1
|
Molecular architecture of the acetohydroxyacid synthase holoenzyme. Biochem J 2020; 477:2439-2449. [DOI: 10.1042/bcj20200292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
The acetohydroxyacid synthase (AHAS) holoenzyme catalyzes the first step of branch-chain amino acid biosynthesis and is essential for plants and bacteria. It consists of a regulatory subunit (RSU) and a catalytic subunit (CSU). The allosteric mechanism of the AHAS holoenzyme has remained elusive for decades. Here, we determined the crystal structure of the AHAS holoenzyme, revealing the association between the RSU and CSU in an A2B2 mode. Structural analysis in combination with mutational studies demonstrated that the RSU dimer forms extensive interactions with the CSU dimer, in which a conserved salt bridge between R32 and D120 may act as a trigger to open the activation loop of the CSU, resulting in the activation of the CSU by the RSU. Our study reveals the activation mechanism of the AHAS holoenzyme.
Collapse
|
2
|
Wang YY, Xu JZ, Zhang WG. Metabolic engineering of l-leucine production in Escherichia coli and Corynebacterium glutamicum: a review. Crit Rev Biotechnol 2019; 39:633-647. [PMID: 31055970 DOI: 10.1080/07388551.2019.1577214] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
l-Leucine, as an essential branched-chain amino acid for humans and animals, has recently been attracting much attention because of its potential for a fast-growing market demand. The applicability ranges from flavor enhancers, animal feed additives and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. Microbial fermentation is the major method for producing l-leucine by using Escherichia coli and Corynebacterium glutamicum as host bacteria. This review gives an overview of the metabolic pathway of l-leucine (i.e. production, import and export systems) and highlights the main regulatory mechanisms of operons in E. coli and C. glutamicum l-leucine biosynthesis. We summarize here the current trends in metabolic engineering techniques and strategies for manipulating l-leucine producing strains. Finally, future perspectives to construct industrially advantageous strains are considered with respect to recent advances in biology.
Collapse
Affiliation(s)
- Ying-Yu Wang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| | - Jian-Zhong Xu
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China.,b The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| | - Wei-Guo Zhang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| |
Collapse
|
3
|
Zhao Y, Niu C, Wen X, Xi Z. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species. Chembiochem 2013; 14:746-52. [PMID: 23512804 DOI: 10.1002/cbic.201200680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 11/10/2022]
Abstract
Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs.
Collapse
Affiliation(s)
- Yuefang Zhao
- Department of Chemical Biology and State Key Laboratory of Elemento-organic Chemistry, Nankai University, Weijin 94, Tianjin 300071, China
| | | | | | | |
Collapse
|
4
|
Zhao Y, Wen X, Niu C, Xi Z. Arginine 26 and Aspartic Acid 69 of the Regulatory Subunit are Key Residues of Subunits Interaction of Acetohydroxyacid Synthase Isozyme III fromE. coli. Chembiochem 2012; 13:2445-54. [DOI: 10.1002/cbic.201200362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Indexed: 11/08/2022]
|
5
|
Belenky I, Steinmetz A, Vyazmensky M, Barak Z, Tittmann K, Chipman DM. Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I. FEBS J 2012; 279:1967-79. [DOI: 10.1111/j.1742-4658.2012.08577.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Characterization of acetohydroxyacid synthase I from Escherichia coli K-12 and identification of its inhibitors. Biosci Biotechnol Biochem 2010; 74:2281-6. [PMID: 21071847 DOI: 10.1271/bbb.100496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The first step in branched-chain amino acid biosynthesis is catalyzed by acetohydroxyacid synthase (EC 2.2.1.6). This reaction involves decarboxylation of pyruvate followed by condensation with either an additional pyruvate molecule or with 2-oxobutyrate. The enzyme requires three cofactors, thiamine diphosphate (ThDP), a divalent ion, and flavin adenine dinucleotide (FAD). Escherichia coli contains three active isoenzymes, and acetohydroxyacid synthase I (AHAS I) large subunit is encoded by the ilvB gene. In this study, the ilvB gene from E. coli K-12 was cloned into expression vector pETDuet-1, and was expressed in E. coli BL21 (DH3). The purified protein was identified on a 12% SDS-PAGE gel as a single band with a mass of 65 kDa. The optimum temperature, buffer, and pH for E. coli K-12 AHAS I were 37 °C, potassium phosphate buffer, and 7.5. Km values for E. coli K-12 AHAS I binding to pyruvate, Mg(+2), ThDP, and FAD were 4.15, 1.26, 0.2 mM, and 0.61 µM respectively. Inhibition of purified AHAS I protein was determined with herbicides and new compounds.
Collapse
|
7
|
Chen Y, Hoehenwarter W, Weckwerth W. Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:573-83. [PMID: 20374526 DOI: 10.1111/j.1365-313x.2010.04261.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein phosphorylation/dephosphorylation is a central post-translational modification in plant hormone signaling, but little is known about its extent and function. Although pertinent protein kinases and phosphatases have been predicted and identified for a variety of hormone responses, classical biochemical approaches have so far revealed only a few candidate proteins and even fewer phosphorylation sites. Here we performed a global quantitative analysis of the Arabidopsis phosphoproteome in response to a time course of treatments with various plant hormones using phosphopeptide enrichment and subsequent mass accuracy precursor alignment (MAPA). The use of three time points, 1, 3 and 6 h, in combination with five phytohormone treatments, abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellic acid (GA), jasmonic acid (JA) and kinetin, resulted in 324,000 precursor ions from 54 LC-Orbitrap-MS analyses quantified and aligned in a data matrix with the dimension of 6000 x 54 using the ProtMax algorithm. To dissect the phytohormone responses, multivariate principal/independent components analysis was performed. In total, 152 phosphopeptides were identified as differentially regulated; these phosphopeptides are involved in a wide variety of signaling pathways. New phosphorylation sites were identified for ABA response element binding factors that showed a specific increase in response to ABA. New phosphorylation sites were also found for RLKs and auxin transporters. We found that different hormones regulate distinct amino acid residues of members of the same protein families. In contrast, tyrosine phosphorylation of the G alpha subunit appeared to be a common response for multiple hormones, demonstrating global cross-talk among hormone signaling pathways.
Collapse
Affiliation(s)
- Yanmei Chen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | | | | |
Collapse
|
8
|
Smith JK, Schloss JV, Mazur BJ. Functional expression of plant acetolactate synthase genes in Escherichia coli. Proc Natl Acad Sci U S A 2010; 86:4179-83. [PMID: 16594052 PMCID: PMC287413 DOI: 10.1073/pnas.86.11.4179] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acetolactate synthase (ALS; EC 4.1.3.18) is the first common enzyme in the biosynthetic pathways leading to leucine, isoleucine, and valine. It is the target enzyme for three classes of structurally unrelated herbicides, the sulfonylureas, the imidazolinones, and the triazolopyrimidines. A cloned ALS gene from the small cruciferous plant Arabidopsis thaliana has been fused to bacterial transcription/translation signals and the resulting plasmid has been used to transform Escherichia coli. The cloned plant gene, which includes sequences encoding the chloroplast transit peptide, is functionally expressed in the bacteria. It is able to complement genetically a strain of E. coli that lacks endogenous ALS activity. An ALS gene cloned from a line of Arabidopsis previously shown to be resistant to sulfonylurea herbicides has been similarly expressed in E. coli. The herbicide-resistance phenotype is expressed in the bacteria, as assayed by both enzyme activity and the ability to grow in the presence of herbicides. This system has been useful for purifying substantial amounts of the plant enzyme, for studying the sequence parameters involved in subcellular protein localization, and for characterizing the interactions that occur between ALS and its various inhibitors.
