1
|
Desmet S, Van Laere K, Van Huylenbroeck J, Geelen D, De Keyser E, Dhooghe E. Molecular and cytogenetic characterization of Osteospermum fruticosum lines harboring wild type pRi rol genes. PLoS One 2024; 19:e0306905. [PMID: 39298448 PMCID: PMC11412668 DOI: 10.1371/journal.pone.0306905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/25/2024] [Indexed: 09/21/2024] Open
Abstract
Transgenic lines engineered through wild type Rhizobium rhizogenes display an altered phenotype known as the Ri phenotype. This phenotype includes a more compact plant habit, which has proved useful to obtain more compact varieties that require less chemical growth regulation. Here, we develop a method for the molecular and cytogenetic characterization of Cape daisy (Osteospermum fruticosum Norl.) Ri lines in order to predict segregation of pRi T-DNA genes. Analysis of copy number variation (CNV) by means of digital PCR indicated large variation in the copy number of the inserted root oncogenic loci (rol) genes, ranging from 1 to more than 15 copies. In addition, up to 9 copies of the auxin biosynthesis genes (aux) were present in a single Ri line. Visualization of pRiA4 and pRi1724 rol and aux insertion in 4 Ri lines was performed through Fluorescence In Situ Hybridization. The number of rol integrated loci varied from 1 to 3 loci. In contrast, the different TR-gene copies were confined to a single locus which consistently co-localized with a TL locus, this was demonstrated for the first time. Based on CNV and FISH a single Ri line, harboring 7 pRi1724 rol gene copies dispersed over 3 integration loci, was selected for breeding. Copy number segregation in R1 progeny of 2, 3, 4 and 5 pRi1724 copies was confirmed, indicating that the evaluation of the breeding value of first generation Ri lines is possible through CNV and FISH.
Collapse
Affiliation(s)
- Siel Desmet
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Katrijn Van Laere
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Johan Van Huylenbroeck
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Danny Geelen
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ellen De Keyser
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Emmy Dhooghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| |
Collapse
|
2
|
Liu J, Zhao Y, Zhang J, Kong Y, Liu P, Fang Y, Cui M, Pei T, Zhong X, Xu P, Qiu W, Yang D, Martin C, Zhao Q. Production of species-specific anthocyanins through an inducible system in plant hairy roots. Metab Eng 2024; 81:182-196. [PMID: 38103887 DOI: 10.1016/j.ymben.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Anthocyanins are widely distributed pigments in flowering plants with red, purple or blue colours. Their properties in promoting heath make anthocyanins perfect natural colourants for food additives. However, anthocyanins with strong colour and stability at neutral pH, suitable as food colourants are relatively rare in nature. Acylation increases anthocyanin stability and confers bluer colour. In this study, we isolated two anthocyanin regulators SbMyb75 and SbDel from S. baicalensis, and showed that constitutive expression of the two TFs led to accumulation of anthocyanins at high levels in black carrot hairy roots. However, these hairy roots had severe growth problems. We then developed a β-estradiol inducible system using XVE and a Lex-35S promoter, to initiate expression of the anthocyanin regulators and induced this system in hairy roots of black carrot, tobacco and morning glory. Anthocyanins with various decorations were produced in these hairy roots without any accompanying side-effects on growth. We further produced highly acylated anthocyanins with blue colour in a 5 L liquid culture in a bioreactor of hairy roots from morning glory. We provide here a strategy to produce highly decorated anthocyanins without the need for additional engineering of any of the genes encoding decorating enzymes. This strategy could be transferred to other species, with considerable potential for natural colourant production for the food industries.
Collapse
Affiliation(s)
- Jie Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yuanxiu Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingmeng Zhang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Pan Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yumin Fang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Mengying Cui
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Tianlin Pei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Zhong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenqing Qiu
- Department of General Surgery, Shanghai Xuhui Central Hospital, Shanghai, 200031, China; Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200433, China
| | - Dongfeng Yang
- Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
3
|
Bao J, Yang J, Lu X, Ma L, Shi X, Lan S, Zhao Y, Cao J, Ma S, Li S. Exogenous Melatonin Promotes Glucoraphanin Biosynthesis by Mediating Glutathione in Hairy Roots of Broccoli ( Brassica oleracea L. var. italica Planch). PLANTS (BASEL, SWITZERLAND) 2023; 13:106. [PMID: 38202414 PMCID: PMC10780497 DOI: 10.3390/plants13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
To investigate the mechanism of melatonin (MT)-mediated glutathione (GSH) in promoting glucoraphanin (GRA) and sulforaphane (SF) synthesis, the gene expression pattern and protein content of hairy broccoli roots under MT treatment were analyzed by a combination of RNA-seq and tandem mass spectrometry tagging (TMT) techniques in this study. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that both proteins and mRNAs with the same expression trend were enriched in the "Glutathione metabolism (ko00480)" and "Proteasome (ko03050)" pathways, and most of the differentially expressed genes (DEGs) and differentially abundant proteins (DAPs) regulating the two pathways were downregulated. The results showed that endogenous GSH concentration and GR activity were increased in hairy roots after MT treatment. Exogenous GSH could promote the biosynthesis of GRA and SF, and both exogenous MT and GSH could upregulate the expression of the GSTF11 gene related to the sulfur transport gene, thus promoting the biosynthesis of GRA. Taken together, this study provides a new perspective to explore the complex molecular mechanisms of improving GRA and SF synthesis levels by MT and GSH regulation.
Collapse
Affiliation(s)
- Jinyu Bao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.B.); (L.M.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jie Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Lei Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.B.); (L.M.)
| | - Xiaotong Shi
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Shimin Lan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Yi Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Jie Cao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Shaoying Ma
- Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Sheng Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.B.); (L.M.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| |
Collapse
|
4
|
Ying W, Wen G, Xu W, Liu H, Ding W, Zheng L, He Y, Yuan H, Yan D, Cui F, Huang J, Zheng B, Wang X. Agrobacterium rhizogenes: paving the road to research and breeding for woody plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1196561. [PMID: 38034586 PMCID: PMC10682722 DOI: 10.3389/fpls.2023.1196561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
Woody plants play a vital role in global ecosystems and serve as valuable resources for various industries and human needs. While many woody plant genomes have been fully sequenced, gene function research and biotechnological breeding advances have lagged behind. As a result, only a limited number of genes have been elucidated, making it difficult to use newer tools such as CRISPR-Cas9 for biotechnological breeding purposes. The use of Agrobacterium rhizogenes as a transformative tool in plant biotechnology has received considerable attention in recent years, particularly in the research field on woody plants. Over the past three decades, numerous woody plants have been effectively transformed using A. rhizogenes-mediated techniques. Some of these transformed plants have successfully regenerated. Recent research on A. rhizogenes-mediated transformation of woody plants has demonstrated its potential for various applications, including gene function analysis, gene expression profiling, gene interaction studies, and gene regulation analysis. The introduction of the Ri plasmid has resulted in the emergence of several Ri phenotypes, such as compact plant types, which can be exploited for Ri breeding purposes. This review paper presents recent advances in A. rhizogenes-mediated basic research and Ri breeding in woody plants. This study highlights various aspects of A. rhizogenes-mediated transformation, its multiple applications in gene function analysis, and the potential of Ri lines as valuable breeding materials.
