutant delta trpDCB763 was cloned into the EcoRI site of plasmid pBR322 in a S. typhimurium host. An in vivo cloning vector was constructed from the recombinant plasmid by the in vitro excision of a SalI fragment that contains the entire trp operon. The derived plasmid (pSTP21) carries a hybrid insert made up of the 5.4-kb EcoRI-SalI upstream flanking sequence and the 3.2-kb SalI-EcoRI downstream flanking sequence. Plasmid pSTP21 has been used as a receptor plasmid to clone a variety of mutant and wild-type trp operons by RecA-dependent in vivo recombination between the insert DNA of the plasmid and the homologous trp flanking sequences of transducing DNA fragments transferred into the cell by bacteriophage P22. The host-vector system developed for the in vivo cloning permits the differentiation of plasmid transductants from chromosomal transductants on the primary selective medium. Expression of the cloned trp operons is regulated normally by tryptophan. A substantial amplification of trp enzymes is attainable upon derepression. The recombinant plasmids are stably inherited in RecA+ and RecA- S. typhimurium hosts. However, conditions of high expression of the trp operon lead to a rapid loss of cellular viability and of plasmid stability.
Collapse
|
37
|
Goldstein E, Drlica K. Regulation of bacterial DNA supercoiling: plasmid linking numbers vary with growth temperature. Proc Natl Acad Sci U S A 1984; 81:4046-50. [PMID: 6377307 PMCID: PMC345365 DOI: 10.1073/pnas.81.13.4046] [Citation(s) in RCA: 159] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The level of DNA supercoiling can be altered either by breaking-rejoining reactions that change the DNA linking number or by environmental changes that alter the helical pitch of DNA. In vitro, temperature changes alter helical pitch and, thus, supercoiling. We find that plasmids isolated from bacteria grown at different temperatures exhibit differences in DNA linking numbers. The differences in plasmid linking numbers offset the effect temperature is expected to have on supercoiling. These results are consistent with the hypothesis that fine control of DNA topology in bacterial cells is brought about by changes in linking number to maintain a constant value for supercoiling.
Collapse
|
38
|
Abstract
The gene TOP2 encoding yeast topoisomerase II has been cloned by immunological screening of a yeast genomic library constructed in the phage lambda expression vector, lambda gt11. The ends of the message encoded by the cloned DNA fragment were delimited by the Berk and Sharp procedure (S1 nuclease mapping) for the 5' end and mapping of the polyA tail portion of a cDNA fragment for the 3' end. The predicted size of the message agrees with the length of the message as determined by Northern blot hybridization analysis. The identity of the gene was confirmed by expressing the gene in E. coli from the E. coli promoter lac UV5 to give catalytically active yeast DNA topoisomerase II. Disruption of one copy of the gene in a diploid yeast creates a recessive lethal mutation, indicating that the single DNA topoisomerase II gene of yeast has an essential function.
Collapse
|
39
|
|
40
|
Swenson PA, Riester L, Palmer TV. Role of the supX gene in sensitizing Salmonella typhimurium cells to respiration shutoff induced by far ultraviolet irradiation. Photochem Photobiol 1983; 38:305-10. [PMID: 6356181 DOI: 10.1111/j.1751-1097.1983.tb02676.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
|
42
|
Wang JC, Becherer K. Cloning of the gene topA encoding for DNA topoisomerase I and the physical mapping of the cysB-topA-trp region of Escherichia coli. Nucleic Acids Res 1983; 11:1773-90. [PMID: 6300778 PMCID: PMC325835 DOI: 10.1093/nar/11.6.1773] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The gene topA of Escherichia coli that encodes for DNA topoisomerase I has been cloned by a combination of genetic and radioimmunal screening. The gene has been mapped to be within a 3.4 Kb segment of the bacterial genome. The intracellular level of the enzyme in strains harboring extrachromosomal copies of topA gene increases with increasing copy number of the gene and the introduction of extrachromosomal copies of the topA gene truncated at its 3' side into a topA strain of E. coli does not significantly influence the expression of the chromosomal copy of topA. These results suggest that the expression of topA is not tightly regulated. Strains in which DNA topoisomerase I is overproduced grow significantly slower in broth and give smaller size colonies on agar plates. Physical mapping of a 20 Kb region containing cysB; topA and trp has also been carried out with a number of restriction enzymes; topA is found to be immediately adjacent to cysB and is separated from trp by a 7 Kb segment where no known gene resides.
Collapse
|
43
|
Liu LF. DNA topoisomerases--enzymes that catalyse the breaking and rejoining of DNA. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1983; 15:1-24. [PMID: 6319080 DOI: 10.3109/10409238309102799] [Citation(s) in RCA: 175] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
DiNardo S, Voelkel KA, Sternglanz R, Reynolds AE, Wright A. Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 1982; 31:43-51. [PMID: 6297752 DOI: 10.1016/0092-8674(82)90403-2] [Citation(s) in RCA: 347] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Escherichia coli deletion mutants lacking DNA topoisomerase I have been identified previously and shown to grow at a normal rate. We show that such strains grow normally only because of spontaneously arising mutations that compensate for the topoisomerase I defect. Several of these compensatory mutations have been found to map at or near the genes encoding DNA gyrase, gyrA and gyrB. DNA gyrase assays of crude extracts show that strains carrying the mutations have lower gyrase activity. Thus the mutations are in the gyrase structural genes or in nearby regulatory sequences. These results, in conjunction with DNA supercoiling measurements of others, indicate that in vivo DNA superhelicity is a result of a balance between topoisomerase I and gyrase activities. An excess of negative supercoils due to an absence of topoisomerase I is deleterious to the cell, but a moderate gyrase deficiency is not harmful.
Collapse
|
45
|
Pruss GJ, Manes SH, Drlica K. Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell 1982; 31:35-42. [PMID: 6297751 DOI: 10.1016/0092-8674(82)90402-0] [Citation(s) in RCA: 299] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bacterial chromosomes and plasmid (pBR322) DNA from topoisomerase I-defective Escherichia coli strains have been characterized with respect to superhelical density. The topoisomerase I defect results in increased negative superhelical density of both the bacterial chromosome and pBR322. Thus topoisomerase I is involved in determining the level of supercoiling in bacteria. Three of the topoisomerase I-defective strains were studied carry secondary mutations that decrease superhelical density; these additional mutations are closely linked to the gyrB locus in two of the strains and to the gyrA locus in the third strain.
Collapse
|