Collapse
Affiliation(s)
- J K Smith
- Agricultural Products Department, E. I. du Pont de Nemours & Co., Experimental Station E402, Wilmington, DE 19880-0402
| | | | | |
Collapse
|
9
|
Vyazmensky M, Zherdev Y, Slutzker A, Belenky I, Kryukov O, Barak Z, Chipman DM. Interactions between large and small subunits of different acetohydroxyacid synthase isozymes of Escherichia coli. Biochemistry 2009; 48:8731-7. [PMID: 19653643 DOI: 10.1021/bi9009488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The large, catalytic subunits (LSUs; ilvB, ilvG and ilvI, respectively) of enterobacterial acetohydroxyacid synthases isozymes (AHAS I, II and III) have molecular weights approximately 60 kDa and are paralogous with a family of other thiamin diphosphate dependent enzymes. The small, regulatory subunits (SSUs) of AHAS I and AHAS III (ilvN and ilvH) are required for valine inhibition, but ilvN and ilvH can only confer valine sensitivity on their own LSUs. AHAS II is valine resistant. The LSUs have only approximately 15, <<1 and approximately 3%, respectively, of the activity of their respective holoenzymes, but the holoenzymes can be reconstituted with complete recovery of activity. We have examined the activation of each of the LSUs by SSUs from different isozymes and ask to what extent such activation is specific; that is, is effective nonspecific interaction possible between LSUs and SSUs of different isozymes? To our surprise, the AHAS II SSU ilvM is able to activate the LSUs of all three of the isozymes, and the truncated AHAS III SSUs ilvH-Delta80, ilvH-Delta86 and ilvH-Delta89 are able to activate the LSUs of both AHAS I and AHAS III. However, none of the heterologously activated enzymes have any feedback sensitivity. Our results imply the existence of a common region in all three LSUs to which regulatory subunits may bind, as well as a similarity between the surfaces of ilvM and the other SSUs. This surface must be included within the N-terminal betaalphabetabetaalphabeta-domain of the SSUs, probably on the helical face of this domain. We suggest hypotheses for the mechanism of valine inhibition, and reject one involving induced dissociation of subunits.
Collapse
Affiliation(s)
- Maria Vyazmensky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
10
|
Homologous and heterologous interactions between catalytic and regulatory subunits of Escherichia coli acetohydroxyacid synthase I and III. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11426-009-0213-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Mitra A, Sarma SP. Escherichia coli ilvN interacts with the FAD binding domain of ilvB and activates the AHAS I enzyme. Biochemistry 2008; 47:1518-31. [PMID: 18193896 DOI: 10.1021/bi701893b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unique multidomain organization in the multimeric Escherichia coli AHAS I (ilvBN) enzyme has been exploited to generate polypeptide fragments which, when cloned and expressed, reassemble in the presence of cofactors to yield a catalytically competent enzyme. Multidimensional multinuclear NMR methods have been employed for obtaining near complete sequence specific NMR assignments for backbone HN, 15N, 13Calpha and 13Cbeta atoms of the FAD binding domain of ilvB on samples that were isotopically enriched in 2H, 13C and 15N. Unambiguous assignments were obtained for 169 of 177 backbone Calpha atoms and 127 of 164 side chain Cbeta atoms. The secondary structure determined on the basis of observed 13Calpha secondary chemical shifts and sequential NOEs agrees well with the structure of this domain in the catalytic subunit of yeast AHAS. Binding of ilvN to the ilvBalpha and ilvBbeta domains was studied by both circular dichroism and isotope edited solution nuclear magnetic resonance methods. Changes in CD spectra indicate that ilvN interacts with ilvBalpha and ilvBbeta domains of the catalytic subunit and not with the ilvBgamma domain. NMR chemical shift mapping methods show that ilvN binds close to the FAD binding site in ilvBbeta and proximal to the intrasubunit ilvBalpha/ilvBbeta domain interface. The implication of this interaction on the role of the regulatory subunit on the activity of the holoenzyme is discussed.
Collapse
Affiliation(s)
- Ashima Mitra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
12
|
McCourt JA, Duggleby RG. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 2006; 31:173-210. [PMID: 16699828 DOI: 10.1007/s00726-005-0297-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/09/2005] [Indexed: 11/25/2022]
Abstract
The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.
Collapse
Affiliation(s)
- J A McCourt
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
13
|
Vinogradov V, Vyazmensky M, Engel S, Belenky I, Kaplun A, Kryukov O, Barak Z, Chipman DM. Acetohydroxyacid synthase isozyme I from Escherichia coli has unique catalytic and regulatory properties. Biochim Biophys Acta Gen Subj 2006; 1760:356-63. [PMID: 16326011 DOI: 10.1016/j.bbagen.2005.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/27/2005] [Accepted: 10/20/2005] [Indexed: 11/30/2022]
Abstract
AHAS I is an isozyme of acetohydroxyacid synthase which is apparently unique to enterobacteria. It has been known for over 20 years that it has many properties which are quite different from those of the other two enterobacterial AHASs isozymes, as well as from those of "typical" AHASs which are single enzymes in a given organism. These include a unique mechanism for regulation of expression and the absence of a preference for forming acetohydroxybutyrate. We have cloned the two subunits, ilvB and ilvN, of this Escherichia coli isoenzyme and examined the enzymatic properties of the purified holoenzyme and the enzyme reconstituted from purified subunits. Unlike other AHASs, AHAS I demonstrates cooperative feedback inhibition by valine, and the kinetics fit closely to an exclusive binding model. The formation of acetolactate by AHAS I is readily reversible and acetolactate can act as substrate for alternative AHAS I-catalyzed reactions.
Collapse
Affiliation(s)
- Valerie Vinogradov
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 657, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chipman DM, Duggleby RG, Tittmann K. Mechanisms of acetohydroxyacid synthases. Curr Opin Chem Biol 2006; 9:475-81. [PMID: 16055369 DOI: 10.1016/j.cbpa.2005.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 07/18/2005] [Indexed: 11/17/2022]
Abstract
Acetohydroxyacid synthases are thiamin diphosphate- (ThDP-) dependent biosynthetic enzymes found in all autotrophic organisms. Over the past 4-5 years, their mechanisms have been clarified and illuminated by protein crystallography, engineered mutagenesis and detailed single-step kinetic analysis. Pairs of catalytic subunits form an intimate dimer containing two active sites, each of which lies across a dimer interface and involves both monomers. The ThDP adducts of pyruvate, acetaldehyde and the product acetohydroxyacids can be detected quantitatively after rapid quenching. Determination of the distribution of intermediates by NMR then makes it possible to calculate individual forward unimolecular rate constants. The enzyme is the target of several herbicides and structures of inhibitor-enzyme complexes explain the herbicide-enzyme interaction.
Collapse
Affiliation(s)
- David M Chipman
- Department of Life Sciences, Ben-Gurion University POB 653, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
15
|
Singh BK, Schmitt GK. Flavin adenine dinucleotide causes oligomerization of acetohydroxyacid synthase from black Mexican sweet corn cells. FEBS Lett 2001. [DOI: 10.1016/0014-5793(89)81628-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Lee YT, Duggleby RG. Identification of the regulatory subunit of Arabidopsis thaliana acetohydroxyacid synthase and reconstitution with its catalytic subunit. Biochemistry 2001; 40:6836-44. [PMID: 11389597 DOI: 10.1021/bi002775q] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetohydroxyacid synthase (EC 4.1.3.18; AHAS) catalyzes the initial step in the formation of the branched-chain amino acids. The enzyme from most bacteria is composed of a catalytic subunit, and a smaller regulatory subunit that is required for full activity and for sensitivity to feedback regulation by valine. A similar arrangement was demonstrated recently for yeast AHAS, and a putative regulatory subunit of tobacco AHAS has also been reported. In this latter case, the enzyme reconstituted from its purified subunits remained insensitive to feedback inhibition, unlike the enzyme extracted from native plant sources. Here we have cloned, expressed in Escherichia coli, and purified the AHAS regulatory subunit of Arabidopsis thaliana. Combining the protein with the purified A. thaliana catalytic subunit results in an activity stimulation that is sensitive to inhibition by valine, leucine, and isoleucine. Moreover, there is a strong synergy between the effects of leucine and valine, which closely mimics the properties of the native enzyme. The regulatory subunit contains a sequence repeat of approximately 180 residues, and we suggest that one repeat binds leucine while the second binds valine or isoleucine. This proposal is supported by reconstitution studies of the individual repeats, which were also cloned, expressed, and purified. The structure and properties of the regulatory subunit are reminiscent of the regulatory domain of threonine deaminase (EC 4.2.1.16), and it is suggested that the two proteins are evolutionarily related.
