1
|
Abstract
The biosynthesis of histidine in Escherichia coli and Salmonella typhimurium has been an important model system for the study of relationships between the flow of intermediates through a biosynthetic pathway and the control of the genes encoding the enzymes that catalyze the steps in a pathway. This article provides a comprehensive review of the histidine biosynthetic pathway and enzymes, including regulation of the flow of intermediates through the pathway and mechanisms that regulate the amounts of the histidine biosynthetic enzymes. In addition, this article reviews the structure and regulation of the histidine (his) biosynthetic operon, including transcript processing, Rho-factor-dependent "classical" polarity, and the current model of his operon attenuation control. Emphasis is placed on areas of recent progress. Notably, most of the enzymes that catalyze histidine biosynthesis have recently been crystallized, and their structures have been determined. Many of the histidine biosynthetic intermediates are unstable, and the histidine biosynthetic enzymes catalyze some chemically unusual reactions. Therefore, these studies have led to considerable mechanistic insight into the pathway itself and have provided deep biochemical understanding of several fundamental processes, such as feedback control, allosteric interactions, and metabolite channeling. Considerable recent progress has also been made on aspects of his operon regulation, including the mechanism of pp(p)Gpp stimulation of his operon transcription, the molecular basis for transcriptional pausing by RNA polymerase, and pathway evolution. The progress in these areas will continue as sophisticated new genomic, metabolomic, proteomic, and structural approaches converge in studies of the histidine biosynthetic pathway and mechanisms of control of his biosynthetic genes in other bacterial species.
Collapse
|
2
|
Kulis-Horn RK, Persicke M, Kalinowski J. Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microb Biotechnol 2013; 7:5-25. [PMID: 23617600 PMCID: PMC3896937 DOI: 10.1111/1751-7915.12055] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 01/12/2023] Open
Abstract
l-Histidine biosynthesis is an ancient metabolic pathway present in bacteria, archaea, lower eukaryotes, and plants. For decades l-histidine biosynthesis has been studied mainly in Escherichia coli and Salmonella typhimurium, revealing fundamental regulatory processes in bacteria. Furthermore, in the last 15 years this pathway has been also investigated intensively in the industrial amino acid-producing bacterium Corynebacterium glutamicum, revealing similarities to E. coli and S. typhimurium, as well as differences. This review summarizes the current knowledge of l-histidine biosynthesis in C. glutamicum. The genes involved and corresponding enzymes are described, in particular focusing on the imidazoleglycerol-phosphate synthase (HisFH) and the histidinol-phosphate phosphatase (HisN). The transcriptional organization of his genes in C. glutamicum is also reported, including the four histidine operons and their promoters. Knowledge of transcriptional regulation during stringent response and by histidine itself is summarized and a translational regulation mechanism is discussed, as well as clues about a histidine transport system. Finally, we discuss the potential of using this knowledge to create or improve C. glutamicum strains for the industrial l-histidine production.
Collapse
Affiliation(s)
- Robert K Kulis-Horn
- Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, 33615, Bielefeld, Germany
| | | | | |
Collapse
|
3
|
Abstract
The biosynthesis of histidine in Escherichia coli and Salmonella typhimurium has been an important model system for the study of relationships between the flow of intermediates through a biosynthetic pathway and the control of the genes encoding the enzymes that catalyze the steps in a pathway. This article provides a comprehensive review of the histidine biosynthetic pathway and enzymes, including regulation of the flow of intermediates through the pathway and mechanisms that regulate the amounts of the histidine biosynthetic enzymes. In addition, this article reviews the structure and regulation of the histidine (his) biosynthetic operon, including transcript processing, Rho-factor-dependent "classical" polarity, and the current model of his operon attenuation control. Emphasis is placed on areas of recent progress. Notably, most of the enzymes that catalyze histidine biosynthesis have recently been crystallized, and their structures have been determined. Many of the histidine biosynthetic intermediates are unstable, and the histidine biosynthetic enzymes catalyze some chemically unusual reactions. Therefore, these studies have led to considerable mechanistic insight into the pathway itself and have provided deep biochemical understanding of several fundamental processes, such as feedback control, allosteric interactions, and metabolite channeling. Considerable recent progress has also been made on aspects of his operon regulation, including the mechanism of pp(p)Gpp stimulation of his operon transcription, the molecular basis for transcriptional pausing by RNA polymerase, and pathway evolution. The progress in these areas will continue as sophisticated new genomic, metabolomic, proteomic, and structural approaches converge in studies of the histidine biosynthetic pathway and mechanisms of control of his biosynthetic genes in other bacterial species.
