1
|
Scheel RA, Ho T, Kageyama Y, Masisak J, McKenney S, Lundgren BR, Nomura CT. Optimizing a Fed-Batch High-Density Fermentation Process for Medium Chain-Length Poly(3-Hydroxyalkanoates) in Escherichia coli. Front Bioeng Biotechnol 2021; 9:618259. [PMID: 33718339 PMCID: PMC7953831 DOI: 10.3389/fbioe.2021.618259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/08/2021] [Indexed: 11/15/2022] Open
Abstract
Production of medium chain-length poly(3-hydroxyalkanoates) [PHA] polymers with tightly defined compositions is an important area of research to expand the application and improve the properties of these promising biobased and biodegradable materials. PHA polymers with homopolymeric or defined compositions exhibit attractive material properties such as increased flexibility and elasticity relative to poly(3-hydroxybutyrate) [PHB]; however, these polymers are difficult to biosynthesize in native PHA-producing organisms, and there is a paucity of research toward developing high-density cultivation methods while retaining compositional control. In this study, we developed and optimized a fed-batch fermentation process in a stirred tank reactor, beginning with the biosynthesis of poly(3-hydroxydecanoate) [PHD] from decanoic acid by β-oxidation deficient recombinant Escherichia coli LSBJ using glucose as a co-substrate solely for growth. Bacteria were cultured in two stages, a biomass accumulation stage (37°C, pH 7.0) with glucose as the primary carbon source and a PHA biosynthesis stage (30°C, pH 8.0) with co-feeding of glucose and a fatty acid. Through iterative optimizations of semi-defined media composition and glucose feed rate, 6.0 g of decanoic acid was converted to PHD with an 87.5% molar yield (4.54 g L-1). Stepwise increases in the amount of decanoic acid fed during the fermentation correlated with an increase in PHD, resulting in a final decanoic acid feed of 25 g converted to PHD at a yield of 89.4% (20.1 g L-1, 0.42 g L-1 h-1), at which point foaming became uncontrollable. Hexanoic acid, octanoic acid, 10-undecenoic acid, and 10-bromodecanoic acid were all individually supplemented at 20 g each and successfully polymerized with yields ranging from 66.8 to 99.0% (9.24 to 18.2 g L-1). Using this bioreactor strategy, co-fatty acid feeds of octanoic acid/decanoic acid and octanoic acid/10-azidodecanoic acid (8:2 mol ratio each) resulted in the production of their respective copolymers at nearly the same ratio and at high yield, demonstrating that these methods can be used to control PHA copolymer composition.
Collapse
Affiliation(s)
- Ryan A. Scheel
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Truong Ho
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Yuki Kageyama
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
- Division of Applied Chemistry, Department of Engineering, Hokkaido University, Sapporo, Japan
| | - Jessica Masisak
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Seamus McKenney
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Benjamin R. Lundgren
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Christopher T. Nomura
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, ID, United States
| |
Collapse
|
2
|
Khankal R, Chin JW, Ghosh D, Cirino PC. Transcriptional effects of CRP* expression in Escherichia coli. J Biol Eng 2009; 3:13. [PMID: 19703305 PMCID: PMC2743635 DOI: 10.1186/1754-1611-3-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/24/2009] [Indexed: 01/31/2023] Open
Abstract
Background Escherichia coli exhibits diauxic growth in sugar mixtures due to CRP-mediated catabolite repression and inducer exclusion related to phosphotransferase system enzyme activity. Replacement of the native crp gene with a catabolite repression mutant (referred to as crp*) enables co-utilization of glucose and other sugars in E. coli. While previous studies have examined the effects of expressing CRP* mutants on the expression of specific catabolic genes, little is known about the global transcriptional effects of CRP* expression. In this study, we compare the transcriptome of E. coli W3110 (expressing wild-type CRP) to that of mutant strain PC05 (expressing CRP*) in the presence and absence of glucose. Results The glucose effect is significantly suppressed in strain PC05 relative to strain W3110. The expression levels of glucose-sensitive genes are generally not altered by glucose to the same extent in strain PCO5 as compared to W3110. Only 23 of the 80 genes showing significant differential expression in the presence of glucose for strain PC05 are present among the 418 genes believed to be directly regulated by CRP. Genes involved in central carbon metabolism (including several TCA cycle genes) and amino acid biosynthesis, as well as genes encoding nutrient transport systems are among those