Collapse
Affiliation(s)
- Y T Lee
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry and Molecular Biology, University of Queensland, Brisbane QLD Australia 4072
| | | |
Collapse
|
17
|
Vyazmensky M, Barak Z, Chipman DM, Eichler J. Characterization of acetohydroxy acid synthase activity in the archaeon Haloferax volcanii. Comp Biochem Physiol B Biochem Mol Biol 2000; 125:205-10. [PMID: 10817907 DOI: 10.1016/s0305-0491(99)00170-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Whereas the biochemistry of acetohydroxy acid synthase has been extensively studied in bacteria and eukaryotes, relatively little is known about the enzyme in archaea, the third kingdom of life. The present study biochemically characterizes acetohydroxy acid synthase activity in the halophilic archaea Haloferax volcanii. In addressing ion requirements, enzyme inhibition and antibody labeling, the results reveal that, except for its elevated salt requirements, the haloarchaeal enzyme is remarkably similar to its bacterial counterpart.
Collapse
Affiliation(s)
- M Vyazmensky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
18
|
Carroll NM, Ross R, Kelly SM, Price NC, Sheehan D, Cogan TM. Characterization of recombinant acetolactate synthase from Leuconostoc lactis NCW1. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(99)00005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Pang SS, Duggleby RG. Expression, purification, characterization, and reconstitution of the large and small subunits of yeast acetohydroxyacid synthase. Biochemistry 1999; 38:5222-31. [PMID: 10213630 DOI: 10.1021/bi983013m] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetohydroxyacid synthase (AHAS, EC 4.1.3.18) catalyzes the first step in the biosynthesis of the branched-chain amino acids. In bacteria, the enzyme has a large subunit containing the catalytic machinery and a small subunit with a regulatory role. In eucaryotes, the evidence for a regulatory subunit is largely indirect and circumstantial. We investigated the possibility that the yeast open reading frame YCL009c is an AHAS small subunit. Analysis of the DNA sequence shows that it contains all the appropriate transcription, translation and regulatory signals. YCL009c was shown to be expressed in yeast and the protein localized in mitochondria where it undergoes removal of a transit peptide targeting sequence. This putative small subunit protein (ilv6) and the catalytic subunit of yeast AHAS (ilv2) were each overexpressed in Escherichia coli and purified to near homogeneity. Reconstitution studies showed that the ilv6 protein stimulates the catalytic activity of the ilv2 protein by up to 7-fold (from 6.8 +/- 0.7 to 49.0 +/- 1.8 U/mg) and confers upon it sensitivity to inhibition by valine (Ki = 0.16 +/- 0.02 mM). Valine inhibition is partially reversed by ATP. The reconstitution is favored by high concentrations of potassium phosphate ( approximately 1 M) and at neutral pH. Under optimal conditions for reconstitution, a dissociation constant for the subunits of 70 +/- 7 nM was determined. Valine inhibition is partial, resulting in a specific activity that is similar to that of the ilv2 protein alone. However, measurements of the Km for substrate rule out the possibility that valine inhibition is accomplished by dissociation of the subunits.
Collapse
Affiliation(s)
- S S Pang
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
20
|
Chipman D, Barak Z, Schloss JV. Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1385:401-19. [PMID: 9655946 DOI: 10.1016/s0167-4838(98)00083-1] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two groups of enzymes are classified as acetolactate synthase (EC 4. 1.3.18). This review deals chiefly with the FAD-dependent, biosynthetic enzymes which readily catalyze the formation of acetohydroxybutyrate from pyruvate and 2-oxobutyrate, as well as of acetolactate from two molecules of pyruvate (the ALS/AHAS group). These enzymes are generally susceptible to inhibition by one or more of the branched-chain amino acids which are ultimate products of the acetohydroxyacids, as well as by several classes of herbicides (sulfonylureas, imidazolinones and others). Some ALS/AHASs also catalyze the (non-physiological) oxidative decarboxylation of pyruvate, leading to peracetic acid; the possible relationship of this process to oxygen toxicity is considered. The bacterial ALS/AHAS which have been well characterized consist of catalytic subunits (around 60 kDa) and smaller regulatory subunits in an alpha2beta2 structure. In the case of Escherichia coli isozyme III, assembly and dissociation of the holoenzyme has been studied. The quaternary structure of the eukaryotic enzymes is less clear and in plants and yeast only catalytic polypeptides (homologous to those of bacteria) have been clearly identified. The presence of regulatory polypeptides in these organisms cannot be ruled out, however, and genes which encode putative ALS/AHAS regulatory subunits have been identified in some cases. A consensus sequence can be constructed from the 21 sequences which have been shown experimentally to represent ALS/AHAS catalytic polypeptides. Many other sequences fit this consensus, but some genes identified as putative 'acetolactate synthase genes' are almost certainly not ALS/AHAS. The solution of the crystal structures of several thiamin diphosphate (ThDP)-dependent enzymes which are homologous to ALS/AHAS, together with the availability of many amino acid sequences for the latter enzymes, has made it possible for two laboratories to propose similar, reasonable models for a dimer of catalytic subunits of an ALS/AHAS. A number of characteristics of these enzymes can now be better understood on the basis of such models: the nature of the herbicide binding site, the structural role of FAD and the binding of ThDP-Mg2+. The models are also guides for experimental testing of ideas concerning structure-function relationships in these enzymes, e.g. the nature of the substrate recognition site. Among the important remaining questions is how the enzyme suppresses alternative reactions of the intrinsically reactive hydroxyethylThDP enamine formed by the decarboxylation of the first substrate molecule and specifically promotes its condensation with 2-oxobutyrate or pyruvate.
Collapse
Affiliation(s)
- D Chipman
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | | | | |
Collapse
|
21
|
Chang AK, Duggleby RG. Expression, purification and characterization of Arabidopsis thaliana acetohydroxyacid synthase. Biochem J 1997; 327 ( Pt 1):161-9. [PMID: 9355748 PMCID: PMC1218776 DOI: 10.1042/bj3270161] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acetohydroxyacid synthase (EC 4.1.3.18) is the enzyme that catalyses the first step in the synthesis of the branched-chain amino acids valine, leucine and isoleucine. The AHAS gene from Arabidopsis thaliana with part of the chloroplast transit sequence removed was cloned into the bacterial expression vector pT7-7 and expressed in the Escherichia coli strain BL21(DE3). The expressed enzyme was purified by an extensive procedure involving (NH4)2SO4 fractionation followed by hydrophobic and anion-exchange chromatography. The purified enzyme appears as a single band on SDS/PAGE with a molecular mass of about 61 kDa. On gel filtration the enzyme is a dimer, migrating as a single peak with molecular masses of 109 and 113 kDa in the absence and presence of FAD respectively. Ion spray MS analysis yielded a mass of 63864 Da. The enzyme has optimum activity in the pH range 6.5-8.5 and exhibits absolute dependence on the three cofactors FAD, Mg2+ and thiamine diphosphate for activity. It displays negatively co-operative kinetics with respect to pyruvate concentration. A model was derived to explain the non-hyperbolic substrate-saturation curve, involving interaction between the active sites of the dimer. The Km for the first active site was found to be 8.01 +/- 0.66 mM; the Km for the second active site could not be accurately determined but was estimated to be approx. 100 mM. The enzyme is insensitive to valine, leucine and isoleucine but is strongly inhibited by the sulphonylurea herbicide, chlorsulphuron, and the imidazolinone herbicide, imazapyr. Inhibition by both herbicides exhibits slow-binding kinetics, whereas chlorsulphuron also shows tight-binding inhibition.
