1
|
diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A. Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 2019; 65:1-33. [DOI: 10.1139/cjm-2018-0377] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhizobium–legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alice Checcucci
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
2
|
Checcucci A, diCenzo GC, Ghini V, Bazzicalupo M, Becker A, Decorosi F, Döhlemann J, Fagorzi C, Finan TM, Fondi M, Luchinat C, Turano P, Vignolini T, Viti C, Mengoni A. Creation and Characterization of a Genomically Hybrid Strain in the Nitrogen-Fixing Symbiotic Bacterium Sinorhizobium meliloti. ACS Synth Biol 2018; 7:2365-2378. [PMID: 30223644 DOI: 10.1021/acssynbio.8b00158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many bacteria, often associated with eukaryotic hosts and of relevance for biotechnological applications, harbor a multipartite genome composed of more than one replicon. Biotechnologically relevant phenotypes are often encoded by genes residing on the secondary replicons. A synthetic biology approach to developing enhanced strains for biotechnological purposes could therefore involve merging pieces or entire replicons from multiple strains into a single genome. Here we report the creation of a genomic hybrid strain in a model multipartite genome species, the plant-symbiotic bacterium Sinorhizobium meliloti. We term this strain as cis-hybrid, since it is produced by genomic material coming from the same species' pangenome. In particular, we moved the secondary replicon pSymA (accounting for nearly 20% of total genome content) from a donor S. meliloti strain to an acceptor strain. The cis-hybrid strain was screened for a panel of complex phenotypes (carbon/nitrogen utilization phenotypes, intra- and extracellular metabolomes, symbiosis, and various microbiological tests). Additionally, metabolic network reconstruction and constraint-based modeling were employed for in silico prediction of metabolic flux reorganization. Phenotypes of the cis-hybrid strain were in good agreement with those of both parental strains. Interestingly, the symbiotic phenotype showed a marked cultivar-specific improvement with the cis-hybrid strains compared to both parental strains. These results provide a proof-of-principle for the feasibility of genome-wide replicon-based remodelling of bacterial strains for improved biotechnological applications in precision agriculture.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - George C. diCenzo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Veronica Ghini
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Bazzicalupo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anke Becker
- LOEWE − Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Francesca Decorosi
- Department of Agri-food Production and Environmental Science, University of Florence, 50019 Florence, Italy
| | | | - Camilla Fagorzi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Marco Fondi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Paola Turano
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Tiziano Vignolini
- European Laboratory for Non-Linear Spectroscopy, LENS, 50019 Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agri-food Production and Environmental Science, University of Florence, 50019 Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Pistorio M, Torres Tejerizo GA, Del Papa MF, Giusti MDLA, Lozano M, Lagares A. rptA, a novel gene from Ensifer (Sinorhizobium) meliloti involved in conjugal transfer. FEMS Microbiol Lett 2013; 345:22-30. [PMID: 23672494 DOI: 10.1111/1574-6968.12177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 11/27/2022] Open
Abstract
We approached the identification of Ensifer (Sinorhizobium) meliloti conjugal functions by random Tn5-B13 mutagenesis of the pSmeLPU88a plasmid of E. meliloti strain LPU88 and the subsequent selection of those mutants that had lost the ability to mobilize the small plasmid pSmeLPU88b. The Tn5-B13-insertion site of one of the mutants was cloned as an EcoRI-restricted DNA fragment that after subsequent isolation and sequencing demonstrated that a small open reading frame of 522 bp (designated rptA, for rhizobium plasmid transfer A) had been disrupted. The predicted gene product encoded by the rptA sequence shows a significant similarity to two hypothetical proteins of the plasmid pSmed03 of Ensifer medicae WSM419 and other rhizobia plasmids. No significant similarity was found to any protein sequence of known function registered in the databases. Although the rptA gene was required for pSmeLPU88b-plasmid mobilization in the strain 2011 background, it was not required in the original strain LPU88 background.
Collapse
Affiliation(s)
- Mariano Pistorio
- IBBM - Instituto de Biotecnología y Biología Molecular, CCT-CONICET-La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | | | | | | | | | | |
Collapse
|
4
|
Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 2013. [PMID: 22726216 DOI: 10.1146/annurev-micro-092611-150107.microbial] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology.
Collapse
Affiliation(s)
- James D Bever
- Department of Biology, Indiana University, Bloomington, 47405, USA.
| | | | | |
Collapse
|
5
|
Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 2012; 66:265-83. [PMID: 22726216 PMCID: PMC3525954 DOI: 10.1146/annurev-micro-092611-150107] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology.
Collapse
Affiliation(s)
- James D. Bever
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Thomas G. Platt
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Elise R. Morton
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
6
|
Giusti MDLÁ, Pistorio M, Lozano MJ, Tejerizo GAT, Salas ME, Martini MC, López JL, Draghi WO, Del Papa MF, Pérez-Mendoza D, Sanjuán J, Lagares A. Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from a ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, in Sinorhizobium medicae, and in other nonrhizobial Gram-negative bacteria. Plasmid 2012; 67:199-210. [PMID: 22233546 DOI: 10.1016/j.plasmid.2011.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/24/2011] [Accepted: 12/01/2011] [Indexed: 11/15/2022]
Abstract
Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own helper functions. The results present an as-yet-unclassified and seemingly ubiquitous conjugal system that provides a mechanistic support for the HGT between sympatric rhizobia of Medicago roots, and between other soil and rhizospheric bacteria.
Collapse
Affiliation(s)
- María de los Ángeles Giusti
- Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Torres Tejerizo G, Florencia Del Papa M, de los Ángeles Giusti M, Draghi W, Lozano M, Lagares A, Pistorio M. Characterization of extrachromosomal replicons present in the extended host range Rhizobium sp. LPU83. Plasmid 2010; 64:177-85. [DOI: 10.1016/j.plasmid.2010.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 06/05/2010] [Accepted: 07/06/2010] [Indexed: 11/30/2022]
|
8
|
Toro N, Olivares J. Analysis of Rhizobium meliloti Sym Mutants Obtained by Heat Treatment. Appl Environ Microbiol 2010; 51:1148-50. [PMID: 16347063 PMCID: PMC239028 DOI: 10.1128/aem.51.5.1148-1150.1986] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletions in the pSym megaplasmid of Rhizobium meliloti were produced at a high frequency, and their lengths varied according to incubation temperature. Morphological differentiation into large and small colonies occurred after heat treatment. Small colonies elicited pseudonodules on alfalfa roots.