whose transcript levels are most significantly affected by CRP* expression. We present a detailed transcription analysis and relate these results to phenotypic differences between strains expressing wild-type CRP and CRP*. Notably, CRP* expression in the presence of glucose results in an elevated intracellular NADPH concentration and reduced NADH concentration relative to wild-type CRP. Meanwhile, a more drastic decrease in the NADPH/NADP+ ratio is observed for the case of CRP* expression in strains engineered to reduce xylose to xylitol via a heterologously expressed, NADPH-dependent xylose reductase. Altered expression levels of transhydrogenase and TCA cycle genes, among others, are consistent with these observations. Conclusion While the simplest model of CRP*-mediated gene expression assumes insensitivity to glucose (or cAMP), our results show that gene expression in the context of CRP* is very different from that of wild-type in the absence of glucose, and is influenced by the presence of glucose. Most of the transcription changes in response to CRP* expression are difficult to interpret in terms of possible systematic effects on metabolism. Elevated NADPH availability resulting from CRP* expression suggests potential biocatalytic applications of crp* strains that extend beyond relief of catabolite repression.
Collapse
Affiliation(s)
- Reza Khankal
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
3
|
Krin E, Sismeiro O, Danchin A, Bertin PN. The regulation of Enzyme IIA(Glc) expression controls adenylate cyclase activity in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1553-1559. [PMID: 11988530 DOI: 10.1099/00221287-148-5-1553] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During the last few years, several genes, such as pap, bgl and flhDC, have been shown to be coregulated by the histone-like nucleoid-structuring (H-NS) protein and the cyclic AMP-catabolite activator protein (cAMP/CAP) complex, suggesting an interaction between both systems in the control of some cellular functions. In this study, the possible effect of H-NS on the cAMP level was investigated. In a CAP-deficient strain, the presence of an hns mutation results in a strong reduction in the amount of cAMP, due to a decrease in adenylate cyclase activity. This is caused by the reduced expression of crr, which encodes the Enzyme IIA(Glc) of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), from its specific P2 promoter. This leads to a twofold reduction in the global amount of Enzyme IIA(Glc), the adenylate cyclase activator, responsible for the decrease in adenylate cyclase activity observed in the hns crp strain.
Collapse
Affiliation(s)
- Evelyne Krin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Odile Sismeiro
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Antoine Danchin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Philippe N Bertin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| |
Collapse
|
4
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
5
|
Affiliation(s)
- A Ullmann
- Unité de Biochimie des Régulations Cellulaires, Institut Pasteur, Paris
| |
Collapse
|
6
|
Dumay V, Danchin A, Crasnier M. Regulation of Escherichia coli adenylate cyclase activity during hexose phosphate transport. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 3):575-583. [PMID: 8868432 DOI: 10.1099/13500872-142-3-575] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In Escherichia coli, cAMP levels vary with the carbon source used in the culture medium. These levels are dependent on the cellular concentration of phosphorylated EnzymeIIAglc, a component of the glucose-phosphotransferase system, which activates adenylate cyclase (AC). When cells are grown on glucose 6-phosphate (Glc6P), the cAMP level is particularly low. In this study, we investigated the mechanism leading to the low cAMP level when Glc6P is used as the carbon source, i.e. the mechanism preventing the activation of AC by phosphorylated EnzymeIIAglc. Glc6P is transported via the Uhp system which is inducible by extracellular Glc6P. The Uhp system comprises a permease UhpT and three proteins UhpA, UhpB and UhpC which are necessary for uhpT gene transcription. Controlled expression of UhpT in the absence of the regulatory proteins (UhpA, UhpB and UhpC) allowed us to demonstrate that (i) the Uhp regulatory proteins do not prevent the activation of AC by direct interaction with EnzymeIIAglc and (ii) an increase in the amount of UhpT synthesized (corresponding to an increase in the amount of Glc6P transported) correlates with a decrease in the cAMP level. We present data indicating that Glc6P per se or its degradation is unlikely to be responsible for the low cAMP level. It is concluded that the level of cAMP in the cell is determined by the flux of Glc6P through UhpT.