Collapse
Affiliation(s)
- A K Chang
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry, University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
22
|
Abstract
Acetolactate synthase catalyses the first step in branched-chain amino acid biosynthesis. The bacterial enzyme contains two large and two small subunits but there is only limited and circumstantial evidence for a small subunit in the eukaryotic enzyme. Here this evidence is summarised and protein sequences of two putative eukaryotic small subunits, from a yeast and a red alga, are presented.
Collapse
Affiliation(s)
- R G Duggleby
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry, University of Queensland, Brisbane, Australia.
| |
Collapse
|
23
|
Park HS, Xing R, Whitman WB. Nonenzymatic acetolactate oxidation to diacetyl by flavin, nicotinamide and quinone coenzymes. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1245:366-70. [PMID: 8541313 DOI: 10.1016/0304-4165(95)00103-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acetolactate nonenzymatically reduced flavins, quinones and nicotinamide coenzymes in a time-dependent manner at physiological pH and moderate temperature. In the presence of excess acetolactate, the reduction of FAD and NAD+ followed pseudo-first-order kinetics. The rate of reduction was proportional to the concentration of acetolactate, and the rate constants at 37 degrees C and pH 7.5 were 4.8 x 10(-2) M-1 s-1 and 7.4 x 10(-3) M-1 s-1 for FAD and NAD+, respectively. In contrast, ubiquinone reduction followed pseudo-zero-order kinetics in the presence of excess acetolactate. At 37 degrees C and pH 7.5, the rate of reduction was proportional to the acetolactate concentration, and the apparent rate constant was 8.3 x 10(-6) s-1. In contrast to FAD, the rate of reduction of ubiquinone was higher at low pH. The kinetics of ubiquinone reduction suggested that the rate-limiting step was acetolactate decarboxylation and formation of the enolate anion, whereas the rate of FAD reduction was governed by the second-order reaction of the enolate anion. Following the oxidation, acetolactate was converted to diacetyl. Reduced FAD formed by the reaction with acetolactate generated a low rate of O2 consumption during assays of the oxygenase activity of acetohydroxy acid synthase. The reaction of acetolactate with quinones may provide a mechanism for the nonenzymatic formation diacetyl in whole milk.
Collapse
Affiliation(s)
- H S Park
- Department of Microbiology, University of Georgia, Athens 30602-2605, USA
| | | | | |
Collapse
|
24
|
Xing R, Whitman WB. Purification and characterization of the oxygen-sensitive acetohydroxy acid synthase from the archaebacterium Methanococcus aeolicus. J Bacteriol 1994; 176:1207-13. [PMID: 8113159 PMCID: PMC205181 DOI: 10.1128/jb.176.5.1207-1213.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Acetohydroxy acid synthase (EC 4.1.3.18) of the archaebacterium Methanococcus aeolicus was purified 1,150-fold to homogeneity. The molecular weight of the purified enzyme was 125,000, and it contained only one type of subunit (M(r) = 58,000). The amino-terminal sequence had 46 to 57% similarity to those of the large subunits of the eubacterial anabolic enzymes and 37 to 43% similarity to those of the yeast and plant enzymes. The methanococcal enzyme had a pH optimum of 7.6. The pI, estimated by chromatofocusing, was 5.6. Activity required Mg2+ or Mn2+ ions, thiamine pyrophosphate, and a flavin. Flavin adenine dinucleotide, flavin mononucleotide, and riboflavin plus 10 mM phosphate all supported activity. However, activity was strongly inhibited by these flavins at 0.3 mM. The Michaelis constants for pyruvate, MgCl2, MnCl2, thiamine pyrophosphate, flavin adenine dinucleotide, and flavin mononucleotide were 6.8 mM, 0.3 mM, 0.16 mM, 1.6 microM, 0.4 microM, and 1.3 microM, respectively. In cell extracts, the enzyme was sensitive to O2 (half-life = 2.7 min with 5% O2 in the headspace), but the purified enzyme was less sensitive to O2 (half-life = 78.0 min with 20% O2). Reconstitution of the enzyme with flavin adenine dinucleotide increased the sensitivity to O2. Moreover, in the assay the homogeneous enzyme was rapidly inactivated by O2, and the concentration required for 50% inhibition (I50) was obtained with an atmosphere of 0.11% O2. The methanococcal enzyme has similarities to the eubacterial and eucaryotic enzymes, consistent with the ancient origin of the archaebacterial enzyme.
Collapse
Affiliation(s)
- R Xing
- Department of Microbiology, University of Georgia, Athens 30602-2605
| | | |
Collapse
|
25
|
Sella C, Weinstock O, Barak Z, Chipman DM. Subunit association in acetohydroxy acid synthase isozyme III. J Bacteriol 1993; 175:5339-43. [PMID: 8366022 PMCID: PMC206587 DOI: 10.1128/jb.175.17.5339-5343.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Acetohydroxy acid synthase isozyme III (AHAS III) from Escherichia coli is composed of large and small subunits (encoded by the genes ilvI and ilvH) in an alpha 2 beta 2 structure. The large (61-kDa) subunit apparently contains the catalytic machinery of the enzyme, while the small (17-kDa) subunit is required for specific stabilization of the active conformation of the large subunit as well as for valine sensitivity. The interaction between subunits has been studied by using purified enzyme and extracts containing subcloned subunits. The association between large and small subunits is reversible, with a dissociation constant sufficiently high to have important experimental consequences: the activity of the enzyme shows a concentration dependence curve which is concave upward, and this dependence becomes linear upon the addition of excess large or small subunits. We estimate that at a concentration of 10(-7) M for each subunit (7 micrograms of enzyme ml-1), the large subunits are only half associated as the I2H2 active holoenzyme. This dissociation constant is high enough to cause underestimation of the activity of AHAS III in bacterial extracts. The true activity of this isozyme in extracts is observed in the presence of excess small subunits, which maintain the enzyme in its associated form. Reexamination of an E. coli K-12 ilvBN+ ilvIH+ strain grown in glucose indicates that AHAS III is the major isozyme expressed. As an excess of small subunits does not influence the apparent Ki for valine inhibition of the purified enzyme, it is likely that valine binds to and inhibits I2H2 rather than inducing dissociation. AHAS I and II seem to show a much lower tendency to dissociate than does AHAS III.