Collapse
Affiliation(s)
- N Toro
- Departamento de Microbiología, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008-Granada, Spain
| | | |
Collapse
|
9
|
Marchetti M, Capela D, Glew M, Cruveiller S, Chane-Woon-Ming B, Gris C, Timmers T, Poinsot V, Gilbert LB, Heeb P, Médigue C, Batut J, Masson-Boivin C. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol 2010; 8:e1000280. [PMID: 20084095 PMCID: PMC2796954 DOI: 10.1371/journal.pbio.1000280] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 12/04/2009] [Indexed: 02/02/2023] Open
Abstract
Following acquisition of a rhizobial symbiotic plasmid, adaptive mutations in the virulence pathway allowed pathogenic Ralstonia solanacearum to evolve into a legume symbiont under plant selection. Rhizobia are phylogenetically disparate α- and β-proteobacteria that have achieved the environmentally essential function of fixing atmospheric nitrogen in symbiosis with legumes. Ample evidence indicates that horizontal transfer of symbiotic plasmids/islands has played a crucial role in rhizobia evolution. However, adaptive mechanisms that allow the recipient genomes to express symbiotic traits are unknown. Here, we report on the experimental evolution of a pathogenic Ralstonia solanacearum chimera carrying the symbiotic plasmid of the rhizobium Cupriavidus taiwanensis into Mimosa nodulating and infecting symbionts. Two types of adaptive mutations in the hrpG-controlled virulence pathway of R. solanacearum were identified that are crucial for the transition from pathogenicity towards mutualism. Inactivation of the hrcV structural gene of the type III secretion system allowed nodulation and early infection to take place, whereas inactivation of the master virulence regulator hrpG allowed intracellular infection of nodule cells. Our findings predict that natural selection of adaptive changes in the legume environment following horizontal transfer has been a major driving force in rhizobia evolution and diversification and show the potential of experimental evolution to decipher the mechanisms leading to symbiosis. Most leguminous plants can form a symbiosis with members of a group of soil bacteria known as rhizobia. On the roots of their hosts, some rhizobia elicit the formation of specialized organs, called nodules, that they colonize intracellularly and within which they fix nitrogen to the benefit of the plant. Rhizobia do not form a homogenous taxon but are phylogenetically dispersed bacteria. How such diversity has emerged is a fascinating, but only partly documented, question. Although horizontal transfer of symbiotic plasmids or groups of genes has played a major role in the spreading of symbiosis, such gene transfer alone is usually unproductive because genetic or ecological barriers restrict evolution of symbiosis. Here, we experimentally evolved the usually phytopathogenic bacterium Ralstonia solanacearum, which was carrying a rhizobial symbiotic plasmid into legume-nodulating and -infecting symbionts. From resequencing the bacterial genomes, we showed that inactivation of a single regulatory gene allowed the transition from pathogenesis to legume symbiosis. Our findings indicate that following the initial transfer of symbiotic genes, subsequent genome adaptation under selection in the plant has been crucial for the evolution and diversification of rhizobia.
Collapse
Affiliation(s)
- Marta Marchetti
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Delphine Capela
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Michelle Glew
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | | | | | - Carine Gris
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Ton Timmers
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Véréna Poinsot
- Laboratoire des IMRCP, UMR UPS/CNRS 5623, Toulouse, France
| | - Luz B. Gilbert
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Philipp Heeb
- CNRS, UPS, EDB (Laboratoire évolution et Diversité Biologique), UMR5174, Université de Toulouse, Toulouse, France
| | | | - Jacques Batut
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Catherine Masson-Boivin
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
10
|
Velázquez E, Peix A, Zurdo-Piñeiro JL, Palomo JL, Mateos PF, Rivas R, Muñoz-Adelantado E, Toro N, García-Benavides P, Martínez-Molina E. The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1325-32. [PMID: 16478052 DOI: 10.1094/mpmi-18-1325] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bacteria belonging to the family Rhizobiaceae may establish beneficial or harmful relationships with plants. The legume endosymbionts contain nod and nif genes responsible for nodule formation and nitrogen fixation, respectively, whereas the pathogenic strains carry vir genes responsible for the formation of tumors or hairy roots. The symbiotic and pathogenic strains currently belong to different species of the genus Rhizobium and, until now, no strains able to establish symbiosis with legumes and also to induce tumors or hairy roots in plants have been reported. Here, we report for the first time the occurrence of two rhizobial strains (163C and ATCC11325T) belonging to Rhizobium rhizogenes able to induce hairy roots or tumors in plants and also to nodulate Phaseolus vulgaris under natural environmental conditions. Symbiotic plasmids (pSym) containing nod and nif genes and pTi- or pRi-type plasmids containing vir genes were found in these strains. The nodD and nifH genes of the strains from this study are phylogenetically related to those of Sinorhizobium strains nodulating P. vulgaris. The virA and virB4 genes from strain 163C are phylogenetically related to those of R. tumefaciens C58, whereas the same genes from strain ATCC 11325T are related to those of hairy root-inducing strains. These findings may be of high relevance for the better understanding of plant-microbe interactions and knowledge of rhizobial phylogenetic history.
Collapse
Affiliation(s)
- Encarna Velázquez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mhamdi R, Mrabet M, Laguerre G, Tiwari R, Aouani ME. Colonization of Phaseolus vulgaris nodules by Agrobacterium-like strains. Can J Microbiol 2005; 51:105-11. [PMID: 16091768 DOI: 10.1139/w04-120] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-nodulating Agrobacterium-like strains identified among root nodule isolates of common bean were labeled with gusA, a reporter gene encoding beta-glucuronidase (GUS). Bean plants were then co-inoculated with an infective Rhizobium strain and labeled transconjugants of Agrobacterium-like strains. Blue staining of nodules showed that Agrobacterium-like strains were able to colonize these symbiotic organs. Isolation and characterization by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes revealed a mixed population of Rhizobium and Agrobacterium-like strains in all nodules showing GUS activity. PCR amplification of the nifH gene and nodulation tests did not show any evidence of acquisition of symbiotic gene by lateral transfer from Rhizobium to Agrobacterium-like strains. Moreover, these strains were able to invade mature nodules. Based on sequencing of the 16S rRNA gene, one of these Agrobacterium-like strains showed 99.4% sequence similarity with Agrobacterium bv. 1 reference strains and 99% similarity with an Agrobacterium bv. 1 strain isolated from Acacia mollisima in Senegal. Agrobacterium tumefaciens C58 and the disarmed variant AT123 did not show any ability to colonize nodules. Co-inoculation of bean seeds with Agrobacterium and Rhizobium strains did not enhance nodulation and plant yield under controlled conditions.
Collapse
Affiliation(s)
- Ridha Mhamdi
- Laboratoire des Interactions Legumineuses-Microorganismes, Institut National de Recherche Scientifique et Technique, Bp 95, 2050 Hammam-Lif, Tunisie.
| | | | | | | | | |
Collapse
|
12
|
Farrand SK, van Berkum PB, Oger P. Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 2003; 53:1681-1687. [PMID: 13130068 DOI: 10.1099/ijs.0.02445-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the genus Agrobacterium constitute a diverse group of organisms, all of which, when harbouring the appropriate plasmids, are capable of causing neoplastic growths on susceptible host plants. The agrobacteria, which are members of the family Rhizobiaceae, can be differentiated into at least three biovars, corresponding to species divisions based on differential biochemical and physiological tests. Recently, Young et al. [Int J Syst Evol Microbiol 51 (2003), 89-103] proposed to incorporate all members of the genus Agrobacterium into the genus RHIZOBIUM: We present evidence from classical and molecular comparisons that supports the conclusion that the biovar 1 and biovar 3 agrobacteria are sufficiently different from members of the genus Rhizobium to warrant retention of the genus AGROBACTERIUM: The biovar 2 agrobacteria cluster more closely to the genus Rhizobium, but some studies suggest that these isolates differ from species of Rhizobium with respect to their capacity to interact with plants. We conclude that there is little scientific support for the proposal to group the agrobacteria into the genus Rhizobium and consequently recommend retention of the genus AGROBACTERIUM:
Collapse
Affiliation(s)
- Stephen K Farrand
- Departments of Crop Sciences and Microbiology, University of Illinois at Urbana-Champaign, 240 ERML, 1201 West Gregory Drive, Urbana, IL 61801, USA
| | - Peter B van Berkum
- Soybean Genomics and Improvement Laboratory, Plant Sciences Institute, USDA-ARS, Beltsville, MD, 20705, USA
| | - Philippe Oger
- Laboratoire de Sciences de la Terre, Ecole Normale Superieure de Lyon, 69364 Lyon Cedex 07, France
| |
Collapse
|
13
|
|
14
|
Barloy-Hubler F, Capela D, Barnett MJ, Kalman S, Federspiel NA, Long SR, Galibert F. High-resolution physical map of the Sinorhizobium meliloti 1021 pSyma megaplasmid. J Bacteriol 2000; 182:1185-9. [PMID: 10648551 PMCID: PMC94401 DOI: 10.1128/jb.182.4.1185-1189.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To facilitate sequencing of the Sinorhizobium meliloti 1021 pSyma megaplasmid, a high-resolution map was constructed by ordering 113 overlapping bacterial artificial chromosome clones with 192 markers. The 157 anonymous sequence tagged site markers (81,072 bases) reveal hypothetical functions encoded by the replicon.