Collapse
Affiliation(s)
- Wei Ying
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Guangchao Wen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Wenyuan Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Haixia Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Wona Ding
- College of Science and Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Traverse KKF, Mortensen S, Trautman JG, Danison H, Rizvi NF, Lee-Parsons CWT. Generation of Stable Catharanthus roseus Hairy Root Lines with Agrobacterium rhizogenes. Methods Mol Biol 2022; 2469:129-144. [PMID: 35508835 DOI: 10.1007/978-1-0716-2185-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Agrobacterium rhizogenes is the bacterial agent that causes hairy root disease in dicots and is purposefully engineered for the development of transgenic hairy root cultures. Due to their genetic and metabolic stability, hairy root cultures offer advantages as a tissue culture system for investigating the function of transgenes and as a production platform for specialized metabolites or proteins. The process for generating hairy root cultures involves first infecting the explant with A. rhizogenes, excising and eliminating A. rhizogenes from the emerging hairy roots, selecting for transgenic hairy roots on plates containing the selective agent, confirming genomic integration of transgenes by PCR, and finally adapting the hairy roots in liquid media. Here we provide a detailed protocol for developing and maintaining transgenic hairy root cultures of our medicinal plant of interest, Catharanthus roseus.
Collapse
Affiliation(s)
| | | | - Juliet G Trautman
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Hope Danison
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Noreen F Rizvi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Carolyn W T Lee-Parsons
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
6
|
Desmet S, Dhooghe E, De Keyser E, Van Huylenbroeck J, Geelen D. Compact shoot architecture of Osteospermum fruticosum transformed with Rhizobium rhizogenes. PLANT CELL REPORTS 2021; 40:1665-1678. [PMID: 34052885 DOI: 10.1007/s00299-021-02719-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Improved compact shoot architecture of Osteospermum fruticosum Ri lines obtained through Rhizobium rhizogenes transformation reduces the need for chemical growth retardants. Compactness is for many ornamental crops an important commercial trait that is usually obtained through the application of growth retardants. Here, we have adopted a genetic strategy to introduce compactness in the perennial shrub Cape daisy (Osteospermum fruticosum Norl.). To this end, O. fruticosum was transformed using six different wild type Rhizobium rhizogenes strains. The most effective R. rhizogenes strains Arqua1 and ATCC15834 were used to create hairy root cultures from six Cape daisy genotypes. These root cultures were regenerated to produce transgenic Ri lines, which were analyzed for compactness. Ri lines displayed the characteristic Ri phenotype, i.e., reduced plant height, increased branching, shortened internodes, shortened peduncles, and smaller flowers. Evaluation of the Ri lines under commercial production conditions showed that similar compactness was obtained as the original Cape daisy genotypes treated with growth retardant. The results suggest that the use of chemical growth retardants may be omitted or reduced in commercial production systems of Cape daisy through implementation of Ri lines in future breeding programs.
Collapse
Affiliation(s)
- Siel Desmet
- Plant Sciences Unit, Flanders Research Institute for Agricultural, Fisheries and Food Research (ILVO), Caritasstraat 39, 9090, Melle, Belgium.
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Emmy Dhooghe
- Plant Sciences Unit, Flanders Research Institute for Agricultural, Fisheries and Food Research (ILVO), Caritasstraat 39, 9090, Melle, Belgium
| | - Ellen De Keyser
- Plant Sciences Unit, Flanders Research Institute for Agricultural, Fisheries and Food Research (ILVO), Caritasstraat 39, 9090, Melle, Belgium
| | - Johan Van Huylenbroeck
- Plant Sciences Unit, Flanders Research Institute for Agricultural, Fisheries and Food Research (ILVO), Caritasstraat 39, 9090, Melle, Belgium
| | - Danny Geelen
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
7
|
Rhizogenic agrobacteria as an innovative tool for plant breeding: current achievements and limitations. Appl Microbiol Biotechnol 2020; 104:2435-2451. [PMID: 32002599 DOI: 10.1007/s00253-020-10403-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Compact plant growth is an economically important trait for many crops. In practice, compactness is frequently obtained by applying chemical plant growth regulators. In view of sustainable and environmental-friendly plant production, the search for viable alternatives is a priority for breeders. Co-cultivation and natural transformation using rhizogenic agrobacteria result in morphological alterations which together compose the Ri phenotype. This phenotype is known to exhibit a more compact plant habit, besides other features. In this review, we highlight the use of rhizogenic agrobacteria and the Ri phenotype with regard to sustainable plant production and plant breeding. An overview of described Ri lines and current breeding applications is presented. The potential of Ri lines as pre-breeding material is discussed from both a practical and legal point of view.
Collapse
|
8
|
Bahramnejad B, Naji M, Bose R, Jha S. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnol Adv 2019; 37:107405. [PMID: 31185263 DOI: 10.1016/j.biotechadv.2019.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022]
Abstract
Agrobacterium rhizogenes, along with A. tumefaciens, has been used to affect genetic transformation in plants for many years. Detailed studies conducted in the past have uncovered the basic mechanism of foreign gene transfer and the implication of Ri/Ti plasmids in this process. A number of reviews exist describing the usage of binary vectors with A. tumefaciens, but no comprehensive account of the numerous binary vectors employed with A. rhizogenes and their successful applications has been published till date. In this review, we recollect a brief history of development of Ri-plasmid/Ri-T-DNA based binary vectors systems and their successful implementation with A. rhizogenes for different applications. The modification of native Ri plasmid to introduce foreign genes followed by development of binary vector using Ri plasmid and how it facilitated rapid and feasible genetic manipulation, earlier impossible with native Ri plasmid, have been discussed. An important milestone was the development of inducible plant expressing promoter systems which made expression of toxic genes in plant systems possible. The successful application of binary vectors in conjunction with A. rhizogenes in gene silencing and genome editing studies which are relatively newer developments, demonstrating the amenability and adaptability of hairy roots systems to make possible studying previously intractable research areas have been summarized in the present review.