Collapse
Affiliation(s)
- C Sella
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | |
Collapse
|
26
|
Yang JH, Kim SS. Purification and characterization of the valine sensitive acetolactate synthase from Serratia marcescens ATCC 25419. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1157:178-84. [PMID: 8507653 DOI: 10.1016/0304-4165(93)90062-d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The valine sensitive acetolactate synthase (ALS) isozyme from Serratia marcescens ATCC 25419 was purified to homogeneity. Analysis of the native molecular weight of the purified enzyme by the native pore gradient polyacrylamide gel electrophoresis indicated the molecular weight of about 178,000 and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the enzyme to be composed of two different types of subunits with molecular weights of 62,000 and 35,000. The molar ratio of the two polypeptides was estimated to be 1, suggesting that native enzyme is composed of two large subunits and two small subunits. The enzyme exhibits homotropic allosterism with pyruvate unlike other enteric ALS isozymes. The specificity ratio R (V[acetohydroxybutyrate]/V[acetolactate] = R.[alpha-ketobutyrate]/pyruvate]), of the enzyme was found to be 0 suggesting that the Serratia ALS has very high specificity for pyruvate. The pH optimum was around 7.5, and the enzyme was stable at 50 degrees C for 30 min. The pI value for the purified enzyme was 5.2. The concentration of branched chain amino acids for 50% inhibition of the enzyme was 0.1 mM for valine, and 1 mM for leucine and isoleucine, respectively.
Collapse
Affiliation(s)
- J H Yang
- Department of Biochemistry, College of Science, Yonsei University, Seoul, South Korea
| | | |
Collapse
|
27
|
Weinstock O, Sella C, Chipman DM, Barak Z. Properties of subcloned subunits of bacterial acetohydroxy acid synthases. J Bacteriol 1992; 174:5560-6. [PMID: 1512191 PMCID: PMC206499 DOI: 10.1128/jb.174.17.5560-5566.1992] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The acetohydroxy acid synthase (AHAS) isozymes from enterobacteria are each composed of a large and small subunit in an alpha 2 beta 2 structure. It has been generally accepted that the large (ca. 60-kDa) subunits are catalytic, while the small ones are regulatory. In order to further characterize the roles of the subunits as well as the nature and the specificities of their interactions, we have constructed plasmids encoding the large or small subunits of isozymes AHAS I and AHAS III, each with limited remnants of the other peptide. The catalytic properties of the large subunits have been characterized and compared with those of extracts containing the intact enzyme or of purified enzymes. Antisera to the isolated subunits have been used in Western blot (immunoblot) analyses for qualitative and semiquantitative determinations of the presence of the polypeptides in extracts. The large subunits of AHAS isozymes I and III have lower activities than the intact enzymes: Vmax/Km is 20 to 50 times lower in both cases. However, for AHAS I, most of this difference is due to the raised Km of the large subunit alone, while for AHAS III, it is due to a lowered Vmax. The substrate specificities, R, of large subunits are close to those of the intact enzymes. The catalytic activity of the large subunits of AHAS I is dependent on flavin adenine dinucleotide (FAD), as is that of the intact enzyme, although the apparent affinities of the large subunits alone for FAD are 10-fold lower. Isolated subunits are insensitive to valine inhibition. Nearly all of the properties of the intact AHAS isozyme I or III can be reconstituted by mixing extracts containing the respective large and small subunits. The mixing of subunits from different enzymes does not lead to activation of the large subunits. It is concluded that the catalytic machinery of these AHAS isozymes is entirely contained within the large subunits. The small subunits are required, however, for specific stabilization of an active conformation of the large subunits as well as for value sensitivity.
Collapse
Affiliation(s)
- O Weinstock
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | |
Collapse
|
28
|
Peng HL, Wang PY, Wu CM, Hwang DC, Chang HY. Cloning, sequencing and heterologous expression of a Klebsiella pneumoniae gene encoding an FAD-independent acetolactate synthase. Gene 1992; 117:125-30. [PMID: 1644303 DOI: 10.1016/0378-1119(92)90500-o] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The gene encoding the valine-resistant and FAD-independent acetolactate synthase of Klebsiella pneumoniae was isolated and expressed in Escherichia coli. The nucleotide sequence of this gene was determined and it exhibited an open reading frame of 1680 bp in length. In vivo expression of the acetolactate synthase-encoding gene in E. coli revealed a single 60-kDa protein which is consistent with the molecular weight calculated from the deduced amino acid sequence of the gene product. The gene product shares about 20-30% homology with the acetolactate synthases of E. coli, yeast and higher plants.
Collapse
Affiliation(s)
- H L Peng
- Department of Microbiology and Immunology, Chang-Gung Medical College, Taiwan, ROC
| | | | | | | | | |
Collapse
|
29
|
Singh B, Szamosi I, Hand JM, Misra R. Arabidopsis Acetohydroxyacid Synthase Expressed in Escherichia coli Is Insensitive to the Feedback Inhibitors. PLANT PHYSIOLOGY 1992; 99:812-6. [PMID: 16669005 PMCID: PMC1080549 DOI: 10.1104/pp.99.3.812] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Acetohydroxyacid synthase (AHAS), the first enzyme unique to the biosynthesis of isoleucine, leucine, and valine, is the target enzyme for several classes of herbicides. The AHAS gene from Arabidopsis thaliana, including the chloroplast transit peptide, was cloned into the bacterial expression plasmid pKK233-2. The resulting plasmid was used to transform an AHAS-deficient Escherichia coli strain MF2000. The growth of the MF2000 strain of E. coli was complemented by the functional expression of the Arabidopsis AHAS. The AHAS protein was processed to a molecular mass of 65 kilodaltons that was similar to the mature protein isolated from Arabidopsis seedlings. The AHAS activity extracted from the transformed E. coli cells was inhibited by imidazolinone and sulfonylurea herbicides. AHAS activity extracted from Arabidopsis is inhibited by valine and leucine; however, this activity was insensitive to these feedback inhibitors when extracted from the transformed E. coli.
Collapse
Affiliation(s)
- B Singh
- American Cyanamid Company, P.O. Box 400, Princeton, New Jersey 08543-0400
| | | | | | | |
Collapse
|
30
|
Snoep JL, Teixeira de Mattos MJ, Starrenburg MJ, Hugenholtz J. Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis. J Bacteriol 1992; 174:4838-41. [PMID: 1624471 PMCID: PMC206284 DOI: 10.1128/jb.174.14.4838-4841.1992] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pyruvate dehydrogenase complex of Lactococcus lactis subsp. lactis bv. diacetylactis has a specific activity of 6.6 U/mg and a Km of 1 mM for pyruvate. The specific activities of E2 and E3 in the complex are 30 and 0.36 U/mg, respectively. The complex is very sensitive to NADH inhibition and consists of four subunits: E1 alpha (44 kDa), E1 beta (35 kDa), E2 (73 kDa), and E3 (60 kDa). The L. lactis alpha-acetolactate synthase has a specific activity of 103 U/mg and a Km of 50 mM for pyruvate. Thiamine pyrophosphate (Km = 3.2 microM) and divalent cations are essential for activity. The native enzyme measures 172 kDa and consists of 62-kDa monomers. The role of both enzymes in product formation is discussed in view of NADH inhibition and competition for pyruvate.
Collapse
Affiliation(s)
- J L Snoep
- Department of Microbiology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
31
|
Singh BK, Lumanglas A, Wang BS. Production of a monocot-specific monoclonal antibody against acetohydroxyacid synthase and its use in the purification and characterization of the enzyme. Proc Natl Acad Sci U S A 1991; 88:4572-6. [PMID: 2052541 PMCID: PMC51707 DOI: 10.1073/pnas.88.11.4572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acetohydroxyacid synthase [AHAS; acetolactate pyruvate-lyase (carboxylating), EC 4.1.3.18], the first enzyme unique to the biosynthesis of valine, leucine, and isoleucine, is a known target for several different chemical classes of herbicides. Antibodies required for immunological characterization of the enzyme have not been generated by the conventional method of antibody production using purified protein. Monoclonal antibodies were raised against AHAS from corn by using as immunogen a synthetic peptide representing this enzyme. This antibody immunoprecipitated the enzyme activity from corn. On a Western blot, a protein band with a molecular weight of 65,000 was detected in crude extracts of corn. Furthermore, a monoclonal antibody immunoaffinity gel was used to isolate a single protein from crude enzyme preparations that migrated at Mr 65,000 in an SDS/polyacrylamide gel. The molecular weight of this protein band is the molecular weight predicted for a plant AHAS from a cloned gene sequence. These results strongly suggest that the Mr 65,000 protein represents AHAS in corn extracts. Interestingly, the monoclonal antibody specifically recognized the enzyme from monocots and did not crossreact with AHAS from any dicot species tested. Identification of this monoclonal antibody that distinguishes monocot and dicot AHAS is significant because of a very high degree of amino acid conservation (85%) between AHAS proteins from different species.