Collapse
Affiliation(s)
- F Barloy-Hubler
- Laboratoire de Recombinaisons Génétiques UPR41-CNRS, Faculté de Médecine, F-35043 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Abe M, Kawamura R, Higashi S, Mori S, Shibata M, Uchiumi T. Transfer of the symbiotic plasmid from Rhizobium leguminosarum biovar trifolii to Agrobacterium tumefaciens. J GEN APPL MICROBIOL 1998; 44:65-74. [PMID: 12501295 DOI: 10.2323/jgam.44.65] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study examined the symbiotic properties of Agrobacterium transconjugants isolated by transferring a Tn5-mob-marked derivative of the 315 kb megaplasmid pRt4Sa from Rhizobium leguminosarum bv. trifolii 4S (wild-type strain) to Agrobacterium tumefaciens A136 as the recipient. The genetic characteristics of the AT4S transconjugant strains were ascertained by random amplified polymorphic DNA (RAPD) analyses and Southern hybridization using Tn5-mob and nod genes as probes. Several of these AT4S transconjugants carrying pRt4Sa were able to nodulate roots of the normal legume host, white clover. In addition, some AT4S transconjugant strains were able to induce nodules on other leguminous plants, including alfalfa and hairy vetch. A characteristic bacteroid differentiation was observed in clover and alfalfa nodules induced by the AT4S-series strains, although nitrogen-fixing activity (acetylene reduction) was not found. Furthermore, strain H1R1, obtained by retracing transfer of the pRt4Sa::Tn5-mob from strain AT4Sa to strain H1 (pRt4Sa cured derivative of 4S), induced Fix(+) nodules on clover roots. These results indicate the evidence that only nod genes can be expressed in the Agrobacterium background.
Collapse
Affiliation(s)
- Mikiko Abe
- Department of Chemistry and BioScience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The tropical legume Sesbania rostrata can be nodulated by Azorhizobium caulinodans on both its stem and its root system. Here we investigate in detail the process of root nodulation and show that nodules develop exclusively at the base of secondary roots. Intercellular infection leads to the formation of infection pockets, which then give rise to infection threads. Concomitantly with infection, cortical cells of the secondary roots dedifferentiate, forming a meristem which has an "open-basket" configuration and which surrounds the initial infection site. Bacteria are released from the tips of infection threads into plant cells via "infection droplets," each containing several bacteria. Initially, nodule differentiation is comparable to that of indeterminate nodules, with the youngest meristematic cells being located at the periphery and the nitrogen-fixing cells being located at the nodule center. Because of the peculiar form of the meristem, Sesbania root nodules develop uniformly around a central axis. Nitrogen fixation is detected as early as 3 days following inoculation, while the nodule meristem is still active. Two weeks after inoculation, meristematic activity ceases, and nodules then show the typical histology of determinate nodules. Thus, root nodule organogenesis in S. rostrata appears to be intermediate between indeterminate and determinate types.
Collapse
Affiliation(s)
- I Ndoye
- Laboratoire de Microbiologie des Sols, Institut Français de Recherche Scientifique pour le Développement en Coopération (ORSTOM), Dakar, Sénégal
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Caetano-Anollés G, Gresshoff PM. Plant genetic suppression of the non-nodulation phenotype of Rhizobium meliloti host-range nodH mutants: gene-for-gene interaction in the alfalfa-Rhizobium symbiosis? TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:624-632. [PMID: 24201350 DOI: 10.1007/bf00224161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/1991] [Accepted: 12/19/1991] [Indexed: 06/02/2023]
Abstract
Rhizobium nodulation genes can produce active extracellular signals for legume nodulation. The R. meliloti host-range nodH gene has been postulated to mediate the transfer of a sulfate to a modified lipo-oligosaccharide, which in its sulfated form is a specific nodulation factor for alfalfa (Medicago sativa L.). We found that alfalfa was capable of effective nodulation with signal-defective and non-nodulating nodH mutants (Nnr) defining a novel gene-for-gene interaction that conditions nodulation. Bacteria-free nodules that formed spontaneously at about a 3-5% rate in unselected seed populations of alfalfa cv 'Vernal' in the total absence of Rhizobium (Nar) exhibited all the histological, regulatory and ontogenetic characteristics of alfalfa nodules. Inoculation of such populations with nodH mutants, but not with nodA or nodC mutants, produced a four- to five-fold increase in the percentage of nodulated plants. Some 10-25% of these nodulated plants formed normal pink nitrogen-fixing nodules instead of white empty nodules. About 70% of the S1 progeny of such Nnr(+) plants retained the parental phenotype; these plants were also able to form nodules in the absence of Rhizobium. If selected Nar(+) plants were self-pollinated almost the entire progeny exhibited the parental Nar(+) phenotype. Segregation analysis of S1 and S2 progeny from selected Nar(+) plants suggests that the Nar character is monogenic dominant and that the nodulation phenotype is controlled by a gene dose effect. The inoculation of different S1 Nar(+) progeny with nodH mutant bacteria gave only empty non-fixing nodules. Our results indicate that certain alfalfa genotypes can be selected for suppression of the non-nodulation phenotype of nodH mutants. The fact that the Nnr plant phenotype behaved as a dominant genetic trait and that it directly correlated with the ability of the selected plants to form nodules in the absence of Rhizobium suggests that the interaction of plant and bacterial alleles occurs early during signal transduction through the alteration of a signal reception component of the plant so that it responds to putative signal precursors.
Collapse
Affiliation(s)
- G Caetano-Anollés
- Plant Molecular Genetics, Institute of Agriculture and Center for Legume Research, The University of Tennessee, P.O. Box 1071, 37901-1071, Knoxville, TN, USA
| | | |
Collapse
|
19
|
Caetano-Anollés G, Joshi PA, Gresshoff PM. Spontaneous nodules induce feedback suppression of nodulation in alfalfa. PLANTA 1991; 183:77-82. [PMID: 24193536 DOI: 10.1007/bf00197570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/1990] [Indexed: 06/02/2023]
Abstract
A small subpopulation of alfalfa (Medicago saliva L.) plants grown without fixed nitrogen can develop root nodules in the absence of Rhizobium. Cytological studies showed that these nodules were organized structures with no inter- or intracellular bacteria but with the histological characteristics of a normal indeterminate nodule. Few if any viable bacteria were recovered from the nodules after surface sterilization, and when the nodular content was used to inoculate alfalfa roots no nodulation was observed. These spontaneous nodules were formed mainly on the primary roots in the region susceptible to Rhizobium infection between 4 and 6 d after seed imbibition. Spontaneous nodules appeared as early as 10 d after germination and emerged at a rate comparable to normal nodules. The formation of spontaneous nodules on the primary root suppressed nodulation in lateral roots after inoculation with R. meliloti RCR2011. Excision of spontaneous nodules at inoculation eliminated the suppressive response. Our results indicate that the presence of Rhizobium is not required for nodule organogenesis and the elicitation of feedback regulation of nodule formation in alfalfa.