Collapse
|
4
|
Giacani L, Hevner K, Centurion-Lara A. Gene organization and transcriptional analysis of the tprJ, tprI, tprG, and tprF loci in Treponema pallidum strains Nichols and Sea 81-4. J Bacteriol 2005; 187:6084-93. [PMID: 16109950 PMCID: PMC1196134 DOI: 10.1128/jb.187.17.6084-6093.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tpr gene family of Treponema pallidum subsp. pallidum, the causative agent of syphilis, has recently become the focus of intensive investigation. TprF and TprI sequences are highly conserved among different isolates and are the targets of strong humoral and cellular immune responses of the host, and immunization with a recombinant peptide from the amino terminus of these antigens has been shown to alter significantly lesion development following homologous challenge. This indicates that these antigens are expressed during infection and strongly suggests a key functionality. tprF and tprI are located immediately downstream of the tprG and tprJ genes, respectively, separated by very short intergenic spacers (55 nucleotides for G-F and 56 nucleotides for J-I). Preliminary analysis using gene-specific primers failed to amplify tprJ in the Sea 81-4 isolate. In this study, sequence and transcriptional analysis of these loci showed a similar gene organization in the Nichols and Sea 81-4 strains, a complex pattern of transcription, and the presence of G homopolymeric repeats of variable lengths upstream of the tprF, tprI, tprG, and tprJ transcriptional start sites. However, distinctive features were also identified in the Sea 81-4 isolate, including a tprG-like open reading frame in the tprJ locus, a frameshift and a premature termination in the tprG coding sequence, a longer tprG-tprF intergenic spacer, and absence of cotranscription of the tprG-tprF genes.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Department of Medicine, Box 359779, Harborview Medical Center, 325 Ninth Ave., Seattle, WA 98104-2499, USA
| | | | | |
Collapse
|
5
|
|
6
|
Adhya S. Suboperonic regulatory signals. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:pe22. [PMID: 12783981 DOI: 10.1126/stke.2003.185.pe22] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In prokaryotes, the genome is necessarily small in size, thus creating challenges for gene regulation. Adhya discusses how polycistronic operons can be regulated at the suboperonic level to allow genes to be independently regulated within an operon. This permits the cells to respond to different environmental conditions and allows the genes within operons to encode proteins involved in divergent cellular processes and still be regulated according to the cell's needs. Suboperonic control leads to discoordinate gene expression and can occur through transcriptional regulatory events or translational regulatory events mediated by proteins or cis- or trans-acting RNAs.
Collapse
Affiliation(s)
- Sankar Adhya
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA.
| |
Collapse
|
7
|
Alifano P, Fani R, Liò P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB. Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev 1996; 60:44-69. [PMID: 8852895 PMCID: PMC239417 DOI: 10.1128/mr.60.1.44-69.1996] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P Alifano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Flores A, Casadesús J. Suppression of the pleiotropic effects of HisH and HisF overproduction identifies four novel loci on the Salmonella typhimurium chromosome: osmH, sfiW, sfiX, and sfiY. J Bacteriol 1995; 177:4841-50. [PMID: 7665459 PMCID: PMC177256 DOI: 10.1128/jb.177.17.4841-4850.1995] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insertion mutations that suppress some or all the pleiotropic effects of HisH and HisF overproduction were obtained by using transposons Tn10dTet and Tn10dCam. All suppressor mutations proved to be recessive, indicating that their effects were caused by loss of function; thus, the suppressors identify genes that are necessary to trigger the pleiotropic response when HisH and HisF are overproduced. Genetic mapping of the suppressor mutations identifies four novel loci on the Salmonella typhimurium genetic map. Mutations in osmH (min 49) behave as general suppressors that abolish all manifestations of the pleiotropic response. Mutations in sfiY (min 83) suppress cell division inhibition and thermosensitivity but not osmosensitivity. Mutations that suppress only cell division inhibition define another locus, sfiX (min 44). A fourth novel locus, sfiW (min 19), is also involved in cell division inhibition. The phenotype of sfiW mutations is in turn pleiotropic: they suppress cell division inhibition, make S. typhimurium unable to grow in minimal media, and cause slow growth and abnormal colony and cell shape. The inability of sfiW mutants to grow in minimal medium cannot be relieved by any known nutritional requirement or by the use of carbon sources other than glucose. The hierarchy of suppressor phenotypes and the existence of epistatic effects among suppressor mutations suggest a pathway-like model for the Hisc pleiotropic response.