Collapse
Affiliation(s)
- Valérie Dumay
- Unité de Régulation de l'Expression Génétique (Centre National de la Recherche Scientifique Unité Associée 1129), Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Antoine Danchin
- Unité de Régulation de l'Expression Génétique (Centre National de la Recherche Scientifique Unité Associée 1129), Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Martine Crasnier
- Unité de Régulation de l'Expression Génétique (Centre National de la Recherche Scientifique Unité Associée 1129), Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| |
Collapse
|
7
|
Crasnier M, Dumay V, Danchin A. The catalytic domain of Escherichia coli K-12 adenylate cyclase as revealed by deletion analysis of the cya gene. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:409-16. [PMID: 8202086 DOI: 10.1007/bf00280471] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIA(Glc), a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIA(Glc), cAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIA(Glc). In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIA(Glc) were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIA(Glc). In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.
Collapse
Affiliation(s)
- M Crasnier
- Unité de Régulation de l'Expression Génétique (Centre National de la Recherche Scientifique Unité Associée 1129), Institut Pasteur, Paris, France
| | | | | |
Collapse
|
8
|
Coll JL, Heyde M, Portalier R. Expression of the nmpC gene of Escherichia coli K-12 is modulated by external pH. Identification of cis-acting regulatory sequences involved in this regulation. Mol Microbiol 1994; 12:83-93. [PMID: 8057841 DOI: 10.1111/j.1365-2958.1994.tb00997.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using a set of gene fusions generated with TnphoA, we previously identified the phmA locus, whose expression is modulated as a function of external pH (pHo). The phmA::phoA fusion was cloned and sequenced and the phmA locus was identified with the nmpC gene. This gene lies within the defective lambdoid prophage qsr' and NmpC is an outer membrane protein which functions as a porin. We demonstrated that nmpC is sensitive to catabolite repression and dependent on the CRP-cAMP complex. However, cAMP is not a signal for the pHo-dependent expression of nmpC. By generating step deletions in the sequence 5' to the nmpC coding region, we identified a DNA region in position -345 to -127 which is involved in nmpC repression, mainly during growth at acid pHo. Four regions with strong homologies and a very well-conserved organization of the functional sequence were found in the nmpC and ompF promoters. We propose that the negative regulation of nmpC during growth at low pHo might involve DNA looping of the nmpC promoter.
Collapse
Affiliation(s)
- J L Coll
- Laboratoire de Microbiologie et Génétique Moléculaire (UMR CNRS 106), Université Claude Bernard Lyon, Villeubanne, France
| | | | | |
Collapse
|
9
|
Dumay V, Crasnier M. Role of the phosphotransferase system in Escherichia coli strains deficient in hexose phosphate transport. FEMS Microbiol Lett 1994; 116:209-14. [PMID: 8150265 DOI: 10.1111/j.1574-6968.1994.tb06702.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In Escherichia coli, glucose 6-phosphate is transported via the Uhp system which is inducible by glucose 6-phosphate. We showed that, in a uhp-deficient strain, glucose 6-phosphate was dephosphorylated in the periplasm and that the resulting glucose was subsequently transported into the cells via the phosphotransferase system. The uptake of glucose generated from glucose 6-phosphate allowed the bacteria to produce an increased level of cAMP compared to cells grown on non-limiting concentrations of glucose.