Collapse
Affiliation(s)
- G Caetano-Anollés
- Plant Molecular Genetics (OHLD), Institute of Agriculture and Center for Legume Research, University of Tennessee, 37901-1071, Knoxville, TN, USA
| | | | | |
Collapse
|
20
|
Van De Wiel C, Norris JH, Bochenek B, Dickstein R, Bisseling T, Hirsch AM. Nodulin Gene Expression and ENOD2 Localization in Effective, Nitrogen-Fixing and Ineffective, Bacteria-Free Nodules of Alfalfa. THE PLANT CELL 1990; 2:1009-1017. [PMID: 12354949 PMCID: PMC159949 DOI: 10.1105/tpc.2.10.1009] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Alfalfa plants form bacteria-free nodules in response to a number of agents, including Rhizobium meliloti exo mutants, Agrobacterium tumefaciens transconjugants carrying cloned R. meliloti nodulation genes, and compounds that function as auxin transport inhibitors, N-( 1-naphthyl)phthalamic acid or 2,3,5-triiodobenzoic acid. These bacteria-free nodules contain transcripts for the nodulins Nms30 and MsENOD2; transcripts for late nodulins like leghemoglobin are not detected. In situ hybridization studies demonstrated that ENOD2 transcripts were localized in parenchyma cells at the base and along the periphery of nitrogen-fixing alfalfa root nodules. The ENOD2 gene was also expressed in a tissue-specific manner in nodules elicited by N-( 1-naphthyl)phthalamic acid and 2,3,5-triiodobenzoic acid. In bacteria-free nodules induced by R. meliloti exo mutants and A. tumefaciens transconjugants carrying either one or both R. meliloti symbiotic plasmids, ENOD2 transcripts were also detected but were usually localized to parenchyma cells at the base instead of along the periphery of the nodule. On the basis of the pattern of ENOD2 gene expression, we conclude that the developmental pathway of bacteria-free nodules, whether bacterially or chemically induced, is the same as that of nitrogen-fixing nodules, and, furthermore, that the auxin transport inhibitors in their action mimic some factor(s) that trigger nodule development.
Collapse
Affiliation(s)
- C. Van De Wiel
- Department of Molecular Biology, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Pretorius-Güth IM, Pühler A, Simon R. Conjugal Transfer of Megaplasmid 2 between
Rhizobium meliloti
Strains in Alfalfa Nodules. Appl Environ Microbiol 1990; 56:2354-2359. [PMID: 16348248 PMCID: PMC184733 DOI: 10.1128/aem.56.8.2354-2359.1990] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A DNA fragment containing the RP4
mob
function, as well as the gentamicin and spectinomycin resistance genes, was inserted by gene replacement onto the megaplasmid 2 (pM2) of
Rhizobium meliloti
0540 (Inf
−
EPS
−
), resulting in PG101 (Inf
−
EPS
−
). The self-transfer of pM2 and the mobilization of pM2 by plasmid RP4-4 were investigated during conjugation between PG101 and
R. meliloti
2526 (Nod
−
). In filter conjugations, pM2 was readily mobilized by RP4-4. In addition to this, the self-transfer of one megaplasmid (pM) was detected at a frequency of 3 × 10
−7
. Bacteria isolated from the nodules of alfalfa and coinoculated with strains PG101 and 2526 showed that pM2 was mobilized at a frequency of approximately 7 × 10
−5
. Bacterial cell numbers were too low in the nodules for detection of the self-transfer of pM2 to occur. No pM2 transfer was detected in the inoculum. A comparison of the transfer frequencies for the various conjugation conditions revealed that pM2 transfer occurred as frequently in the nodules as in filter conjugations. These results indicate that the nodule creates conditions for gene transfer that are comparable to optimal laboratory conditions.
Collapse
Affiliation(s)
- Inge-M Pretorius-Güth
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 8640, D-4800 Bielefeld 1, Federal Republic of Germany
| | | | | |
Collapse
|
22
|
Soberón M, Membrillo-Hernández J, Aguilar GR, Sánchez F. Isolation of Rhizobium phaseoli Tn5-induced mutants with altered expression of cytochrome terminal oxidases o and aa3. J Bacteriol 1990; 172:1676-80. [PMID: 2155209 PMCID: PMC208651 DOI: 10.1128/jb.172.3.1676-1680.1990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two Rhizobium phaseoli mutants affected in cytochrome expression were obtained by Tn5-mob mutagenesis of the wild-type strain (CE3). Mutant strain CFN031 expressed sevenfold less cytochrome o in culture, expressed cytochrome aa3 under microaerophilic culture conditions, in contrast to strain CE3, and was affected in its vegetative growth properties and proliferation inside plant host cells. Mutant CFN037 expressed cytochrome aa3 under microaerophilic culture conditions, while bacteroid development and nitrogen fixation occurred earlier than in strain CE3.
Collapse
Affiliation(s)
- M Soberón
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | | | |
Collapse
|
23
|
Kapp D, Niehaus K, Quandt J, Muller P, Puhler A. Cooperative Action of Rhizobium meliloti Nodulation and Infection Mutants during the Process of Forming Mixed Infected Alfalfa Nodules. THE PLANT CELL 1990; 2:139-151. [PMID: 12354955 PMCID: PMC159871 DOI: 10.1105/tpc.2.2.139] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Alfalfa plants co-inoculated with Rhizobium meliloti nodulation (Nod-) and infection mutants deficient in exopolysaccharide production (Inf-EPS-) formed mixed infected nodules that were capable of fixing atmospheric nitrogen. The formation of infected nodules was dependent on close contact between the inoculation partners. When the partners were separated by a filter, empty Fix- nodules were formed, suggesting that infection thread formation in alfalfa is dependent on signals from the nodulation and infection genes. In mixed infected nodules, both nodulation and infection mutants colonized the plant cells and differentiated into bacteroids. The formation of bacteroids was not dependent on cell-to-cell contact between the mutants. Immunogold/silver staining revealed that the ratio of the two mutants varied considerably in colonized plant cells following mixed inoculation. The introduction of an additional nif/fix mutation into one of the inoculation partners did not abolish nitrogen fixation in mixed infected nodules. The expression of nif D::lacZ fusions additionally demonstrated that mutations in the nodulation and infection genes did not prevent the nif genes from being expressed in the mutant bacteroids.
Collapse
Affiliation(s)
- D. Kapp
- University of Bielefeld, Faculty of Biology, Department of Genetics, Postbox 8640, D-4800 Bielefeld 1, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
24
|
Symbiotic and galactose utilization properties of phage RMP64-resistant mutants affecting three complementation groups inRhizobium meliloti. J Genet 1989. [DOI: 10.1007/bf02927852] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Cevallos MA, Vázquez M, Dávalos A, Espín G, Sepúlveda J, Quinto C. Characterization of Rhizobium phaseoli Sym plasmid regions involved in nodule morphogenesis and host-range specificity. Mol Microbiol 1989; 3:879-89. [PMID: 2552255 DOI: 10.1111/j.1365-2958.1989.tb00237.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two nodulation regions from the symbiotic plasmid (pSym) of Rhizobium phaseoli CE-3 were identified. The two regions were contained in overlapping cosmids pSM927 and pSM991. These cosmids, in a R. phaseoli pSym-cured strain background, induced ineffective nodules on Phaseolus vulgaris roots. Transconjugants of Rhizobium meliloti harbouring pSM991 induced nodule-like structures on bean roots, suggesting that this cosmid contains host-range determinants. Analysis of deletions and insertional mutations in the sequences of pSM991 indicated that the genes responsible for the induction and development of nodules in P. vulgaris are organized in two regions 20 kb apart. One region, located in a 6.8 kb EcoRI fragment, includes the common nodABC genes. The other region, located in a 3.5 kb EcoRI fragment, contains information required for host-range determination.