Collapse
Affiliation(s)
- Bahman Bahramnejad
- Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Kurdistan 66177-15175, Iran.
| | - Mohammad Naji
- Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Kurdistan 66177-15175, Iran
| | - Rahul Bose
- Department of Genetics, University of Calcutta, Kolkata 700019, India
| | - Sumita Jha
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| |
Collapse
|
9
|
Ito M, Machida Y. Reprogramming of plant cells induced by 6b oncoproteins from the plant pathogen Agrobacterium. JOURNAL OF PLANT RESEARCH 2015; 128:423-435. [PMID: 25694001 DOI: 10.1007/s10265-014-0694-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Reprogramming of plant cells is an event characterized by dedifferentiation, reacquisition of totipotency, and enhanced cell proliferation, and is typically observed during formation of the callus, which is dependent on plant hormones. The callus-like cell mass, called a crown gall tumor, is induced at the sites of infection by Agrobacterium species through the expression of hormone-synthesizing genes encoded in the T-DNA region, which probably involves a similar reprogramming process. One of the T-DNA genes, 6b, can also by itself induce reprogramming of differentiated cells to generate tumors and is therefore recognized as an oncogene acting in plant cells. The 6b genes belong to a group of Agrobacterium T-DNA genes, which include rolB, rolC, and orf13. These genes encode proteins with weakly conserved sequences and may be derived from a common evolutionary origin. Most of these members can modify plant growth and morphogenesis in various ways, in most cases without affecting the levels of plant hormones. Recent studies have suggested that the molecular function of 6b might be to modify the patterns of transcription in the host nuclei, particularly by directly targeting the host transcription factors or by changing the epigenetic status of the host chromatin through intrinsic histone chaperone activity. In light of the recent findings on zygotic resetting of nucleosomal histone variants in Arabidopsis thaliana, one attractive idea is that acquisition of totipotency might be facilitated by global changes of epigenetic status, which might be induced by replacement of histone variants in the zygote after fertilization and in differentiated cells upon stimulation by plant hormones as well as by expression of the 6b gene.
Collapse
Affiliation(s)
- Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan,
| | | |
Collapse
|
10
|
|
11
|
|
12
|
Piñol MT, Palazón J, Cusidó R, Serrano M. Effects of Ri T-DNA fromAgrobacterium rhizogeneson Growth and Hyoscyamine Production inDatura stramoniumRoot Cultures. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1996.tb00553.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2853-72. [PMID: 22447967 DOI: 10.1093/jxb/ers091] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The plant hormone auxin, which is predominantly represented by indole-3-acetic acid (IAA), is involved in the regulation of plant growth and development. Although IAA was the first plant hormone identified, the biosynthetic pathway at the genetic level has remained unclear. Two major pathways for IAA biosynthesis have been proposed: the tryptophan (Trp)-independent and Trp-dependent pathways. In Trp-dependent IAA biosynthesis, four pathways have been postulated in plants: (i) the indole-3-acetamide (IAM) pathway; (ii) the indole-3-pyruvic acid (IPA) pathway; (iii) the tryptamine (TAM) pathway; and (iv) the indole-3-acetaldoxime (IAOX) pathway. Although different plant species may have unique strategies and modifications to optimize their metabolic pathways, plants would be expected to share evolutionarily conserved core mechanisms for auxin biosynthesis because IAA is a fundamental substance in the plant life cycle. In this review, the genes now known to be involved in auxin biosynthesis are summarized and the major IAA biosynthetic pathway distributed widely in the plant kingdom is discussed on the basis of biochemical and molecular biological findings and bioinformatics studies. Based on evolutionarily conserved core mechanisms, it is thought that the pathway via IAM or IPA is the major route(s) to IAA in plants.
Collapse
Affiliation(s)
- Yoshihiro Mano
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0321, Japan.
| | | |
Collapse
|
14
|
Chandra S. Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 2011; 34:407-15. [DOI: 10.1007/s10529-011-0785-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/18/2011] [Indexed: 11/24/2022]
|
15
|
Taneja J, Jaggi M, Wankhede DP, Sinha AK. Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots. PLANT CELL REPORTS 2010; 29:1119-1129. [PMID: 20625736 DOI: 10.1007/s00299-010-0895-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/15/2010] [Accepted: 06/26/2010] [Indexed: 05/29/2023]
Abstract
Hairy roots are generated by integration of T-DNA in host plant genome from root inducing (Ri) plasmid of Agrobacterium rhizogenes and have been utilized for production of secondary metabolites in different plant systems. In Catharanthus roseus, hairy roots are known to show different morphologies, growth patterns, and alkaloid contents. It is also known that during transformation, there is a differential loss of a few T-DNA genes. To decipher the effect of loss of T-DNA genes on the various aspects of hairy roots, ten hairy root clones were analyzed for the presence or absence of T-DNA genes and its implications. It was found that the loss of a few ORFs drastically affects the growth and morphological patterns of hairy roots. The absence of T(R)-DNA from hairy roots revealed increased transcript accumulation and higher alkaloid concentrations, whereas callusing among hairy root lines led to decreased transcript and alkaloid accumulation. Significantly higher expression of MIA biosynthetic pathway genes and low abundance of regulator transcripts in hairy root clones in comparison with non-transformed control roots were also observed. This study indicates that it is not only the integration of T-DNA at certain region of host plant genome but also the presence or absence of important ORFs that affects the expression patterns of MIA biosynthetic pathway genes, regulators, and accumulation of specific alkaloids.
Collapse
Affiliation(s)
- Jyoti Taneja
- National Institute of Plant Genome Research, PO Box 10531, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | |
Collapse
|
16
|
Shen WH, Petit A, Guern J, Tempé J. Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci U S A 2010; 85:3417-21. [PMID: 16593928 PMCID: PMC280222 DOI: 10.1073/pnas.85.10.3417] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Responses to auxin of Lotus corniculatus root tips or protoplasts transformed by Agrobacterium rhizogenes strains 15834 and 8196 were compared to those of their normal counterparts. Three different types of experiments were performed, involving long-term, medium-term, or short-term responses to a synthetic auxin, 1-naphthaleneacetic acid. Root tip elongation, proton excretion by root tips, and transmembrane electrical potential difference of root protoplasts were measured as a function of exogenous auxin concentration. The sensitivity of hairy root tips or protoplasts to exogenous auxin was found to be 100-1000 times higher than that of untransformed material.
Collapse
Affiliation(s)
- W H Shen
- Laboratoire de Physiologie Cellulaire Végétale, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique, avenue de la Terrasse, 91190 Gif sur Yvette, France
| | | | | | | |
Collapse
|
17
|
Offringa IA, Melchers LS, Regensburg-Tuink AJ, Costantino P, Schilperoort RA, Hooykaas PJ. Complementation of Agrobacterium tumefaciens tumor-inducing aux mutants by genes from the T(R)-region of the Ri plasmid of Agrobacterium rhizogenes. Proc Natl Acad Sci U S A 2010; 83:6935-9. [PMID: 16593762 PMCID: PMC386625 DOI: 10.1073/pnas.83.18.6935] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this paper we provide information indicating that the agropine-type root-inducing (Ri) plasmid pRi1855 of Agrobacterium rhizogenes contains functional genes for auxin production (aux) in the right transferred DNA (T-DNA) region (T(R)-region). These genes were cloned and introduced into the T-region of the tumor-inducing (Ti) plasmids of mutants of Agrobacterium tumefaciens carrying an aux mutation. Depending on the Ri aux gene present, the oncogenicity of the Ti aux-1 and/or aux-2 mutations was restored, showing that the Ri aux genes are able to complement the Ti aux genes. Agrobacterium strains with an agropine-type Ri plasmid not only cause hairy root on certain plant species, but they also induce tumors on other plant species. In this paper it is shown that a mutation in either of the aux genes in the Ri plasmid leads to a total loss of tumorigenicity and a strongly diminished rhizogenicity of the host bacterium, revealing that the aux genes are important for tumor and root induction. Agrobacterium strains containing the T(R)-region but not the T(L) (left)-region of the Ri plasmid are still tumorigenic on certain plant species but are no longer capable of hairy-root induction.