Collapse
Affiliation(s)
- A Flores
- Departamento de Genética, Universidad de Sevilla, Spain
| | | |
Collapse
|
9
|
Márquez-Magaña LM, Chamberlin MJ. Characterization of the sigD transcription unit of Bacillus subtilis. J Bacteriol 1994; 176:2427-34. [PMID: 8157612 PMCID: PMC205368 DOI: 10.1128/jb.176.8.2427-2434.1994] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The sigma D factor of Bacillus subtilis is required for the transcription of the flagellin and motility genes as well as for wild-type chemotaxis. Southern blot and sequence analyses demonstrate that the structural gene for sigma D, sigD, is located immediately downstream of a region of DNA originally identified as the chemotaxis (che) locus and now renamed the fla/che region. In fact, sigD appears to be part of a very large operon (> 26 kb) containing genes which encode structural proteins that form the hook-basal body complex as well as regulatory proteins required for chemotaxis. Transposon insertions up to 24 kb upstream of sigD, within several of the genes for the hook-basal body components, give rise to only a moderate decrease in sigD expression. The transposon insertions, however, block sigma D activity as demonstrated by the lack of flagellin expression in strains bearing these insertions. These effects appear to arise from two types of regulation. In cis the transposon insertions appear to introduce a partial block to transcription of sigD from upstream promoter elements; in trans they disrupt genes whose gene products are required for sigma D activity. It appears that sigD transcription is initiated, at least in part, by a promoter many kilobases upstream of its translation start site and that transcription of the flagellin gene by sigma D is dependent on the formation of a functional hook-basal body complex. The possibility that sigD is part of the fla/che operon was further tested by the integration of an insertion plasmid, containing strong transcription terminators, 1.6 and 24 kb upstream of the sigD gene. In both cases, the introduction of the terminators resulted in a greater decrease of sigD expression than was caused by the plasmid sequences alone. These results indicate that wild-type transcription of sigD is dependent on promoter sequences > 24kb upstream of its structural gene and that the entire fla/che region forms a single operon.
Collapse
Affiliation(s)
- L M Márquez-Magaña
- Division of Biochemsitry and Molecular Biology, University of California, Berkeley 94720
| | | |
Collapse
|
10
|
Flores A, Fox M, Casadesús J. The pleiotropic effects of his overexpression in Salmonella typhimurium do not involve AICAR-induced mutagenesis. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:360-4. [PMID: 8413185 DOI: 10.1007/bf00280387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Inhibition of cell division associated with overexpression of hisH and hisF in Salmonella typhimurium is strongly reminiscent of a cellular response to DNA damage. On these grounds, we investigated the involvement of a metabolite which appeared to represent a possible candidate for an endogenous mutagen: the base analog 5-amino-4-carboxamide imidazole riboside 5'-phosphate (AICAR), a by-product of HisH and HisF activity. However, we showed that AICAR is not an endogenous mutagen in S. typhimurium. Other types of DNA damage induced by his overexpression seem also unlikely, since similar mutation rates are found in hisO+ and hisOc strains. We also show that AICAR production is not involved in the pleiotropic effects of his overexpression, since these are still observed in strains devoid of AICAR. Thus inhibition of cell division resulting from HisH and HisF overexpression must operate through a mechanism unrelated to the role of these proteins in histidine biosynthesis.