Collapse
Affiliation(s)
- M A Cevallos
- Departamento de Biología Molecular de Plantas, Centro de Investigacíon sobre Fijación de Nitrógeno, Morelos, México
| | | | | | | | | | | |
Collapse
|
26
|
Lindow SE, Panopoulos NJ, McFarland BL. Genetic engineering of bacteria from managed and natural habitats. Science 1989; 244:1300-7. [PMID: 2660261 DOI: 10.1126/science.2660261] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The genetic modification of bacteria from natural and managed habitats will impact on the management of agricultural and environmental settings. Potential applications include crop production and protection, degradation or sequestration of environmental pollutants, extraction of metals from ores, industrial fermentations, and productions of enzymes, diagnostics, and chemicals. Applications of this technology will ultimately include the release of beneficial agents in the environment. If safely deployed, genetically modified bacteria should be able to provide significant benefits in the management of environmental systems and in the development of new environmental control processes.
Collapse
Affiliation(s)
- S E Lindow
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | |
Collapse
|
27
|
Deshmane N, Stacey G. Identification of Bradyrhizobium nod genes involved in host-specific nodulation. J Bacteriol 1989; 171:3324-30. [PMID: 2542223 PMCID: PMC210053 DOI: 10.1128/jb.171.6.3324-3330.1989] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Three loci important for soybean nodulation by Bradyrhizobium japonicum were delimited by Tn5 mutagenesis on a 5.3-kilobase EcoRI fragment adjacent to the nodABC genes. Results of hybridization studies suggested that this region is conserved in Bradyrhizobium species but absent in all Rhizobium species. lacZ translational fusions of two of the loci contained in this region were found to be inducible by host-produced flavonoid chemicals via a mechanism requiring a functional nodD gene product. A mutation in one of the loci was found to result in an alteration of the host range of B. japonicum. This mutation appears to block nodulation at the step at which plant root cortical cell division is induced.
Collapse
Affiliation(s)
- N Deshmane
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845
| | | |
Collapse
|
28
|
Sturtevant DB, Taller BJ. Cytokinin Production by Bradyrhizobium japonicum. PLANT PHYSIOLOGY 1989; 89:1247-52. [PMID: 16666691 PMCID: PMC1056003 DOI: 10.1104/pp.89.4.1247] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although there is considerable circumstantial evidence for the involvement of cytokinins in legume nodulation, the cytokinins produced by rhizobia have not been well characterized. Bradyrhizobium japonicum 61A68, a bacterium which nodulates soybean (Glycine max [L.] Merr.), was grown in defined medium. Cytokinins were purified from the culture medium by Amberlite XAD-2 chromatography and fractionated by column chromatography on Sephadex LH-20 in 35% ethanol. Pooled fractions from the Sephadex column were analyzed for cytokinin activity with the tobacco callus bioassay. Cytokinin activity was observed in fractions corresponding to the elution volumes of zeatin, ribosylzeatin, and methylthiozeatin. No activity corresponding to the elution volumes of isopentenyladenine or its riboside was found. Total cytokinin activity in the B. japonicum culture filtrate was equivalent to approximately 1 microgram of kinetin per liter. Transfer RNA was isolated from B. japonicum cells by phenol extraction, followed by potassium acetate extraction, cetyltrimethylammonium bromide precipitation, and DEAE cellulose chromatography. Transfer RNA was enzymically hydrolyzed to nucleosides. High performance liquid chromatographic analysis of cytokinin nucleosides showed peaks corresponding to the retention times of trans-ribosylzeatin, methylthioribosylzeatin, isopentenyladenosine, and methylthioisopentenyladenosine. Analysis of the tRNA hydrolysate by Sephadex LH-20 chromatography and tobacco bioassay showed cytokinin activity in fractions corresponding to ribosylzeatin, methylthioribosylzeatin, and isopentenyladenosine. The presence of the trans isomer of ribosylzeatin was also determined by enzyme immunoassay.
Collapse
Affiliation(s)
- D B Sturtevant
- Department of Biology, Memphis State University, Memphis, Tennessee 38152
| | | |
Collapse
|
29
|
Debellé F, Maillet F, Vasse J, Rosenberg C, de Billy F, Truchet G, Dénarié J, Ausubel FM. Interference between Rhizobium meliloti and Rhizobium trifolii nodulation genes: genetic basis of R. meliloti dominance. J Bacteriol 1988; 170:5718-27. [PMID: 2848012 PMCID: PMC211674 DOI: 10.1128/jb.170.12.5718-5727.1988] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transfer of an IncP plasmid carrying the Rhizobium meliloti nodFE, nodG, and nodH genes to Rhizobium trifolii enabled R. trifolii to nodulate alfalfa (Medicago sativa), the normal host of R. meliloti. Using transposon Tn5-linked mutations and in vitro-constructed deletions of the R. meliloti nodFE, nodG, and nodH genes, we showed that R. meliloti nodH was required for R. trifolii to elicit both root hair curling and nodule initiation on alfalfa and that nodH, nodFE, and nodG were required for R. trifolii to elicit infection threads in alfalfa root hairs. Interestingly, the transfer of the R. meliloti nodFE, nodG, and nodH genes to R. trifolii prevented R. trifolii from infecting and nodulating its normal host, white clover (Trifolium repens). Experiments with the mutated R. meliloti nodH, nodF, nodE, and nodG genes demonstrated that nodH, nodF, nodE, and possibly nodG have an additive effect in blocking infection and nodulation of clover.
Collapse
Affiliation(s)
- F Debellé
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Faucher C, Maillet F, Vasse J, Rosenberg C, van Brussel AA, Truchet G, Dénarié J. Rhizobium meliloti host range nodH gene determines production of an alfalfa-specific extracellular signal. J Bacteriol 1988; 170:5489-99. [PMID: 3056902 PMCID: PMC211642 DOI: 10.1128/jb.170.12.5489-5499.1988] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Rhizobium meliloti nodH gene is involved in determining host range specificity. By comparison with the wild-type strain, NodH mutants exhibit a change in host specificity. That is, although NodH mutants lose the ability to elicit root hair curling (Hac-), infection threads (Inf-), and nodule meristem formation (Nod-) on the homologous host alfalfa, they gain the ability to be Hac+ Inf+ Nod+ on a nonhomologous host such as common vetch. Using root hair deformation (Had) bioassays on alfalfa and vetch, we have demonstrated that sterile supernatant solutions of R. meliloti cultures, in which the nod genes had been induced by the plant flavone luteolin, contained symbiotic extracellular signals. The wild-type strain produced at least one Had signal active on alfalfa (HadA). The NodH- mutants did not produce this signal but produced at least one factor active on vetch (HadV). Mutants altered in the common nodABC genes produced neither of the Had factors. This result suggests that the nodABC operon determines the production of a common symbiotic factor which is modified by the NodH product into an alfalfa-specific signal. An absolute correlation was observed between the specificity of the symbiotic behavior of rhizobial cells and the Had specificity of their sterile filtrates. This indicates that the R. meliloti nodH gene determines host range by helping to mediate the production of a specific extracellular signal.