Collapse
Affiliation(s)
- I A Offringa
- Department of Plant Molecular Biology, Biochemistry Laboratory, University of Leiden, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Hairy root cultures for secondary metabolites production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 698:167-84. [PMID: 21520711 DOI: 10.1007/978-1-4419-7347-4_13] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hairy roots (HRs) are differentiated cultures of transformed roots generated by the infection of wounded higher plants with Agrobacterium rhizogenes. This pathogen causes the HR disease leading to the neoplastic growth of roots that are characterized by high growth rate in hormone free media and genetic stability. HRs produce the same phytochemicals pattern of the corresponding wild type organ. High stability and productivity features allow the exploitation of HRs as valuable biotechnological tool for the production of plant secondary metabolites. In addition, several elicitation methods can be used to further enhance their accumulation in both small and large scale production. However, in the latter case, cultivation in bioreactors should be still optimized. HRs can be also utilised as biological farm for the production of recombinant proteins, hence holding additional potential for industrial use. HR technology has been strongly improved by increased knowledge of molecular mechanisms underlying their development. The present review summarizes updated aspects of the hairy root induction, genetics and metabolite production.
Collapse
|
19
|
Mano Y, Nemoto K, Suzuki M, Seki H, Fujii I, Muranaka T. The AMI1 gene family: indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:25-32. [PMID: 19887500 DOI: 10.1093/jxb/erp292] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Novel genes that function in the conversion of indole-3-acetamide (IAM) into indole-3-acetic acid (IAA), which were previously thought to exist only in the bacterial genome, have been isolated from plants. The finding of the AtAMI1 gene in Arabidopsis thaliana and the NtAMI1 gene in Nicotiana tabacum, which encode indole-3-acetamide hydrolase, indicates the existence of a new pathway for auxin biosynthesis in plants. This review summarizes the characteristics of these genes involved in auxin biosynthesis and discusses the possibility of the AMI1 gene family being widely distributed in the plant kingdom. Its evolutionary relationship to bacterial indole-3-acetamide hydrolase, based on phylogenetic analyses, is also discussed.
Collapse
Affiliation(s)
- Yoshihiro Mano
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0321, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Nemoto K, Hara M, Suzuki M, Seki H, Oka A, Muranaka T, Mano Y. Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro. PLANT SIGNALING & BEHAVIOR 2009; 4:1145-7. [PMID: 20514230 PMCID: PMC2819440 DOI: 10.4161/psb.4.12.9904] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 08/25/2009] [Indexed: 05/18/2023]
Abstract
Auxin-autonomous growth in vitro may be related to the integration and expression of the aux and rol genes from the root-inducing (Ri) plasmid in plant cells infected by agropine-type Agrobacterium rhizogenes. To elucidate the functions of the aux and rol genes in plant cell division, plant cell lines transformed with the aux1 and aux2 genes or with the rolABCD genes were established using tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells. The introduction of the aux1 and aux2 genes enabled the auxin-autonomous growth of BY-2 cells, but the introduction of the rolABCD genes did not affect the auxin requirement of the BY-2 cells. The results clearly show that the aux genes are necessary for auxinautotrophic cell division, and that the rolABCD genes are irrelevant in auxin autotrophy.
Collapse
Affiliation(s)
- Keiichirou Nemoto
- Graduate School of Bioscience; Tokai University, Numazu, Shizuoka Japan
| | - Masamitsu Hara
- Department of Biological Science and Technology; Tokai University, Numazu, Shizuoka Japan
| | | | - Hikaru Seki
- RIKEN Plant Science Center, Yokohama, Kanagawa Japan
| | - Atsuhiro Oka
- Institute for Chemical Research; Kyoto University, Uji, Kyoto Japan
| | - Toshiya Muranaka
- RIKEN Plant Science Center, Yokohama, Kanagawa Japan
- Plant Biotechnology Division; Yokohama City University, Yokohama, Kanagawa Japan
| | - Yoshihiro Mano
- Graduate School of Bioscience; Tokai University, Numazu, Shizuoka Japan
- Department of Biological Science and Technology; Tokai University, Numazu, Shizuoka Japan
| |
Collapse
|
21
|
Nemoto K, Hara M, Goto S, Kasai K, Seki H, Suzuki M, Oka A, Muranaka T, Mano Y. The aux1 gene of the Ri plasmid is sufficient to confer auxin autotrophy in tobacco BY-2 cells. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:729-38. [PMID: 18986729 DOI: 10.1016/j.jplph.2008.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 05/27/2023]
Abstract
Tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells are rapidly proliferating meristematic cells that require auxin for culture in vitro. We have established several transgenic BY-2 cell lines that carry the T-DNA of Agrobacterium rhizogenes 15834, which harbors an agropine-type root-inducing (Ri) plasmid. Two of these lines, BYHR-3 and BYHR-7, were used to test the role of auxin in the proliferation of plant cells. The lines grew rapidly in Linsmaier-Skoog (LS) medium lacking auxin and other phytohormones. The TR-DNA, containing the aux1 (tryptophan monooxygenase) and aux2 (indoleacetamide hydrolase) genes, was present in the genomes of both transgenic lines, whereas the TL-DNA, containing the rolA, B, C and D genes, was present in the genome of BYHR-7 but not BYHR-3. Since the introduction of the rolABCD genes alone did not affect the auxin requirement of BY-2 cells, the aux1 and aux2 genes, but not the rolABCD genes, appear to be relevant to the auxin autotrophy of these transgenic lines. Furthermore, the overexpression of aux1 allowed BY-2 cells to grow rapidly in the absence of auxin, suggesting the existence in plant cells of an unidentified gene whose product is functionally equivalent or similar to that of aux2 of the Ri plasmid.
Collapse
Affiliation(s)
- Keiichirou Nemoto
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0321, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tiwari RK, Trivedi M, Guang ZC, Guo GQ, Zheng GC. Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. PLANT CELL REPORTS 2007; 26:199-210. [PMID: 16972092 DOI: 10.1007/s00299-006-0236-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 05/19/2006] [Accepted: 08/18/2006] [Indexed: 05/11/2023]
Abstract
Hairy root cultures of Gentiana macrophylla were established by infecting the different explants four Agrobacterium rhizogenes strains namely A(4)GUS, R1000, LBA 9402 and ATCC11325, and hairy root lines were established with A. rhizogenes strain R1000 in 1/2 MS + B(5) medium. Initially, 42 independent hairy root clones were maintained and seven clones belongs to different category were evaluated for growth, morphology, integration and expression of Ri T-DNA genes, and alkaloid contents in dry root samples. On the basis of total root elongation, lateral root density and biomass accumulation on solid media, hairy root clones were separated into three categories. PCR and Southern hybridization analysis revealed both left and right T-DNA integration in the root clones and RT-PCR analysis confirmed the expression of hairy root inducible gene. GUS assay was also performed to confirm the integration of left T-DNA. The accumulation of considerable amounts of the root-specific secoiridoid glucosides gentiopicroside was observed in GM1 (T +/L and T +/R) and the GM2 (T +/L and T -/R DNA) type clones in considerably higher amount whether as two T -/L but T +/R callus-type clones (GM3) accumulated much less or only very negligible amounts of gentiopicroside. Out of four media composition the 1/2 MS + B(5) vitamin media was found most suitable. We found that initial establishment of root cultures largely depends on root:media ratio. Maximum growth rate was recorded in 1:50 root:media ratio. The maximum biomass in terms of fresh weight (33-fold) was achieved in 1/2 MS + B(5) media composition after 35 days in comparison to sixfold increase in control. The biomass increase was most abundant maximum from 15 to 30 days. Influence of A. rhizogenes strains and Ri plasmid of hairy root induction, the possible role of the T(L)-DNA and T(R)-DNA genes on growth pattern of hairy root, initial root inoculum:media ratio and effect of media composition is discussed.