Collapse
Affiliation(s)
- A Flores
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
11
|
Alifano P, Piscitelli C, Blasi V, Rivellini F, Nappo AG, Bruni CB, Carlomagno MS. Processing of a polycistronic mRNA requires a 5' cis element and active translation. Mol Microbiol 1992; 6:787-98. [PMID: 1374148 DOI: 10.1111/j.1365-2958.1992.tb01529.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have characterized a major processed species of mRNA in the his operon of Salmonella typhimurium. In vivo and in vitro analyses of the his transcripts from wild-type and mutant strains using S1 nuclease protection assays, measurements of RNA stability, deletion mapping, gel retardation, and in vitro translation assays demonstrate that the distal portion of the polycistronic his mRNA is processed, resulting in increased stability. The processing event requires an upstream cis-acting element and translation of the cistron immediately downstream of the 5' end of the processed species. The cistrons contained in this segment are also independently transcribed from an internal promoter which is maximally active in the absence of readthrough transcription from the primary promoter.
Collapse
Affiliation(s)
- P Alifano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Richerche, Università di Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Casadesus J, Roth JR. Absence of insertions among spontaneous mutants of Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:210-6. [PMID: 2546038 DOI: 10.1007/bf00334358] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While insertion sequences (IS) in Escherichia coli transpose frequently to generate spontaneous insertion mutants, such mutations are rare in Salmonella typhimurium: the only documented insertion mutation is a hisD mutation caused by the Salmonella-specific IS element IS200. To obtain more examples of IS200 insertion mutations and to seek additional types of IS elements in Salmonella, we selected and characterized 422 independent, spontaneous His- mutants and some 2100 additional mutants that are not necessarily independent. None of the mutants showed the absolute polar effect characteristic of insertion mutations or the reversion properties characteristic of insertions (low spontaneous reversion frequency and no reversion induction by chemical mutagens). A few mutants, showing a high spontaneous reversion frequency, were screened physically. No insertion mutations were found. Thus insertion mutations appear to be rare in S. typhimurium, in strong contrast to E. coli and despite the possession in Salmonella of at least one type of insertion element (IS200). These results suggest that in Salmonella transposition of the endogenous elements has been controlled. The transposition ability of the elements may have been reduced or favored target sites removed from the host genome.
Collapse
Affiliation(s)
- J Casadesus
- Department of Biology, University of Utah, Salt Lake City 84112
| | | |
Collapse
|
13
|
Pons FW, Neubert U, Müller P. Evidence for frameshift mutations in the hisH gene of Escherichia coli causing synthesis of a partially active glutamine amidotransferase. Genetics 1988; 120:657-65. [PMID: 3066682 PMCID: PMC1203544 DOI: 10.1093/genetics/120.3.657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Among eight strains carrying acridine-induced mutations in hisH, five which mapped at four different sites in the promoter-distal region of the gene showed His+ phenotypes on media containing a purine. By complementation analysis, hisH enzyme was shown to be required for growth on purines. Purine-sensitive His+ revertants of strains able to grow on purines carried second-site mutations which in one case could be shown to map in hisG. Strains able to grow on purines were able to grow on 2-thiazolyl-DL-alanine, too. We conclude that frameshift mutations in the promoter-distal part of the hisH gene of E. coli do not completely abolish the activity of the gene product.