Collapse
Affiliation(s)
- C Faucher
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Castanet Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Caetano-Anollés G, Bauer WD. Feedback regulation of nodule formation in alfalfa. PLANTA 1988; 175:546-557. [PMID: 24221939 DOI: 10.1007/bf00393078] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/1988] [Accepted: 05/02/1988] [Indexed: 06/02/2023]
Abstract
When high dosages of wild-type Rhizobium meliloti RCR2011 were inoculated at two different times, 24 h apart, onto either the primary roots of alfalfa (Medicago sativa L.) seedlings or onto lateral roots on opposite sides of a split-root system, the number of nodules generated by the second inoculum was much smaller than the number generated by the first inoculum. These results provide evidence that alfalfa has an active, systemic mechanism for feedback control of nodulation. Non-nodulating mutants and delayed, weakly nodulating mutants did not elicit a discernable suppression of nodulation by subsequently inoculated wild-type cells. An appreciable number of Rhizobium infections thus seem required to elicit the suppressive response. Mutants in nodulation regions IIb and IIa nodulated extensively in the initially susceptible region of the root, but nodule initiation by these mutants was 100-1000 times less efficient, respectively, than the parent. Nodules formed by these mutants emerged 1 d later than normal. The IIb mutants elicited a relatively strong suppression of nodulation in younger parts of the root, but region-IIa mutants elicited only a weak response. These results indicate that elicitation of the regulatory response need not be proportional to nodule formation and imply that genes in region IIa play an important role in elicitation. At high dosages, the region-II mutants induced the development of thick, short roots in a considerably higher percentage of plants than the wild-type bacteria. Nodules generated by wild-type isolates and region-II mutants did not emerge in strict acropetal sequence, probably because some infections developed more slowly than others. Prior exposure of the root to non-nodulating mutants resulted in nodulation by the parent in regions of the root otherwise too mature to be susceptible, indicating that exposure to these mutants may affect the sequence of root development.
Collapse
Affiliation(s)
- G Caetano-Anollés
- Department of Agronomy, Ohio State University, 2021 Coffey Rd., 43210-1086, Columbus, OH, USA
| | | |
Collapse
|
32
|
Caetano-Anollés G, Crist-Estes DK, Bauer WD. Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 1988; 170:3164-9. [PMID: 3384804 PMCID: PMC211264 DOI: 10.1128/jb.170.7.3164-3169.1988] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Luteolin is a phenolic compound from plants that acts as a potent and specific inducer of nodABC gene expression in Rhizobium meliloti. We have found that R. meliloti RCR2011 exhibits positive chemotaxis towards luteolin. A maximum chemotactic response was observed at 10(-8) M. Two closely related flavonoids, naringenin and apigenin, were not chemoattractants. The presence of naringenin but not apigenin abolished chemotaxis of R. meliloti towards luteolin. A large deletion in the nif-nod region of the symbiotic megaplasmid eliminated all chemotactic response to luteolin but did not affect general chemotaxis, as indicated by swarm size on semisoft agar plates and chemotaxis towards proline in capillary tubes. Transposon Tn5 mutations in nodD, nodA, or nodC selectively abolished the chemotactic response of R. meliloti to luteolin. Agrobacterium tumefaciens GMI9050, a derivative of the C58 wild type lacking a Ti plasmid, responded chemotactically to 10(-8) M luteolin. The introduction of a 290-kilobase nif-nod-containing sequence of DNA from R. meliloti into A. tumefaciens GMI9050 enabled the recipient to respond to luteolin at concentrations peaking at 10(-6) M as well as at concentrations peaking at 10(-8) M. The response of A. tumefaciens GMI9050 to luteolin was also abolished by the presence of naringenin.
Collapse
|
33
|
Caetano-Anollés G, Bauer WD. Enhanced nodule initiation on alfalfa by wild-typeRhizobium meliloti co-inoculated withnod gene mutants and other bacteria. PLANTA 1988; 174:385-395. [PMID: 24221521 DOI: 10.1007/bf00959525] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/1987] [Accepted: 12/28/1987] [Indexed: 06/02/2023]
Abstract
Nodule formation on alfalfa (Medicago sativa L.) roots was determined at different inoculum dosages for wild-typeRhizobium meliloti strain RCR2011 and for various mutant derivatives with altered nodulation behavior. The number of nodules formed on the whole length of the primary roots was essentially constant regardless of initial inoculum dosage or subsequent bacterial multiplication, indicative of homeostatic regulation of total nodule number. In contrast, the number of nodules formed in just the initially susceptible region of these roots was sigmoidally dependent on the number of wild-type bacteria added, increasing rapidly at dosages above 5·10(3) bacteria/plant. This behavior indicates the possible existence of a threshold barrier to nodule initiation in the host which the bacteria must overcome. When low dosages of the parent (10(3) cells/plant) were co-inoculated with 10(6) cells/plant of mutants lacking functionalnodA, nodC, nodE, nodF ornodH genes, nodule initiation was increased 10- to 30-fold. Analysis of nodule occupancy indicated that these mutants were able to help the parent (wild-type) strain initiate nodules without themselves occupying the nodules. Co-inoculation withR. trifolii orAgrobacterium tumefaciens cured of its Ti plasmid also markedly stimulated nodule initiation by theR. meliloti parent strain. Introduction of a segment of the symbiotic megaplasmid fromR. meliloti intoA. tumefaciens abolished this stimulation.Bradyrhizobium japonicum and a chromosomal Tn5 nod(-) mutant ofR. meliloti did not significantly stimulate nodule initiation when co-inoculated with wild-typeR. meliloti. These results indicate that certainnod gene mutants and members of theRhizobiaceae may produce extracellular "signals" that supplement the ability of wild-typeR. meliloti cells to induce crucial responses in the host.
Collapse
Affiliation(s)
- G Caetano-Anollés
- Department of Agronomy, Ohio State University, 2021 Coffey Road, 43210-1086, Columbus, OH, USA
| | | |
Collapse
|
34
|
A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegium sepium. J Bacteriol 1988; 170:1153-61. [PMID: 2981046 PMCID: PMC210886 DOI: 10.1128/jb.170.3.1153-1161.1988] [Citation(s) in RCA: 158] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Our objectives were to identify substances produced by plant roots that might act as nutritional mediators of specific plant-bacterium relationships and to delineate the bacterial genes responsible for catabolizing these substances. We discovered new compounds, which we call calystegins, that have the characteristics of nutritional mediators. They were detected in only 3 of 105 species of higher plants examined: Calystegia sepium, Convolvulus arvensis (both of the Convolvulaceae family), and Atropa belladonna. Calystegins are abundant in organs in contact with the rhizosphere and are not found, or are observed only in small quantities, in aerial plant parts. Just as the synthesis of calystegins is infrequent in the plant kingdom, their catabolism is rare among rhizosphere bacteria that associate with plants and influence their growth. Of 42 such bacteria tested, only one (Rhizobium meliloti 41) was able to catabolize calystegins and use them as a sole source of carbon and nitrogen. The calystegin catabolism gene(s) (cac) in this strain is located on a self-transmissible plasmid (pRme41a), which is not essential to nitrogen-fixing symbiosis with legumes. We suggest that under natural conditions calystegins provide an exclusive carbon and nitrogen source to rhizosphere bacteria which are able to catabolize these compounds. Calystegins (and the corresponding microbial catabolic genes) might be used to analyze and possibly modify rhizosphere ecology.
Collapse
|
35
|
Surin BP, Downie JA. Characterization of the Rhizobium leguminosarum genes nodLMN involved in efficient host-specific nodulation. Mol Microbiol 1988; 2:173-83. [PMID: 3132583 DOI: 10.1111/j.1365-2958.1988.tb00019.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Three nodulation genes, nodL, nodM and nodN, were isolated from Rhizobium leguminosarum and their DNA sequences were determined. The three genes are in the same orientation as the previously described nodFE genes and the predicted molecular weights of their products are 20,105 (nodL), 65,795 (nodM) and 18,031 (nodN). Analysis of gene regulation using operon fusions showed that nodL, nodM and nodN are induced in response to flavanone molecules and that this induction is nodD-dependent. In addition, it was shown that the nodM and nodN genes are in one operon which is preceded by a conserved 'nod-box' sequence, whereas the nodL gene is in the same operon as the nodFE genes. DNA hybridizations using specific gene probes showed that strongly homologous genes are present in Rhizobium trifolii but not Rhizobium meliloti or Bradyrhizobium japonicum. A mutation within nodL strongly reduced nodulation of peas, Lens and Lathyrus but had little effect on nodulation of Vicia species. A slight reduction in nodulation of Vicia hirsuta was observed with strains carrying mutations in nodM or nodN.