Collapse
Affiliation(s)
- V Dumay
- Unité de Régulation de l'Expression Génétique (Centre National de la Recherche Scientifique Unité Associée 1129), Institut Pasteur, Paris, France
| | | |
Collapse
|
10
|
Beuve A, Danchin A. From adenylate cyclase to guanylate cyclase. Mutational analysis of a change in substrate specificity. J Mol Biol 1992; 225:933-8. [PMID: 1351950 DOI: 10.1016/0022-2836(92)90093-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Adenylate and guanylate cyclases, having different but related substrates, are a paradigm for the study of substrate discrimination. A prokaryotic adenylate cyclase gene, phylogenetically related to eukaryotic counterparts, was screened for mutants remodelling the enzyme's specificity. In a first step, a mutant was selected displaying a significant level of guanylate cyclase activity. This was due to a point mutation destroying most of the adenylate cyclase activity. A second selection step restored most of the original activity. This resulted from an additional mutation in the same region, thus permitting the first identification of a functional domain in adenylate and guanylate cyclases.
Collapse
Affiliation(s)
- A Beuve
- Institut Pasteur, Paris, France
| | | |
Collapse
|
11
|
Mock M, Crasnier M, Duflot E, Dumay V, Danchin A. Structural and functional relationships between Pasteurella multocida and enterobacterial adenylate cyclases. J Bacteriol 1991; 173:6265-9. [PMID: 1917858 PMCID: PMC208379 DOI: 10.1128/jb.173.19.6265-6269.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Pasteurella multocida adenylate cyclase gene has been cloned and expressed in Escherichia coli. The primary structure of the protein (838 amino acids) deduced from the corresponding nucleotide sequence was compared with that of E. coli. The two enzymes have similar molecular sizes and, based on sequence conservation at the protein level, are likely to be organized in two functional domains: the amino-terminal catalytic domain and the carboxy-terminal regulatory domain. It was shown that P. multocida adenylate cyclase synthesizes increased levels of cyclic AMP in E. coli strains deficient in the catabolite gene activator protein compared with wild-type strains. This increase does not occur in strains deficient in both the catabolite gene activator protein and enzyme III-glucose, indicating that a protein similar to E. coli enzyme III-glucose is involved in the regulation of P. multocida adenylate cyclase. It also indicates that the underlying process leading to enterobacterial adenylate cyclase activation has been conserved through evolution.
Collapse
Affiliation(s)
- M Mock
- Unité des Antigènes Bactériens (Centre National de la Recherche Scientifique Unité Associée 557), Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
12
|
Abstract
The cya-854 mutation of Escherichia coli K-12 (E. Brickman, L. Soll, and J. Beckwith, J. Bacteriol. 116:582-587, 1973) has been shown to consist of a 200-base-pair deletion generating a new translation start that permits synthesis of the adenylate cyclase carboxy terminus. Contrary to expectations (C. Guidi-Rontani, A. Danchin, and A. Ullmann, J. Bacteriol. 148:753-761, 1981), cyaR1 results from the insertion of an IS1 element into the sequence coding for the catalytic center of the protein.
Collapse
Affiliation(s)
- P Glaser
- Unité de Régulation de l'Expression Génétique, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
13
|
Garges S, Adhya S. Cyclic AMP-induced conformational change of cyclic AMP receptor protein (CRP): intragenic suppressors of cyclic AMP-independent CRP mutations. J Bacteriol 1988; 170:1417-22. [PMID: 2832360 PMCID: PMC210983 DOI: 10.1128/jb.170.4.1417-1422.1988] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We isolated and characterized crp mutations in Escherichia coli that allow cyclic AMP (cAMP) receptor protein to function without cAMP. These mutants defined a region involved in the cAMP-induced allosteric change of cAMP receptor protein that is necessary for activation of the protein. Currently, we have isolated intragenic suppressors of the crp mutations. These crp (Sup) mutants require cAMP for activity. The crp (Sup) mutations map in regions which define new sites of changes involved in cAMP receptor protein activation. From these results, we suggest that to activate cAMP receptor protein cAMP brings about (i) a hinge reorientation to eject the DNA-binding F alpha-helices, (ii) proper alignment between the two subunits, and (iii) an adjustment between the position of the two domains. Cyclic GMP fails to effect the last step.