Collapse
Affiliation(s)
- B K Singh
- Agricultural Research Division, American Cyanamid Company, Princeton, NJ 08543-0400
| | | | | |
Collapse
|
32
|
Durner J, Gailus V, Böger P. New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. PLANT PHYSIOLOGY 1991; 95:1144-9. [PMID: 16668103 PMCID: PMC1077664 DOI: 10.1104/pp.95.4.1144] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The sulfonylurea herbicide chlorsulfuron and the imidazolinone herbicide imazaquin were shown to be noncompetitive and uncompetitive inhibitors, respectively, of purified acetolactate synthase from barley (Hordeum vulgare L.) with respect to pyruvate. From double-reciprocal plots of the time-dependent biphasic inhibition by chlorsulfuron, an initial apparent inhibition constant of 68 nanomolar was calculated (a 0 to 4 minute assay was used for the initial inhibition), and a final steady-state dissociation constant of 3 nanomolar was estimated. The corresponding constants for imazaquin were 10 and 0.55 micromolar. Specific binding of [(14)C]chlorsulfuron and [(14)C]imazaquin to purified acetolactate synthase from barley and partially purified enzyme from corn (Zea mays L.) could be demonstrated by gel filtration and equilibrium dialysis. Evidence is presented that the binding of the inhibitors to the enzyme follows the previously described mechanism of slow reversibility once excess inhibitor has been removed. However, after formation of the slowly reversible complex and subsequent dissociation, both chlorsulfuron and imazaquin seem to permanently inactivate acetolactate synthase. These results add a new feature to the mode of action of these herbicides with respect to their high herbicidal potency.
Collapse
Affiliation(s)
- J Durner
- Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-7750 Konstanz, Federal Republic of Germany
| | | | | |
Collapse
|
33
|
Landstein D, Chipman DM, Arad SM, Barak Z. Acetohydroxy Acid Synthase Activity in Chlorella emersonii under Auto- and Heterotrophic Growth Conditions. PLANT PHYSIOLOGY 1990; 94:614-20. [PMID: 16667756 PMCID: PMC1077276 DOI: 10.1104/pp.94.2.614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Acetohydroxyacid synthase (AHAS) activity was studied in the green unicellular alga Chlorella emersonii. This activity and its regulation was compared in the algae grown autotrophically and heterotrophically on glucose in the dark. No evidence for the existence of more than one enzyme was found. The activity in crude extracts from either heterotrophically or autotrophically grown cells showed a K(m) for pyruvate of 9 millimolar, a 22-fold preference for 2-ketobutyrate over pyruvate as the second substrate, 50% inhibition by 0.5 millimolar valine, and 50% inhibition by 0.3 micromolar sulfometuron methyl (SMM). Spontaneous mutants of the alga resistant to SMM were isolated, which appeared to be single gene mutants containing SMM-resistant AHAS activity. Hence, AHAS appears to be the sole direct target site of SMM in C. emersonii. The fact that the mutants had equivalent SMM resistance under auto- and heterotrophic conditions further supports the conclusion that the same enzyme functions under both physiological regimes. The addition of valine and isoleucine leads to partial relief of SMM inhibition of biomass increase, but not of SMM inhibition of cell division.
Collapse
Affiliation(s)
- D Landstein
- Department of Biology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
34
|
Durner J, Böger P. Oligomeric forms of plant acetolactate synthase depend on flavin adenine dinucleotide. PLANT PHYSIOLOGY 1990; 93:1027-31. [PMID: 16667552 PMCID: PMC1062625 DOI: 10.1104/pp.93.3.1027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Acetolactate synthase (ALS, EC 4.1.3.18) has been extracted and partially purified from etiolated barley shoots (Hordeum vulgare L.). Multiple forms of this enzyme were separated by gel filtration and/or anion-exchange chromatography using fast protein liquid chromatography. It could be demonstrated that these two species are in equilibrium, which strongly depends on the structural role of flavin adenine dinucleotide and pyruvate. With 50 micromolar of flavin adenine dinucleotide in the medium most of the ALS aggregates as a high molecular weight form (M(r) = 440,000), while 50 millimolar pyruvate facilitates dissociation into the smaller form (M(r) = 200,000). Data are presented to show that two enzymatically active forms are not isozymes but different oligomeric species or aggregates of the basic 58-kilodalton subunit of ALS. These different ALS species exhibit little difference in feedback inhibition by valine, leucine and isoleucine or in inhibition by the sulfonylurea herbicide chlorsulfuron. Both aggregation forms show a broad pH-optimum between 6.5 and 7. Furthermore, the affinity for pyruvate and the amount of directly-formed acetoin indicate similar properties of these separated ALS forms.
Collapse
Affiliation(s)
- J Durner
- Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-7750 Konstanz, Federal Republic of Germany
| | | |
Collapse
|
35
|
Aulabaugh A, Schloss JV. Oxalyl hydroxamates as reaction-intermediate analogues for ketol-acid reductoisomerase. Biochemistry 1990; 29:2824-30. [PMID: 2189496 DOI: 10.1021/bi00463a027] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
N-Hydroxy-N-isopropyloxamate (IpOHA) is an exceptionally potent inhibitor of the Escherichia coli ketol-acid reductoisomerase. In the presence of Mg2+ or Mn2+, IpOHA inhibits the enzyme in a time-dependent manner, forming a nearly irreversible complex. Nucleotide, which is essential for catalysis, greatly enhances the binding of IpOHA by the reductoisomerase, with NADPH (normally present during the enzyme's rearrangement step, i.e., conversion of a beta-keto acid into an alpha-keto acid, in either the forward or reverse physiological reactions) being more effective than NADP. In the presence of Mg2+ and NADPH, IpOHA appears to bind to the enzyme in a two-step mechanism, with an initial inhibition constant of 160 nM and a maximum rate of formation of the tight, slowly reversible complex of 0.57 min-1 (values that give an association rate of IpOHA, at low concentration, of 5.9 X 10(4) M-1 s-1). The rate of exchange of [14C]IpOHA from an enzyme-[14C]IpOHA-Mg2(+)-NADPH complex with exogenous, unlabeled IpOHA has a half-time of 6 days (150 h). This dissociation rate (1.3 X 10(-6) s-1) and the association rate determined by inactivation kinetics define an overall dissociation constant of 22 pM. By contrast, in the presence of Mn2+ and NADPH, the corresponding association and dissociation rates for IpOHA are 8.2 X 10(4) M-1 s-1 and 3.2 X 10(-6) s-1 (half-time = 2.5 days), respectively, which define an overall dissociation constant of 38 pM. In the presence of NADP or in the absence of nucleotide (both in the presence of Mg2+), the enzyme-IpOHA complex is far more labile, with dissociation half-times of 28 and 2 h, respectively. In the absence of Mg2+ or Mn2+, IpOHA does not exhibit time-dependent inhibition of the reductoisomerase.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Aulabaugh
- Central Research and Development Department, E. I. du Pont de Nemours and Company, Wilmington, Delaware 19880-0328
| | | |
Collapse
|
36
|
Poulsen C, Stougaard P. Purification and properties of Saccharomyces cerevisiae acetolactate synthase from recombinant Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:433-9. [PMID: 2684671 DOI: 10.1111/j.1432-1033.1989.tb15133.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The yeast ilv2 gene, encoding acetolactate synthase, was subcloned in an Escherichia coli expression vector. Although a major part of the acetolactate synthase synthesized by E. coli cells harbouring this vector was packaged into protein inclusion bodies, we used these recombinant E. coli cells to produce large quantities of the yeast enzyme. The yeast acetolactate synthase was purified to homogeneity using first streptomycin and ammonium sulfate precipitations, followed by T-gel thiophilic interaction, Sephacryl S-300 gel filtration, Mono Q anion exchange, and Superose 12 gel filtration chromatography. SDS/PAGE and gel filtration of the purified enzyme showed that it is a dimer composed of two subunits, each with the molecular mass of 75 kDa. The purified yeast acetolactate synthase was further characterized with respect to pH optimum, dependence of the substrate, pyruvate, and requirements of the cofactors, thiamin diphosphate, Mg2+, and FAD.