Collapse
Affiliation(s)
- B P Surin
- C.S.I.R.O. Division of Plant Industry, Canberra, Australia
| | | |
Collapse
|
36
|
Morrison NA, Bisseling T, Verma DP. Development and differentiation of the root nodule. Involvement of plant and bacterial genes. DEVELOPMENTAL BIOLOGY (NEW YORK, N.Y. : 1985) 1988; 5:405-25. [PMID: 3077981 DOI: 10.1007/978-1-4615-6817-9_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- N A Morrison
- Department of Biology, Centre for Plant Molecular Biology, Montreal, Quebec, Canada
| | | | | |
Collapse
|
37
|
Two classes of Rhizobium meliloti infection mutants differ in exopolysaccharide production and in coinoculation properties with nodulation mutants. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf00338388] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Lullien V, Barker DG, de Lajudie P, Huguet T. Plant gene expression in effective and ineffective root nodules of alfalfa (Medicago sativa). PLANT MOLECULAR BIOLOGY 1987; 9:469-478. [PMID: 24277133 DOI: 10.1007/bf00015878] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/1987] [Accepted: 07/14/1987] [Indexed: 06/02/2023]
Abstract
Expression of plant genes involved in the symbiosis between alfalfa (Medicago sativa) and Rhizobium meliloti has been studied by comparing root and root nodule mRNA populations. Two-dimensional gel electrophoretic separation of the in vitro translation products of polyA(+) RNA isolated from either roots or effective root nodules has allowed us to identify thirteen nodule-specific translation products, including those corresponding to the leghemoglobins (Lb). These translation products, representing putative nodulin mRNAs, are first detected between 9 and 12 days after inoculation, a result which has been confirmed for Lb mRNA by Northern blotting and hybridization with a Lb cDNA probe. Analysis of three different types of ineffective root nodules arrested in different stages of development has led to the following conclusions. (i) The transcription of eleven nodule-specific genes, including the Lb genes, is independent of nitrogen-fixing activity. (ii) Differentiation of the primary nodule structure does not require the transcription of any of these genes but can be correlated with a dramatic reduction in the level of at least five transcripts present in the root. (iii) There is enhanced expression of certain plant genes in the case of nodules elicited by an Agrobacterium strain carrying the symbiotic plasmid of R. meliloti.
Collapse
Affiliation(s)
- V Lullien
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, INRA-CNRS, BP 27, F-31326, Castanet-Tolosan Cedex, France
| | | | | | | |
Collapse
|
39
|
Martínez E, Palacios R, Sánchez F. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 1987; 169:2828-34. [PMID: 3584072 PMCID: PMC212195 DOI: 10.1128/jb.169.6.2828-2834.1987] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rhizobium phaseoli CFN299 forms nitrogen-fixing nodules in Phaseolus vulgaris (bean) and in Leucaena esculenta. It has three plasmids of 185, 225, and 410 kilobases. The 410-kilobase plasmid contains the nitrogenase structural genes. We have transferred these plasmids to the plasmid-free strain Agrobacterium tumefaciens GMI9023. Transconjugants containing different combinations of the R. phaseoli plasmids were obtained, and they were exhaustively purified before nodulation was assayed. Only transconjugants harboring the 410-kilobase plasmid nodulate P. vulgaris and L. esculenta. Nodules formed by all such transconjugants are able to reduce acetylene. Transconjugants containing the whole set of plasmids from CFN299 nodulate better and fix more nitrogen than the transconjugants carrying only the Sym plasmid. Microscopic analysis of nodules induced by A. tumefaciens transconjugants reveals infected cells and vascular bundles. None of the A. tumefaciens transconjugants, not even the one with the whole set of plasmids from CFN299, behaves in symbiosis like the original R. phaseoli strain; the transconjugants produce fewer nodules and have lower acetylene reduction (25% as compared to the original R. phaseoli strain) and more amyloplasts per nodule. More than 2,000 bacterial isolates from nodules of P. vulgaris and L. esculenta formed by the transconjugants were analyzed by different criteria. Not a single rhizobium could be detected. Our results show that R. phaseoli plasmids may be expressed in the A. tumefaciens background and direct the formation of effective, differentiated nodules.
Collapse
|
40
|
Moerman M, Nap JP, Govers F, Schilperoort R, van Kammen A, Bisseling T. Rhizobium nod genes are involved in the induction of two early nodulin genes in Vicia sativa root nodules. PLANT MOLECULAR BIOLOGY 1987; 9:171-179. [PMID: 24276906 DOI: 10.1007/bf00015649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/1987] [Revised: 04/28/1987] [Accepted: 05/11/1987] [Indexed: 06/02/2023]
Abstract
Nodulin gene expresison was studied in Vicia sativa (common vetch) root nodules induced by several Rhizobium and Agrobacterium strains. An Agrobacterium transconjugant containing a R. leguminosarum symplasmid instead of its Ti-plasmid, that was previously shown to form "empty" nodules on pea, induced nodules on Vicia roots in which nodule cells were infected with bacteria. In the Vicia nodules induced by this transconjugant, two so-called early nodulin genes were found to be expressed, whereas in the nodules formed on pea the expression of only one early nodulin gene was detected. In both cases the majority of the nodulin genes was not expressed.Apparently, an intracellular location of the bacteria is not sufficient for the induction of the majority of the nodulin genes. All nodulin genes were expressed in nodules induced by cured Rhizobium strains containing cosmid clones that have a 10 kb nod region of the sym-plasmid in common. Since in tumours no nodulin gene expression was found at all, the Agrobacterium chromosome does not contribute to the induction of nodulin genes. Therefore it is concluded that the signal for the induction of the expression of the two Vicia early nodulin genes is encoded by the nod-region, and the signal involved in the induction of all other nodulin genes has to be located outside the sym-plasmid, on the Rhizobium chromosome. The apparent difference in early nodulin gene expression between pea and Vicia is discussed in the light of the usefulness of Agrobacterium transconjugants in the study of nodulin gene expression.
Collapse
Affiliation(s)
- M Moerman
- Department of Molecular Biology, Agricultural University, De Dreijen 11, 6703 BC, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
Nayudu M, Rolfe BG. Analysis of R-primes demonstrates that genes for broad host range nodulation of Rhizobium strain NGR234 are dispersed on the Sym plasmid. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00333591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Rossen L, Davis EO, Johnston AW. Plant-induced expression of Rhizobium genes involved in host specificity and early stages of nodulation. Trends Biochem Sci 1987. [DOI: 10.1016/0968-0004(87)90209-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Debellé F, Rosenberg C, Vasse J, Maillet F, Martinez E, Dénarié J, Truchet G. Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic loci of Rhizobium meliloti. J Bacteriol 1986; 168:1075-86. [PMID: 3023297 PMCID: PMC213605 DOI: 10.1128/jb.168.3.1075-1086.1986] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rhizobium meliloti nodulation (nod) genes required for specific infection and nodulation of alfalfa have been cloned. Transposon Tn5 mutagenesis defined three nod regions spanning 16 kilobases of the pSym megaplasmid. Genetic and cytological studies of 62 nodulation-defective mutants allowed the assignment of symbiotic developmental phenotypes to common and specific nod loci. Root hair curling was determined by both common (region I) and specific (region III) nod transcription units; locus IIIb (nodH gene) positively controlled curling on the homologous host alfalfa, whereas loci IIIa (nodFE) and IIIb (nodH) negatively controlled curling on heterologous hosts. Region I (nodABC) was required for bacterial penetration and infection thread initiation in shepherd's crooks, and the nodFE transcription unit controlled infection thread development within the alfalfa root hair. In contrast, induction of nodule organogenesis, which can be triggered from a distance, seemed to be controlled by common nodABC genes and not to require specific nod genes nodFE and nodH. Region II affected the efficiency of hair curling and infection thread formation.