Collapse
Affiliation(s)
- Rajesh Kumar Tiwari
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, 73000, Gansu, PR China.
| | | | | | | | | |
Collapse
|
23
|
Yun AC, Hadley RG, Szalay AA. A plasmid sequence from Rhizobium leguminosarum 300 contains homology to sequences near the octopine TL-DNA right border. ACTA ACUST UNITED AC 2006; 209:580-4. [PMID: 17193713 DOI: 10.1007/bf00331166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The DNA sequence from a Rhizobium leguminosarum 300 (RL300) plasmid that contains homology to the Tc-DNA of Agrobacterium tumefaciens is described. The RL300 sequence has 78% homology to a 359 bp sequence in the Tc-DNA of pTi15955. The RL300 homology starts approximately 100 bp from the 24 bp border sequence of the TL-DNA and ends approximately 3 bp from an IS66 homolog in the Tc-DNA. An unusual feature of the RL300 homology is the presence of 81 bp direct repeats with Tc-DNA homology, separated by 201 bp. One end of each direct repeat has a 12 bp palindrome. Four cloned sequences of RL300 with homology to the T DNA region were hybridized to plasmid lysates of RL300 derivatives to determine the source of each plasmid. The sequenced homolog, originally on pRH228, was isolated from pRL7JI; the other 3 homologs were isolated from the transmissable plasmids pRL7JI (pRH235) and pRL8JI (pRH235 and pRH236).
Collapse
Affiliation(s)
- A C Yun
- Boyce Thompson Institute for Plant Research, Cornell University, 14853 Ithaca, NY, USA
| | | | | |
Collapse
|
24
|
Hong SB, Peebles CAM, Shanks JV, San KY, Gibson SI. Terpenoid indole alkaloid production by Catharanthus roseus hairy roots induced by Agrobacterium tumefaciens harboring rol ABC genes. Biotechnol Bioeng 2006; 93:386-90. [PMID: 16261632 DOI: 10.1002/bit.20699] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have established Catharanthus roseus hairy root cultures transgenic for the rol ABC genes from T(L)-DNA of the agropine-type Agrobacterium rhizogenes strain A4. The rol ABC hairy root lines exhibit a wild-type hairy root syndrome in terms of growth and morphology on solid medium. However, they differ from wild-type hairy root lines in that they more frequently have excellent adaptability to liquid medium and do not appear to form calli during cultivation. Moreover, they do not produce detectable levels of mannopine and agropine which, in contrast, are often synthesized abundantly in wild-type hairy root lines. The absence of these opines does not appear to cause the rol ABC lines to have higher levels of terpenoid indole alkaloids than wild-type hairy root lines. Unlike wild-type lines, rol ABC lines produce very similar levels of total alkaloids despite wide variations in individual alkaloid contents. This work demonstrates that the three genes rol ABC are sufficient to induce high-quality hairy roots in Catharanthus roseus.
Collapse
Affiliation(s)
- Seung-Beom Hong
- Department of Biochemistry and Cell Biology, MS-140, 6100 Main St., Rice University, Houston, Texas 77005, USA
| | | | | | | | | |
Collapse
|
25
|
Aoki S. Resurrection of an ancestral gene: functional and evolutionary analyses of the Ngrol genes transferred from Agrobacterium to Nicotiana. JOURNAL OF PLANT RESEARCH 2004; 117:329-37. [PMID: 15338429 DOI: 10.1007/s10265-004-0163-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 05/14/2004] [Indexed: 05/24/2023]
Abstract
The Ng rol genes, which have high similarity in sequence to the rol genes of Agrobacterium rhizogenes, are present in the genome of untransformed plants of Nicotiana glauca. It is thought that bacterial infection resulted in the transfer of the Ng rol genes to plants early in the evolution of the genus Nicotiana, since several species in this genus contain rol-like sequences but others do not. Plants transformed with the bacterial rol genes exhibit various developmental and morphological changes. The presence of rol-like sequences in plant genomes is therefore thought to have contributed to the evolution of Nicotiana species. This paper focuses on studies of the Ng rol genes in present-day plants and during the evolution of the genus Nicotiana. The functional sequences of several Ng rol genes may have been conserved after their ancient introduction from a bacterium to the plant. Resurrection of an ancestral function of one of the Ng rol genes, as examined by physiological and evolutionary analyses, is also described. The origin of the Ng rol genes is then considered, based on results of molecular phylogenetic analyses. The effects of the horizontal transfer of the Ng rol genes and mutations in the genes are discussed on the plants of the genus Nicotiana during evolution.
Collapse
Affiliation(s)
- Seishiro Aoki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Meguro-ku, Japan.
| |
Collapse
|
26
|
Udagawa M, Aoki S, Syono K. Expression analysis of the NgORF13 promoter during the development of tobacco genetic tumors. PLANT & CELL PHYSIOLOGY 2004; 45:1023-31. [PMID: 15356328 DOI: 10.1093/pcp/pch123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We investigated the expression pattern of the promoter of Nicotiana glauca (Ng) ORF13 in the hybrids between N. glauca and N. langsdorffii harboring the NgORF13-beta-glucuronidase (GUS) chimeric gene. The promoter of NgORF13 of N. glauca had lower activities than the promoter of RiORF13 of Agrobacterium rhizogenes agropine-type root-inducing (Ri) plasmid. However, the localization of GUS activity in the NgORF13 transgenic plants was similar to that in the RiORF13 transgenic plants. The GUS activity of NgORF13-GUS was high in genetic tumors cultured in vitro or developed spontaneously on F1 plants with aging or by wounding. The GUS activity in tumors was observed in bud primordia, vascular bundles and leaves in the buds. While the activity was lower than in tumors, NgORF13-GUS was also expressed in vascular bundles and the parenchymatous tissues in plants regenerated from tumors. Furthermore, the promoter activity of NgORF13 was induced by wounding and activated by exogenous application of methyl jasmonate. During tumorization, NgORF13 was induced at an early stage and showed expression patterns similar to both NgrolB and NgrolC whose expression were investigated by Nagata et al. (1996) Plant Cell Physiol. 37: 489-498. It is thought that Ngrol genes might be involved in the formation of genetic tumors, and, moreover, NgORF13 might work in cooperation with NgrolB and NgrolC.