Collapse
Affiliation(s)
- C Poulsen
- Danisco A/S, Biotechnology Research Division, Copenhagen, Denmark
| | | |
Collapse
|
37
|
Weber RF, Silverman PM. The cpx proteins of Escherichia coli K12. Structure of the cpxA polypeptide as an inner membrane component. J Mol Biol 1988; 203:467-78. [PMID: 3058985 DOI: 10.1016/0022-2836(88)90013-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gene cpxA of Escherichia coli K12 encodes the 52,000 Mr CpxA polypeptide. The complete cpxA nucleotide sequence, reported here, predicted that CpxA contains two extended, hydrophobic segments in its amino-terminal half and could therefore be a membrane protein. Using a lac-cpxA operon fusion plasmid to overproduce CpxA and an immunochemical assay to detect the polypeptide, we show that CpxA fractionated with the bacterial inner membrane during differential and isopycnic sedimentation. Moreover, the protein could be solubilized by extraction of crude membranes with non-ionic detergents but not with KCl or NaOH, indicating that Cpx is an intrinsic membrane component. Analysis of TnphoA insertions in cpxA indicated that the region between the hydrophobic segments of CpxA is periplasmic, whereas the region carboxy-terminal to the second such segment is cytoplasmic. Based on these structural data, we propose that CpxA functions as a trans-membrane sensory protein. The DNA sequence data also indicate that cpxA is the 3' gene of an operon.
Collapse
Affiliation(s)
- R F Weber
- Department of Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
38
|
Chang YY, Cronan JE. Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino acid biosynthetic pathway. J Bacteriol 1988; 170:3937-45. [PMID: 3045082 PMCID: PMC211393 DOI: 10.1128/jb.170.9.3937-3945.1988] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A number of enzymes require flavin for their catalytic activity, although the reaction catalyzed involves no redox reaction. The best studied of these enigmatic nonredox flavoproteins are the acetohydroxy acid synthases (AHAS), which catalyze early steps in the synthesis of branched-chain amino acids in bacteria, yeasts, and plants. Previously, work from our laboratory showed strong amino acid sequence homology between these enzymes and Escherichia coli pyruvate oxidase, a classical flavoprotein dehydrogenase that catalyzes the decarboxylation of pyruvate to acetate. We have now shown this homology (i) to also be present in the DNA sequences and (ii) to represent functional homology in that pyruvate oxidase has AHAS activity and a protein consisting of the amino-terminal half of pyruvate oxidase and the carboxy-terminal half of E. coli AHAS I allows native E. coli AHAS I to function without added flavin. The hybrid protein contains tightly bound flavin, which is essential for the flavin substitution activity. These data, together with the sequence homologies and identical cofactors and substrates, led us to propose that the AHAS enzymes are descended from pyruvate oxidase (or a similar protein) and, thus, that the flavin requirement of the AHAS enzymes is a vestigial remnant, which may have been conserved to play a structural rather than a chemical function.
Collapse
Affiliation(s)
- Y Y Chang
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
39
|
Eoyang L, Silverman PM. Purification and assays of acetolactate synthase I from Escherichia coli K12. Methods Enzymol 1988; 166:435-45. [PMID: 3071719 DOI: 10.1016/s0076-6879(88)66057-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Riccardi G, Rossi E, Nielsen E, Felice M. Detection and characterization of acetohydroxy acid synthase inSpirulina platensis. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb02674.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Mazur BJ, Chui CF, Smith JK. Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. PLANT PHYSIOLOGY 1987; 85:1110-7. [PMID: 16665813 PMCID: PMC1054403 DOI: 10.1104/pp.85.4.1110] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Acetolactate synthase (ALS) is the first common enzyme in the biosynthetic pathways to valine, isoleucine, and leucine. It is the target of two structurally unrelated classes of herbicides, the sulfonylureas and the imidazolinones. Genomic clones encoding ALS have been isolated from the higher plants Arabidopsis thaliana and Nicotiana tabacum, using a yeast ALS gene as a heterologous hybridization probe. Clones were positively identified by the homology of their deduced amino acid sequences with those of yeast and bacterial ALS isozymes. The tobacco and Arabidopsis ALS genes have approximately 70% nucleotide homology, and encode mature proteins which are approximately 85% homologous. Little homology is seen between the amino acid sequences of the presumptive N-terminal chloroplast transit peptides. Both plant genes lack introns. The tobacco ALS gene was isolated from a line of tobacco which is resistant to the sulfonylurea herbicides due to an alteration in ALS. The tobacco gene which was isolated codes for an ALS that is sensitive to the herbicides, as assayed by transformation of the gene into sensitive tobacco cells.
Collapse
Affiliation(s)
- B J Mazur
- Central Research and Development Department, E. I. Du Pont de Nemours & Co., Experimental Station 402, Wilmington, Delaware 19898
| | | | | |
Collapse
|
42
|
Chaleff RS, Bascomb NF. Genetic and biochemical evidence for multiple forms of acetolactate synthase in Nicotiana tabacum. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00337755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Xing RY, Whitman WB. Sulfometuron methyl-sensitive and -resistant acetolactate synthases of the archaebacteria Methanococcus spp. J Bacteriol 1987; 169:4486-92. [PMID: 3654579 PMCID: PMC213812 DOI: 10.1128/jb.169.10.4486-4492.1987] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The herbicide sulfometuron methyl (SM) inhibited growth of some methanococci. Of 28 strains tested, the growth of 7 was completely inhibited by 0.55 mM SM. Growth of an additional 14 strains was partially inhibited, and the growth of 7 strains was unaffected by this concentration of SM. In some cases, the branched-chain amino acids protected growth. Growth inhibition was correlated with the Ki for SM of acetolactate synthase (ALS). For the enzymes from bacteria representative of the sensitive, partially resistant, and resistant methanococci (Methanococcus aeolicus, Methanococcus maripaludis, and Methanococcus voltae, respectively), the Ki for SM was 0.0012, 0.34, and greater than 1.0 mM, respectively. Inhibition was uncompetitive with respect to pyruvate. Based on these observations, ALS appeared to be the major if not the sole site of action of SM in the methanococci. The sensitivity of the ALS from these three methanococci to feedback inhibition by branched-chain amino acids was also quite different. Although all three were sensitive to feedback inhibition by valine, the Ki varied 20-fold, from 0.01 to 0.22 mM. Moreover, only the ALS from M. maripaludis was sensitive to inhibition by leucine, and the Ki was 1.8 mM. The Ki for isoleucine for the ALS from both M. maripaludis and M. voltae was about 0.1 mM. The ALS from M. aeolicus was not inhibited by isoleucine. In other respects, the ALSs from the methanococci were very similar. After dialysis, thiamine pyrophosphate but not FAD and Mg2+ was required for maximal activity, and they were all rapidly inactivated by oxygen. Although the methanococcal ALSs exhibited diverse properties, the range of catalytic and regulatory properties closely resembled those of the eubacterial enzymes.