Collapse
Affiliation(s)
- F W Pons
- Institut für Mikrobiologie, J.W. Goethe-Universität, Frankfurt am Main, Federal Republic of Germany
| | | | | |
Collapse
|
14
|
Carlomagno MS, Chiariotti L, Alifano P, Nappo AG, Bruni CB. Structure and function of the Salmonella typhimurium and Escherichia coli K-12 histidine operons. J Mol Biol 1988; 203:585-606. [PMID: 3062174 DOI: 10.1016/0022-2836(88)90194-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have determined the complete nucleotide sequence of the histidine operons of Escherichia coli and of Salmonella typhimurium. This structural information enabled us to investigate the expression and organization of the histidine operon. The proteins coded by each of the putative histidine cistrons were identified by subcloning appropriate DNA fragments and by analyzing the polypeptides synthesized in minicells. A structural comparison of the gene products was performed. The histidine messenger RNA molecules produced in vivo and the internal transcription initiation sites were identified by Northern blot analysis and S1 nuclease mapping. A comparative analysis of the different transcriptional and translational control elements within the two operons reveals a remarkable preservation for most of them except for the intercistronic region between the first (hisG) and second (hisD) structural genes and for the rho-independent terminator of transcription at the end of the operon. Overall, the operon structure is very compact and its expression appears to be regulated at several levels.
Collapse
Affiliation(s)
- M S Carlomagno
- Centro di Endocrinologia ed Oncologia, Sperimentale del Consiglio, Nazionale delle Ricerche, University of Naples, Napoli, Italy
| | | | | | | | | |
Collapse
|
15
|
Cloning of the histidine, pyrimidine and cysteine genes of Azospirillum brasilense: Expression of pyrimidine and three clustered histidine genes in Escherichia coli. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00326539] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Schofield PR, Watson JM. DNA sequence of Rhizobium trifolii nodulation genes reveals a reiterated and potentially regulatory sequence preceding nodABC and nodFE. Nucleic Acids Res 1986; 14:2891-903. [PMID: 3008100 PMCID: PMC339710 DOI: 10.1093/nar/14.7.2891] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Rhizobium trifolii nod genes required for host-specific nodulation of clovers are located on 14 kb of Sym (symbiotic) plasmid DNA. Analysis of the nucleotide sequence of a 3.7 kb portion of this region has revealed open reading frames corresponding to the nodABCDEF genes. A DNA sequencing technique, using primer extension from within Tn5, has been used to determine the precise locations of Tn5 mutations within the nod genes and the phenotypes of the corresponding mutants correlate with their mapped locations. The predicted nodA and nodB genes overlap by four nucleotides and the nod F and nodE genes overlap by a single nucleotide, suggesting that translational coupling may ensure the synthesis of equimolar amounts of these gene products. The nodABC and nodFE genes constitute separate transcriptional units and each is preceded by a conserved 76-bp sequence which may be involved in the regulation of expression of these genes.
Collapse
|
17
|
Abstract
We show that the occurrence and homology score (1) of promoter-sites in DNA depends upon the base composition of the DNA. We used simple probability theory to calculate the mean homology score expected for all promoter-sites that had a specific match in the canonical hexamers. By using the square root of this mean score as a measure of significance, we objectively classify all promoter-sites which are reported. We tested the theoretical approach in two ways. First, we used the program (PROMSEARCH) to analyze approximately 150,000 base pairs of random sequence DNA with different base compositions and we found excellent agreement with the theoretical predictions. Our second test was the analysis of a number of sequences drawn from the GENBANK DNA sequence database. We have analyzed 20 bacterial and bacteriophage sequences, which consisted of at least one operon, for promoter-sites. We found no absolute preference for promoter-sites within noncoding regions. We show the results of analyzing the phages lambda, T7 and fd, and the E. coli lac operon. The major known promoters in these sequences were all found correctly. We discuss the question of the location of a number of minor promoter-sites and show how PROMSEARCH can be used to help identify the correct location of the promoter. This approach can be applied to the search for any DNA site and should allow greater objectivity when comparing DNA sequences for meaningful subsequences.
Collapse
|
18
|
Grisolia V, Carlomagno MS, Nappo AG, Bruni CB. Cloning, structure, and expression of the Escherichia coli K-12 hisC gene. J Bacteriol 1985; 164:1317-23. [PMID: 2999081 PMCID: PMC219332 DOI: 10.1128/jb.164.3.1317-1323.1985] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We used an expression vector plasmid containing the Escherichia coli K-12 histidine operon regulatory region to subclone the E. coli hisC gene. Analysis of plasmid-coded proteins showed that hisC was expressed in minicells. A protein with an apparent molecular weight of 38,500 was identified as the primary product of the hisC gene. Expression was under control of the hisGp promoter and resulted in very efficient synthesis (over 100-fold above the wild-type levels) of imidazolylacetolphosphate:L-glutamate aminotransferase, the hisC gene product. The complete nucleotide sequence of the hisC gene has been determined. The gene is 1,071 nucleotides long and codes for a protein of 356 amino acids with only one histidine residue.