Collapse
Affiliation(s)
- Makiko Udagawa
- Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681 Japan.
| | | | | |
Collapse
|
27
|
Hodges LD, Cuperus J, Ream W. Agrobacterium rhizogenes GALLS protein substitutes for Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 2004; 186:3065-77. [PMID: 15126468 PMCID: PMC400615 DOI: 10.1128/jb.186.10.3065-3077.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens and Agrobacterium rhizogenes transfer plasmid-encoded genes and virulence (Vir) proteins into plant cells. The transferred DNA (T-DNA) is stably inherited and expressed in plant cells, causing crown gall or hairy root disease. DNA transfer from A. tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA) is exported from the bacteria via a type IV secretion system comprised of VirB1 through VirB11 and VirD4. Bacteria also secrete certain Vir proteins into plant cells via this pore. One of these, VirE2, is an ssDNA-binding protein crucial for efficient T-DNA transfer and integration. VirE2 binds incoming ssT-DNA and helps target it into the nucleus. Some strains of A. rhizogenes lack VirE2, but they still transfer T-DNA efficiently. We isolated a novel gene from A. rhizogenes that restored pathogenicity to virE2 mutant A. tumefaciens. The GALLS gene was essential for pathogenicity of A. rhizogenes. Unlike VirE2, GALLS contains a nucleoside triphosphate binding motif similar to one in TraA, a strand transferase conjugation protein. Despite their lack of similarity, GALLS substituted for VirE2.
Collapse
Affiliation(s)
- Larry D Hodges
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
28
|
Zdravković-Korać S, Muhovski Y, Druart P, Calić D, Radojević L. Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. PLANT CELL REPORTS 2004; 22:698-704. [PMID: 14745503 DOI: 10.1007/s00299-004-0756-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 12/26/2003] [Accepted: 12/27/2003] [Indexed: 05/24/2023]
Abstract
Hairy roots were induced from androgenic embryos of horse chestnut (Aesculus hippocastanum L.) by infection with Agrobacterium rhizogenes strain A4GUS. Single roots were selected according to their morphology in the absence of antibiotic or herbicide resistance markers. Seventy-one putative transformed hairy root lines from independent transformation events were established. Regeneration was induced in MS liquid medium supplemented with 30 microM 6-benzylaminopurine (BA), and the regenerants were multiplied on MS solid medium containing 10 microM BA. Following elongation on MS medium supplemented with 1 microM BA and 500 mg/l polyvinylpyrrolidone, the shoots were subjected to a root-inducing treatment. Stable integration of TL-DNA within the horse chestnut genome was confirmed by Southern hybridization. The copy number of transgenes was estimated to be from two to four.
Collapse
Affiliation(s)
- S Zdravković-Korać
- Institute for Biological Research "S. Stanković" 29, Novembar 142, Belgrade, Serbia and Montenegro.
| | | | | | | | | |
Collapse
|
29
|
Mallol A, Cusidó RM, Palazón J, Bonfill M, Morales C, Piñol MT. Ginsenoside production in different phenotypes of Panax ginseng transformed roots. PHYTOCHEMISTRY 2001; 57:365-371. [PMID: 11393515 DOI: 10.1016/s0031-9422(01)00062-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transformed roots were obtained after the inoculation of sterile root discs of Panax ginseng C.A. Meyer with Agrobacterium rhizogenes A4. The established hairy root lines displayed three morphological phenotypes when cultured on hormone-free liquid Schenk and Hildebrandt medium. Most of the cultures showed the characteristic traits of hairy roots (HR-M), while others were either callus-like (C-M) or thin (T-M) without branching. The growth rate of the transformed root lines was always higher than that of untransformed roots, showing that the genetic changes caused by the A. rhizogenes transformation conditioned a higher biomass formation. When considering the different transformed root phenotypes, we can observe that the highest ginsenoside production was achieved by HR-M root lines, closely followed by C-M ones, whereas the lowest yield was reached by T-M root phenotype. The study of the integration of the TL-DNA and TR-DNA fragments of the pRiA4 in the root genome showed that the aux1 gene was always detected in HR-M and C-M root phenotypes which presented the highest biomass and ginsenoside productions. This fact suggests a significant role of aux genes in the morphology of Panax ginseng transformed roots. The ginsenoside pattern of transformed roots varied according to their morphology, although the ginsenoside contents of the Rg group was always higher than that of the Rb group. From our results, we can infer the potential of some root phenotypes of Panax ginseng hairy root cultures for an improved ginsenoside production.
Collapse
Affiliation(s)
- A Mallol
- Sección de Fisiología Vegetal, Facultad e Farmacia, Universidad de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N, Yoshida K. The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J Mol Biol 2001; 307:771-84. [PMID: 11273700 DOI: 10.1006/jmbi.2001.4488] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ri (root-inducing) plasmid in Agrobacterium rhizogenes and Ti (tumor-inducing) plasmid in Agrobacterium tumefaciens have provided the fundamental basis for the construction of plant vectors and transgenic plants. Recently, the determination of the first complete nucleotide sequence of the Ti plasmid (pTi-SAKURA) has been successful. To understand the general structure of these oncogenic T-DNA transfer plasmids, the whole nucleotide sequence of a mikimopine-type Ri plasmid, pRi1724, was analyzed. The plasmid is 217,594 bp in size, and has 173 open reading frames (ORFs) in total, which are asymmetrically distributed. Except for 27 ORFs, which are unknown, 173 ORFs were classified into 12 groups as follows: three for DNA replication, nine for plasmid modification, 22 for conjugation, 26 for virulence, 11 for T-DNA gene, 19 for mikimopine/mikimopine-lactam transport, ten for an unknown opine metabolism, seven for transcriptional regulator, five for sugar transport, five for glycerol metabolism, four for chemoreceptor and 32 for others. The elucidated chimeric structure of pRi1724 interestingly indicates that the evolution of Rhizobiaceae plasmids seems to have kept interactions among the plasmids; especially, the genes and elements for a conjugal transfer of pRi1724 had clearly closer kinship to those of a Sym (symbiotic) plasmid, pNGR234a in Rhizobium sp. than those of Ti plasmids. By using sequencing and Northern analysis, we examined the metabolic pathway and gene expression of mikimopine, which is probably an Ri-specific opine.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- Arginine/analogs & derivatives
- Arginine/metabolism
- Base Composition
- Biological Transport
- Blotting, Southern
- Conjugation, Genetic/genetics
- DNA Replication/genetics
- DNA, Bacterial/genetics
- DNA, Plant/genetics
- DNA, Recombinant/genetics
- Evolution, Molecular
- Genes, Bacterial/genetics
- Imidazoles/metabolism
- Open Reading Frames/genetics
- Phylogeny
- Physical Chromosome Mapping
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Roots/genetics
- Plant Roots/microbiology
- Plasmids/genetics
- Pyridines/metabolism
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- Recombination, Genetic/genetics
- Rhizobiaceae/genetics
- Rhizobiaceae/pathogenicity
- Symbiosis/genetics
- Virulence/genetics
Collapse
Affiliation(s)
- K Moriguchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Aoki S, Syōno K. The roles of Rirol and Ngrol genes in hairy root induction in Nicotiana debneyi. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 159:183-189. [PMID: 11074270 DOI: 10.1016/s0168-9452(00)00333-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The function of Rirol genes in TL-DNA of the Ri plasmid of Agrobacterium rhizogenes has been previously studied in Nicotiana tabacum and Daucus carota, but it was reported that these plants have a TL-DNA-similar sequence in their genome. We investigated the function of Rirol genes in N. debneyi by infection with A. tumefaciens harboring these genes, because the genome of N. debneyi does not contain a TL-DNA-similar sequence. The single gene RirolB induced adventitious roots in N. debneyi. Introduction of a DNA fragment that contained RirolB, RirolC, RiORF13 and RiORF14 resulted in more intense and earlier root formation than that of RirolB. Ngrol genes (NgrolB, NgrolC, NgORF13, and NgORF14) in the genome of Nicotiana glauca that are similar in sequence to Rirol genes were also examined. In contrast with Rirol genes, Ngrol genes did not induce adventitious roots on leaf segments of N. debneyi. Further infection analysis revealed that one of the reasons for this diversity of their functions might be the difference in the rolB region between the sequence of bacteria and plants. The difference in function between the genes of plants and bacteria is analyzed and the molecular evolution of Ngrol genes is discussed.