Collapse
Affiliation(s)
- S Garges
- Developmental Genetics Section, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
14
|
Stimulation of Escherichia coli adenylate cyclase activity by elongation factor Tu, a GTP-binding protein essential for protein synthesis. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67263-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Blazy B, Ullmann A. Properties of cyclic AMP-independent catabolite gene activator proteins of Escherichia coli. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67291-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
|
17
|
Abstract
The effect of cyclic AMP on protein phosphorylation was analyzed comparatively in two strains of E.coli differing in their capacity to synthesize this nucleotide, one of them lacking the adenylate cyclase activity. The results obtained from both in vivo and in vitro experiments concurred in showing that the bacterial protein kinase activity is cAMP-independent.
Collapse
|
18
|
Guidi-Rontani C, Danchin A, Ullmann A. Transcriptional control of polarity in Escherichia coli by cAMP. MOLECULAR & GENERAL GENETICS : MGG 1984; 195:96-100. [PMID: 6092868 DOI: 10.1007/bf00332730] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In Escherichia coli, 3'5'-adenosine cyclic monophosphate (cAMP) and its receptor protein (CAP) are known to be involved in the control of transcription initiation of catabolic operons. In previous papers we have shown that the cAMP-CAP complex is also involved as a modulator of polarity in polycistronic transcription units. Furthermore we showed that there exists a functional relationship between this complex and the transcription termination protein, Rho. In this work, we measured mRNA synthesis corresponding to the promoter proximal and distal parts of the lac and gal operons by DNA-RNA hybridization. We show that in these operons the main polarity effect is essentially transcriptional and the cAMP-CAP complex decreases polarity by interfering with premature transcription termination.
Collapse
|
19
|
Abstract
A 9500-bp DNA segment containing the adenylate cyclase gene (cya) of Escherichia coli has been isolated and analyzed. Four large proteins are encoded within this fragment - the adenylate cyclase protein (92 kDal), two proteins of unknown function (37 and 32 kDal), and a part of the uvrD-coded protein. Various truncated adenylate cyclase proteins, made from cya genes having as much as 60% of their carboxy-terminal end deleted, are sufficient to complement cya- hosts. When these truncated cya genes are present on a multicopy plasmid in a cya- host, the synthesis of beta-galactosidase is still regulated by glucose. The "maxicell" technique was used to visualize the four proteins encoded by this region and some of the truncated adenylate cyclase proteins.
Collapse
|
20
|
Crenon I, Ullmann A. The role of cyclic AMP excretion in the regulation of enzyme synthesis inEscherichia coli. FEMS Microbiol Lett 1984. [DOI: 10.1111/j.1574-6968.1984.tb00351.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Dobrogosz WJ, Hall GW, Sherba DK, Silva DO, Harman JG, Melton T. Regulatory interactions among the cya, crp and pts gene products in Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1983; 192:477-86. [PMID: 6318040 DOI: 10.1007/bf00392194] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A well-characterized set of pts deletion mutants of Salmonella typhimurium were used to re-evaluate the purported role of the PTS in the inducer exclusion process and in regulation cAMP synthesis. During the course of these studies a class of secondary mutations was isolated which suppress the inhibition of cAMP synthesis caused by pts mutations. These suppressor mutations were traced to the crp locus and tentatively designated as acr (adenylate cyclase regulation) mutations. A new model is proposed in which CRP rather than adenylate cyclase is believed to be the central regulatory element in the catabolite repression phenomenon.