Collapse
Affiliation(s)
- R Y Xing
- Department of Microbiology, University of Georgia, Athens 30602
| | | |
Collapse
|
44
|
Barak Z, Chipman DM, Gollop N. Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria. J Bacteriol 1987; 169:3750-6. [PMID: 3301814 PMCID: PMC212461 DOI: 10.1128/jb.169.8.3750-3756.1987] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rates of formation of the two alternative products of acetohydroxy acid synthase (AHAS) have been determined by a new analytical method (N. Gollop, Z. Barak, and D. M. Chipman, Anal. Biochem., 160:323-331, 1987). For each of the three distinct isozymes of AHAS in Escherichia coli and Salmonella typhimurium, a specificity ratio, R, was defined: Formula: see text, which is constant over a wide range of substrate concentrations. This is consistent with competition between pyruvate and 2-ketobutyrate for an active acetaldehyde intermediate formed irreversibly after addition of the first pyruvate moiety to the enzyme. Isozyme I showed no product preference (R = 1), whereas isozymes II and III form acetohydroxybutyrate (AHB) at approximately 180- and 60-fold faster rates, respectively, than acetolactate (AL) at equal pyruvate and 2-ketobutyrate concentrations. R values higher than 60 represent remarkably high specificity in favor of the substrate with one extra methylene group. In exponentially growing E. coli cells (under aerobic growth on glucose), which contain about 300 microM pyruvate and only 3 microM 2-ketobutyrate, AHAS I would produce almost entirely AL and only 1 to 2% AHB. However, isozymes II and III would synthesize AHB (on the pathway to Ile) and AL (on the pathway to valine-leucine) in essentially the ratio required for protein synthesis. The specificity ratio R of any AHAS isozyme was affected neither by the natural feedback inhibitors (Val, Ile) nor by the pH. On the basis of the specificities of the isozymes, the known regulation of AHAS I expression by the catabolite repression system, and the reported behavior of bacterial mutants containing single AHAS isozymes, we suggest that AHAS I enables a bacterium to cope with poor carbon sources, which lead to low endogenous pyruvate concentrations. Although AHAS II and III are well suited to producing the branched-chain amino acid precursors during growth on glucose, they would fail to provide appropriate quantities of AL when the concentration of pyruvate is relatively low.
Collapse
|
45
|
Silverman PM, Eoyang L. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis. J Bacteriol 1987; 169:2494-9. [PMID: 3294793 PMCID: PMC212102 DOI: 10.1128/jb.169.6.2494-2499.1987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acetohydroxyacid synthase I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of 14C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. We confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site.
Collapse
|
46
|
Lu MF, Umbarger HE. Effects of deletion and insertion mutations in the ilvM gene of Escherichia coli. J Bacteriol 1987; 169:600-4. [PMID: 3027038 PMCID: PMC211820 DOI: 10.1128/jb.169.2.600-604.1987] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A plasmid was constructed that carried the ilvG and ilvM genes and the associated promoter and leader regions derived from the K-12 strain of Escherichia coli. The ilvG gene contained a + 1 frameshift mutation that enabled the plasmid to specify acetohydroxyacid synthase II. The plasmid was modified by deletions in the terminus of and within the ilvM gene and by insertions into the ilvM gene. The effects of these modifications on the phenotypes of the plasmids were examined in a host strain that lacked all three isozymes of acetohydroxyacid synthase. Most of the ilvM mutant plasmids so obtained permitted growth of the host strain in the absence of isoleucine but not in the absence of valine. Growth in the presence of valine, however, was very slow. No significant acetohydroxyacid synthase activity could be detected even when the cells were grown in a valine-supplemented minimal medium. It thus appears that, at most, only a very low level of acetohydroxyacid synthase activity occurred with ilvG in the absence of ilvM and that low activity was more effective for acetohydroxy butyrate formation than for acetolactate formation. The ilvM gene product could be formed under the control of the lac promoter in the presence of a plasmid that carried an in-frame gene fusion between lacZ and the downstream portion of ilvG. Extracts from the host strain that contained such an IlvG(-)-IlvM+ plasmid could be combined with extracts from cells that contained one of the IlvG+-IlvM- plasmids to yield acetohydroxyacid synthase activity. Thus, the ilvM and ilvG genes could be expressed independently of each other.
Collapse
|
47
|
Eoyang L, Silverman PM. Role of small subunit (IlvN polypeptide) of acetohydroxyacid synthase I from Escherichia coli K-12 in sensitivity of the enzyme to valine inhibition. J Bacteriol 1986; 166:901-4. [PMID: 3011751 PMCID: PMC215211 DOI: 10.1128/jb.166.3.901-904.1986] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Most of the coding sequence for the IlvN polypeptide subunit of acetohydroxyacid synthase I was deleted from the ilvB+ ilvN+ plasmid pTCN12 by in vitro methods. Several ilvB+ delta ilvN derivatives of pTCN12 were identified among transformants of a strain otherwise lacking any acetohydroxyacid synthase. Deletion derivatives produced an enzymatically active IlvB polypeptide, as shown by the Ilv+ phenotype of transformed cells and by immunologic and enzymatic assays. However, whereas the growth of pTCN12 transformants was sensitive to valine inhibition, growth of the ilvB+ delta ilvN transformants was relatively resistant. Moreover, in vitro analyses confirmed that both acetolactate and acetohydroxybutyrate synthesis in extracts of the ilvB+ delta ilvN transformants was resistant to valine inhibition, in comparison with that in extracts of pTCN12 transformants or with that catalyzed by purified acetohydroxyacid synthase I. The IlvN polypeptide had a minimal effect, if any, on IlvB polypeptide accumulation as measured by immunoprecipitation, but its absence resulted in a greater than 10-fold reduction in enzyme specific activity.
Collapse
|
48
|
The Cpx proteins of Escherichia coli K12. Immunologic detection of the chromosomal cpxA gene product. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38558-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
Cuozzo M, Silverman PM. Characterization of the F plasmid TraJ protein synthesized in F' and Hfr strains of Escherichia coli K-12. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)89230-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Van Dyk TK, LaRossa RA. Sensitivity of a Salmonella typhimurium aspC mutant to sulfometuron methyl, a potent inhibitor of acetolactate synthase II. J Bacteriol 1986; 165:386-92. [PMID: 3003025 PMCID: PMC214429 DOI: 10.1128/jb.165.2.386-392.1986] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sulfometuron methyl is a potent and specific inhibitor of acetolactate synthase II in Salmonella typhimurium. Mutant strains sensitive to sulfometuron methyl on minimal medium were isolated following mutagenesis with Tn10. A conditionally auxotrophic insertion mutant, strain SMS409, which required aspartate at high temperatures or in the presence of tyrosine, was found among the 15 mutants isolated. The Tn10 insertion in strain SMS409 was mapped by conjugation and transduction to the region between aroA and pncB at 20 min on the chromosome of S. typhimurium; this location is similar to the genetic location of aspC in Escherichia coli. The specific activity of the aspC product, aspartate aminotransferase, was severely reduced in strain SMS409. This indicated that the Tn10 insertion in strain SMS409 inactivated aspC. An aspC mutant of E. coli was also inhibited by either sulfometuron methyl or tyrosine. We present a hypothesis which relates the observed alpha-ketobutyrate accumulation in sulfometuron methyl-inhibited cultures of strain SMS409 to aspartate starvation.
Collapse
|