Collapse
Affiliation(s)
- S Aoki
- Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902, Tokyo, Japan
| | | |
Collapse
|
32
|
Methods of Genetic Transformation: Agrobacterium tumefaciens. MOLECULAR IMPROVEMENT OF CEREAL CROPS 1999. [DOI: 10.1007/978-94-011-4802-3_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Tanaka N, Yamakawa M, Yamashita I. Characterization of transcription of genes involved in hairy root induction on pRi1724 core-T-DNA in two Ajuga reptans hairy root lines. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 1998; 137:95-105. [PMID: 11543203 DOI: 10.1016/s0168-9452(98)00123-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The detailed status of the transcription of genes on pRil724 T-DNA in two independent hairy root lines of the plant Ajuga reptans, Ar-4 and Ar-24, which have several different characteristics, was obtained by Northern blotting and a reverse transcription-polymerase chain reaction (RT-PCR) analysis. In the Northern blotting analysis DNA fragments corresponding to the putative open reading frames (ORFs) as probes, transcripts from putative ORFs 10 (1724rolA), 11 (1724rolB), 12 (1724rolC), 13a and 14, which are homologs to each ORF on pRiA4, were detected in both hairy root lines, whereas no transcripts derived from ORF 13 were detected. The transcription of ORF 13 was, however, detected in the RT-PCR analysis, suggesting a minor expression of ORF 13. All of the putative ORFs were transcribed with their expected directions, since DNA fragments were amplified when the antisense primers were employed in the reverse transcription. We also found that different transcripts with a reverse direction were present at the locations of 1724rolA, 1724rolC and ORF 13a, because the DNA fragments were amplified from the templates when their sense primers were used in the reverse transcription.
Collapse
Affiliation(s)
- N Tanaka
- Center for Gene Science, Hiroshima University, Japan.
| | | | | |
Collapse
|
34
|
Lemcke K, Schmülling T. Gain of function assays identify non-rol genes from Agrobacterium rhizogenes TL-DNA that alter plant morphogenesis or hormone sensitivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:423-33. [PMID: 9750353 DOI: 10.1046/j.1365-313x.1998.00223.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This study tested the morphogenetic potential of 15 open reading frames of the TL-DNA of Agrobacterium rhizogenes strain HRI. These open reading frames were expressed individually under the control of the 35S RNA promoter in transgenic tobacco plants (Nicotiana tabacum L.). Expression of three T-DNA loci, ORF3n, ORF8 and ORF13, alters plant morphogenesis or the response of transgenic tissues to plant hormones. ORF3n transgenic plants are characterized by retarded flowering, altered internode elongation, altered leaf shape and, in particular, leaf tip necrosis. ORF3n and ORF8 expression reduces the sensitivity to auxin and cytokinin in combination or auxin alone. Tetracycline-dependent expression of ORF13 overcomes a selection of low levels of expression during plant regeneration and reveals a strong inhibitory effect of the ORF13 gene product on cell division and cell elongation. We conclude that the A. rhizogenes TL-DNA harbors genetic information that is important for pathogenicity apart from the well studied rol genes. We propose that these genes play mainly a negative regulatory role during pathogenesis. Moreover, these loci might be relevant to successful infections in specific host plants.
Collapse
Affiliation(s)
- K Lemcke
- Universität Tübingen, Allgemeine Genetik, Germany
| | | |
Collapse
|
35
|
Lemcke K, Schmülling T. A putative rolB gene homologue of the Agrobacterium rhizogenes TR-DNA has different morphogenetic activity in tobacco than rolB. PLANT MOLECULAR BIOLOGY 1998; 36:803-8. [PMID: 9526514 DOI: 10.1023/a:1005905327898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Agrobacterium rhizogenes strains of the agropine type harbor on their Ri-plasmid two T-DNAs, a left TL-DNA and a right TR-DNA. The rolB gene of the TL-DNA is the major factor in the pathogenesis of the hairy-root disease and its constitutive expression interfere profoundly with plant morphogenesis. We have tested whether the expression of its sequence related putative homologue from the TR-DNA (rolBTR) may cause also bacterial virulence or affect plant development. Unlike rolB, rolBTR is unable to induce root formation on tobacco leaf discs. Tobacco plants expressing a chimeric 35S::rolBTR gene have reduced stature, off-shoots at the stem base and bent and wrinkled leaves with epinastic growth. 14 N-terminal amino acids which are absent in the rolB protein are indispensable to rolBTR protein activity. The characteristic tyrosine phosphatase super family motif CX5R is absent in the rolBTR protein. For rolB this motif is possibly functionally relevant. We conclude that the rolBTR gene product has morphogenic activity but is not a functional homologue of the rolB protein.