Collapse
|
22
|
Evidence for a small catalytic domain in the adenylate cyclase from Salmonella typhimurium. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44068-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
|
24
|
Bitoun R, Reuse H, Touati-Schwartz D, Danchin A. The phosphoenolpyruvate dependent carbohydrate phosphotransferase system of Escherichia coli. FEMS Microbiol Lett 1983. [DOI: 10.1111/j.1574-6968.1983.tb00279.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Roy A, Danchin A. The cya locus of Escherichia coli K12: organization and gene products. MOLECULAR & GENERAL GENETICS : MGG 1982; 188:465-71. [PMID: 6298576 DOI: 10.1007/bf00330050] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cya gene region of Escherichia coli K12 has been cloned into plasmid pBR322. Detailed analysis of the locus, using in vitro recombination techniques as well as specific labelling of gene products has given information on the organization and products of the region. The cya gene is preceded by two DNA segments which behave as promoters of equivalent strength; a divergent, very strong, promoter is also present in the same control region. The former pair of promoters direct transcription of the cya gene which is expressed as a 95,000 dalton polypeptide; the latter promoter controls synthesis of a 40,000 dalton polypeptide. The cya gene product can complement a cya delta mutation when fully expressed or when expressed as a protein truncated at its carboxy terminal end.
Collapse
|
26
|
Bankaitis VA, Bassford PJ. Regulation of adenylate cyclase synthesis in Escherichia coli: studies with cya-lac operon and protein fusion strains. J Bacteriol 1982; 151:1346-57. [PMID: 6286596 PMCID: PMC220413 DOI: 10.1128/jb.151.3.1346-1357.1982] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have isolated cya-lac operon and protein fusions in Escherichia coli K-12, and we used these to study the regulation of cya, the structural gene for adenylate cyclase. Data obtained from these fusion strains suggest that neither cyclic AMP (cAMP) nor the cAMP receptor protein plays a major role in transcriptional or translational regulation of cya expression. Modulation of intracellular cAMP concentrations elicited only weak repression of cya-lac fusion activity under conditions of high intracellular cAMP, relative to fusion activity under conditions of low intracellular cAMP. The functional cAMP receptor protein was required for this effect. Incorporation of delta crp into cya-lac fusion strains did not affect fusion expression in glucose-grown cells as compared with similarly cultured isogenic crp+ strains. Furthermore, 20 independently obtained mutants derived from a cya-lacZ protein fusion strain exhibiting a weak Lac+ phenotype were isolated, and it was determined that the mutants had beta-galactosidase activities ranging from 2- to 77-fold greater than those of the parental strain. None of the mutations responsible for this increase in fusion activity map in the crp locus. We used these mutants to aid in the identification of a 160,000-dalton cya-lacZ hybrid protein. Finally, chromosome mobilization experiments, using cya-lac fusion strains, allowed us to infer a clockwise direction of transcription for the cya gene relative to the standard E. coli genetic map.
Collapse
|
27
|
Guidi-Rontani C, Ullmann A. The involvement of the transcription termination protein rho in the regulation of maltose regulon expression. FEMS Microbiol Lett 1982. [DOI: 10.1111/j.1574-6968.1982.tb08640.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Joseph E, Bernsley C, Guiso N, Ullmann A. Multiple regulation of the activity of adenylate cyclase in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1982; 185:262-8. [PMID: 6283317 DOI: 10.1007/bf00330796] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have studied the correlation between the activities of adenylate cyclase (ATP pyrophosphatelyase-(cyclizing); EC 4.6.1.1) and in vivo rates of synthesis and intracellular concentrations of adenosine 3',5' cyclic monophosphate (cAMP) under various growth conditions in wild-type Escherichia coli and in mutants lacking or overproducing the cAMP receptor protein (CAP). We showed that when wild-type bacteria are grown in the presence of a variety of carbon sources the intracellular concentrations of cAMP are inversely related to the adenylate cyclase activities determined in permeabilized cells, suggesting that the carbon source-dependent modulation of cAMP levels is not directly related to the regulation of adenylate cyclase activity. In mutants lacking functional CAP (crp) the in vivo rates of cAMP synthesis are several hundred-fold higher than in the wild-type parent without a parallel increase of adenylate cyclase activities. In a strain carrying multiple copies of the crp gene and overproducing CAP the activity of adenylate cyclase is severely inhibited, although the in vivo rate of cAMP synthesis is similar to the parental strain. We interpret these results as indicating that CAP controls mainly the activity rather than the synthesis of adenylate cyclase.
Collapse
|