Collapse
|
44
|
Noel KD, Vandenbosch KA, Kulpaca B. Mutations in Rhizobium phaseoli that lead to arrested development of infection threads. J Bacteriol 1986; 168:1392-401. [PMID: 3782040 PMCID: PMC213651 DOI: 10.1128/jb.168.3.1392-1401.1986] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Two Rhizobium phaseoli mutants, isolated previously by Tn5 mutagenesis, elicited infection threads which ceased development prematurely, usually within root hairs. These infection threads were wide, globular, and otherwise altered in morphology, compared with normal infection threads. Anatomy and division of the root cortical cells during initial stages of nodule morphogenesis appeared normal. However, later nodule differentiation deviated considerably from normal development, and release of bacteria from infection threads was not observed. In tryptone-yeast extract medium the mutants sedimented during growth in shaken cultures and formed rough colonies on agar. Electrophoresis of washed cultures solubilized in dodecyl sulfate revealed that the major carbohydrate band was absent from the mutants. The behavior of this carbohydrate in phenol-water extraction and gel chromatography, its apparent ketodeoxyoctonate content, and its susceptibility to mild acid hydrolysis suggested that it was a lipopolysaccharide. From the results of genetic crosses or reversion analysis, the defect in synthesizing this carbohydrate material and the defect in infection could be attributed to a single mutation in each mutant.
Collapse
|
45
|
Govers F, Moerman M, Downie JA, Hooykaas P, Franssen HJ, Louwerse J, Kammen AV, Bisseling T. Rhizobium nod genes are involved in inducing an early nodulin gene. Nature 1986. [DOI: 10.1038/323564a0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Debellé F, Sharma SB. Nucleotide sequence of Rhizobium meliloti RCR2011 genes involved in host specificity of nodulation. Nucleic Acids Res 1986; 14:7453-72. [PMID: 3020515 PMCID: PMC311762 DOI: 10.1093/nar/14.18.7453] [Citation(s) in RCA: 136] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A 6 kb DNA segment of the R. meliloti 2011 pSym megaplasmid, which contains genes controlling host specificity of root hair infection and of nodulation, was cloned and sequenced. The DNA sequence analysis, in conjunction with previous genetic data, allowed identification of four nod genes designated as E, F, G and H. nodH is divergently transcribed with respect to nodFE and nodG. A conserved nucleotide sequence was found around 200 bp upstream of the translation start of nodF, nodH and nodA. This sequence is also present upstream of common nodA and species specific nodF genes of other Rhizobium species. The predicted protein products of nodF and nodG show homology with acyl carrier protein and ribitol dehydrogenase, respectively. The nodH product contains a rare sequence of four contiguous proline residues. Comparison with the nod gene products of R. leguminosarum shows that species specific nodFE products are as well conserved as those of common nodABC and nodD genes.
Collapse
|
47
|
Putnoky P, Kondorosi A. Two gene clusters of Rhizobium meliloti code for early essential nodulation functions and a third influences nodulation efficiency. J Bacteriol 1986; 167:881-7. [PMID: 3745124 PMCID: PMC215955 DOI: 10.1128/jb.167.3.881-887.1986] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A pLAFR1 cosmid clone (pPP346) carrying the nodulation region of the symbiotic plasmid pRme41b was isolated from a gene library of Rhizobium meliloti 41 by direct complementation of a Nod- deletion mutant of R. meliloti. Agrobacterium tumefaciens and Rhizobium species containing pPP346 were able to form ineffective nodules on alfalfa. The 24-kilobase insert in pPP346 carries both the common nodulation genes and genes involved in host specificity of nodulation. It was shown that these two regions are essential and sufficient to determine the early events in nodulation. A new DNA region influencing the kinetics and efficiency of nodulation was also localized on the symbiotic megaplasmid at the right side of the nif genes.
Collapse
|
48
|
Finan TM, Kunkel B, De Vos GF, Signer ER. Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 1986; 167:66-72. [PMID: 3013840 PMCID: PMC212841 DOI: 10.1128/jb.167.1.66-72.1986] [Citation(s) in RCA: 473] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Using physical and genetic data, we have demonstrated that Rhizobium meliloti SU47 has a symbiotic megaplasmid, pRmeSU47b, in addition to the previously described nod-nif megaplasmid pRmeSU47a. This plasmid includes four loci involved in exopolysaccharide (exo) synthesis as well as two loci involved in thiamine biosynthesis. Mutations at the exo loci have previously been shown to result in the formation of nodules which lack infection threads (Inf-) and fail to fix nitrogen (Fix-). Thus, both megaplasmids contain genes involved in the formation of nitrogen-fixing root nodules. Mutations at two other exo loci were not located on either megaplasmid. To mobilize the megaplasmids, the oriT of plasmid RK2 was inserted into them. On alfalfa, Agrobacterium tumefaciens strains containing pRmeSU47a induced marked root hair curling with no infection threads and Fix- nodules, as reported by others. This plant phenotype was not observed to change with A. tumefaciens strains containing both pRmeSU47a and pRmeSU47b megaplasmids, and strains containing pRmeSU47b alone failed to curl root hairs or form nodules.
Collapse
|
49
|
|
50
|
Stanley J, Longtin D, Madrzak C, Verma DP. Genetic locus in Rhizobium japonicum (fredii) affecting soybean root nodule differentiation. J Bacteriol 1986; 166:628-34. [PMID: 3009416 PMCID: PMC214651 DOI: 10.1128/jb.166.2.628-634.1986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A genetic locus in fast-growing Rhizobium japonicum (fredii) USDA 191 (Fix+ on several contemporary soybean cultivars) was identified by random Tn5 mutagenesis as affecting the development and differentiation of root nodules. This mutant (MU042) is prototrophic and shows no apparent alterations in its surface properties. It induces aberrant nodules, arrested at the same early level of differentiation, on all its host plants. An 8.1-kilobase EcoRI fragment containing Tn5 was cloned from MU042. In USDA 191 as well as another fast-growing strain, USDA 201, the affected locus was found to be unlinked to the large symbiotic plasmid and appears to be chromosomal. An analogous sequence has been shown to be present in Bradyrhizobium japonicum (J. Stanley, G.G. Brown, and D.P.S. Verma, J. Bacteriol. 163:148-154, 1985) as well as in R. trifolii and R. meliloti. MU042 was complemented for effective nodulation of soybean by a cosmid clone from USDA 201, and the complementing locus was delimited to a 6-kilobase EcoRI subfragment. An R. trifolii strain (MU225), whose indigenous symbiotic plasmid was replaced by that of strain USDA 191, induced more highly differentiated nodules on soybean than did MU042. This suggests that the mutation in MU042 can be functionally substituted by similar loci of other fast-growing rhizobia. Leghemoglobin and nodulin-35 (uricase II) were present in the differentiated Fix- nodules induced by MU225, whereas both were absent in MU042-induced pseudonodule structures.
Collapse
|