Collapse
|
19
|
Rudd KE, Bochner BR, Cashel M, Roth JR. Mutations in the spoT gene of Salmonella typhimurium: effects on his operon expression. J Bacteriol 1985; 163:534-42. [PMID: 3894329 PMCID: PMC219155 DOI: 10.1128/jb.163.2.534-542.1985] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The spoT gene of Salmonella typhimurium has been identified. Mutations in spoT map between gltC and pyrE at 79 min. The spoT1 mutant has elevated levels of guanosine 5'-diphosphate-3'-diphosphate (ppGpp) during steady-state growth and exhibits a slower than normal decay of ppGpp after reversal of amino acid starvation. The spoT1 mutation elevates his operon expression but is distinct from known his regulatory mutations. Elevated his operon expression in spoT mutants causes resistance to the histidine analogs, 1,2,4-triazole-3-alanine and 3-amino-1,2,4-triazole. These properties of spoT mutants allowed us to identify and characterize additional spoT mutants. Approximately 40% of these mutants are temperature sensitive for growth on minimal medium, suggesting that the spoT function is essential or that excessive accumulation of ppGpp is lethal.
Collapse
|
20
|
Carlomagno MS, Riccio A, Bruni CB. Convergently functional, Rho-independent terminator in Salmonella typhimurium. J Bacteriol 1985; 163:362-8. [PMID: 3891737 PMCID: PMC219122 DOI: 10.1128/jb.163.1.362-368.1985] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A typical Rho-independent terminator of transcription was found at the end of the histidine operon of Salmonella typhimurium. This site is used to terminate, in addition to the his operon mRNA, a 1,200-nucleotide RNA of unknown function transcribed on the opposite strand. The efficiency of termination of transcription at this site was investigated in vivo and in vitro by cloning of the terminator structure in either orientation in vector systems used to study regulatory signals. Termination of transcription at this site was very efficient, both in vivo and in vitro, and in both orientations.
Collapse
|
21
|
de Bruijn FJ, Lupski JR. The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids--a review. Gene 1984; 27:131-49. [PMID: 6327463 DOI: 10.1016/0378-1119(84)90135-5] [Citation(s) in RCA: 335] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The properties of transposon Tn5 that render it useful for in vivo mutagenesis of cloned DNA sequences are reviewed. Transposition frequency, insertional specificity, polarity and stability of Tn5 insertion mutations are among the topics discussed. Examples are cited from the published literature which illustrate the applications of Tn5 mutagenesis to the analysis of cloned prokaryotic and eukaryotic genes. A methods section is included which outlines precisely how to carry out transposon Tn5 mutagenesis analysis of cloned DNA segments.
Collapse
|
22
|
Grisolia V, Riccio A, Bruni CB. Structure and function of the internal promoter (hisBp) of the Escherichia coli K-12 histidine operon. J Bacteriol 1983; 155:1288-96. [PMID: 6309747 PMCID: PMC217827 DOI: 10.1128/jb.155.3.1288-1296.1983] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The entire histidine operon of Escherichia coli K-12 was cloned in the vector plasmid pBR313, and a complete restriction map of the operon was determined. By using subclones, complementation tests, and enzyme assays, we were able to make a correlation between the physical map and the genetic map of the operon. We determined the sequence of a fragment of DNA 665 base pairs long, comprising the distal portion of the hisC gene, the proximal portion of the hisB gene, and the internal transcription initiation site hisBp. The efficiency of this promoter was assessed under different physiological conditions by cloning the DNA fragment in a recombinant vector system used to study transcriptional regulatory signals. The precise point at which transcription initiates was determined by S1 nuclease mapping.
Collapse
|
23
|
|