Collapse
|
36
|
Nasu M, Tani K, Hattori C, Honda M, Shimaoka T, Yamaguchi N, Katoh K. Efficient transformation of Marchantia polymorpha that is haploid and has very small genome DNA. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0922-338x(97)81904-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
37
|
Iversen TH, Odegaard E, Beisvag T, Johnsson A, Rasmussen O. The behaviour of normal and agravitropic transgenic roots of rapeseed (Brassica napus L.) under microgravity conditions. J Biotechnol 1996; 47:137-54. [PMID: 11536756 DOI: 10.1016/0168-1656(96)01405-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the TRANSFORM experiment for IML-2 on the Space Shuttle Columbia, normal (wild type = WT) and genetically transformed agravitropic rapeseed roots were tested under microgravity conditions. The aim of the experiment was to determine if the wild-type roots behaved differently (growth, morphology, gravitropical sensitivity) from the transgenic roots. The appearance of the organelles and distribution of statoliths (i.e. amyloplasts with starch grains) in the gravitropic reactive cells (statocytes) under weightlessness was compared for the two types of roots. Attempts have also been made to regenerate new plants from the root material tested in space. Both the WT and the transgenic root types showed the expected increase in length during 36 h of photorecording. Contrary to the results of the ground controls, no significant difference in elongation rates was found between the WT and transgenic roots grown in orbit. However, there are indications that the total growth both in the WT and the transgenic roots was higher in the ground control than for roots in orbit. After a 60 min 1 x g stimulation of the roots on board the Shuttle, no detectable curvatures were obtained in either the transgenic or the WT roots. However, it cannot be excluded that a minute curvature development occurs in the root tips but was not detected due to technical reasons. The ultrastructure was well preserved in both the WT and the transgenic roots, despite the fact that the tissue was kept in the prefixative for over 3 weeks. No marked differences in ultrastructure were observed between the transformed root statocyte cells and the equivalent cells in the wild type. There were no obvious differences in root morphology during the orbital period. Light micrographs and morphometrical analysis indicate that the amyloplasts of both the wild type and transformed root statocytes are randomly distributed over the cells kept under micro-g conditions for 37 h after a 14 h stimulation on the 1 x g centrifuge. The main scientific conclusion from the TRANSFORM experiment is that the difference in growth found in the ground control between the WT and the transgenic root types seems to be eliminated under weightlessness. Explanations for this behaviour cannot be found in the root ultrastructure or in root morphology.
Collapse
Affiliation(s)
- T H Iversen
- Department of Botany, Norwegian University of Science and Technology, Dragvoll, Norway
| | | | | | | | | |
Collapse
|
38
|
Haas JH, Moore LW, Ream W, Manulis S. Universal PCR primers for detection of phytopathogenic Agrobacterium strains. Appl Environ Microbiol 1995; 61:2879-84. [PMID: 7487020 PMCID: PMC167564 DOI: 10.1128/aem.61.8.2879-2884.1995] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two PCR primer pairs, based on the virD2 and ipt genes, detected a wide variety of pathogenic Agrobacterium strains. The endonuclease domain of VirD2 protein, which cleaves transferred DNA (T-DNA) border sequences, is highly conserved; primer oligonucleotides specific for the endonuclease portion of virD2 detected all pathogenic strains of Agrobacterium tested. PCR primers corresponding to conserved sequences in ipt, the T-DNA-borne cytokinin synthesis gene, detected only Agrobacterium tumefaciens and distinguished it from Agrobacterium rhizogenes. The virD2 and ipt primer pairs did not interfere with each other when included in the same PCR amplification, and this permitted simultaneous detection of both genes in a single reaction. One nonpathogenic Agrobacterium radiobacter strain contained virD2 but not ipt; we speculate that this strain arose from a pathogenic progenitor through a deletion in the T-DNA. The virD2 primer pair appears to be universal for all pathogenic Agrobacterium species; used together, the primer sets reported here should allow unambiguous identification of Ti plasmid DNA in bacteria isolated from soil and plants.
Collapse
Affiliation(s)
- J H Haas
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331, USA
| | | | | | | |
Collapse
|
39
|
Aoki S, Kawaoka A, Sekine M, Ichikawa T, Fujita T, Shinmyo A, Syono K. Sequence of the cellular T-DNA in the untransformed genome of Nicotiana glauca that is homologous to ORFs 13 and 14 of the Ri plasmid and analysis of its expression in genetic tumours of N. glauca x N. langsdorffii. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:706-10. [PMID: 8028588 DOI: 10.1007/bf00279581] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A region homologous to the TL-DNA of Agrobacterium rhizogenes was previously detected in the genome of untransformed Nicotiana glauca and designated cellular T-DNA (cT-DNA). Subsequently, part of this region was sequenced and two genes, which corresponded to rolB and rolC and were named NgrolB and NgrolC, were found. We have now sequenced a region of the cT-DNA other than the region that includes NgrolB and C and we have found two other open reading frames (ORFs), NgORF13 and NgORF14. These ORFs correspond to ORFs 13 and 14 of the TL-DNA of A. rhizogenes and exhibit a high degree of homology to these ORFs, without having a nonsense codon. We have not found any sequence homologous to rolD (ORF15). The two genes, NgORF13 and 14, as well as the NgrolB and C genes, are expressed in genetic tumors of hybrids between N. glauca and N. langsdorffii but not in leaf tissues of the hybrid.
Collapse
Affiliation(s)
- S Aoki
- Department of Pure and Applied Sciences, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Gaudin V, Camilleri C, Jouanin L. Multiple regions of a divergent promoter control the expression of the Agrobacterium rhizogenes aux1 and aux2 plant oncogenes. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:225-34. [PMID: 8510649 DOI: 10.1007/bf00281622] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The two auxin biosynthesis genes, aux1 and aux2 of Agrobacterium rhizogenes strain A4, are located on opposite DNA strands with a short integenic region (394 bp) between their coding sequences. A functional analysis of this divergent promoter is presented. The transcription initiation sites of the two aux genes were determined and regions important for promoter activity were identified by deletion and transient expression analyses in tobacco protoplasts. The promoter activity of the aux intergenic region was demonstrated. A strong enhancer element contained within an 84 bp promoter fragment was identified. Far upstream regions were shown to have negative effects on the promoter activity of the short intergenic region. Interactions between positive elements in the intergenic region and negative effects of the upstream sequences may be the basis of strict control of the auxin biosynthesis necessary for the induction and maintenance of hairy root growth.
Collapse
Affiliation(s)
- V Gaudin
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, Versailles, France
| | | | | |
Collapse
|
41
|
Raineri DM, Boulton MI, Davies JW, Nester EW. VirA, the plant-signal receptor, is responsible for the Ti plasmid-specific transfer of DNA to maize by Agrobacterium. Proc Natl Acad Sci U S A 1993; 90:3549-53. [PMID: 8475103 PMCID: PMC46338 DOI: 10.1073/pnas.90.8.3549] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Agrobacteria exhibit marked Ti (tumor-inducing)/Ri (root-inducing) plasmid specificity in their interaction with the Gramineae. In this study, we have used the technique of "agroinfection," in which Agrobacterium-mediated delivery of viral genomes into plants is detected by the development of viral disease symptoms, to identify the region of the Ti plasmid which is responsible for the major differences seen in the ability of nopaline- vs. octopine-type Ti plasmids to transfer maize streak virus (MSV) DNA to maize. Introduction of fragments of the C58 (nopaline-type) Ti plasmid into strains containing an octopine-type Ti plasmid showed that a fragment containing the nopaline-type virA locus was able to complement these normally non-agroinfectious strains to high levels of MSV DNA transfer. Octopine-type virA mutant strains that express vir genes at high levels in the absence of the plant inducing compound acetosyringone also efficiently transferred MSV DNA. These findings imply a functional difference between the virA gene products encoded by octopine- and nopaline-type Ti plasmids which has a profound effect on their ability to mediate DNA transfer to maize.
Collapse
Affiliation(s)
- D M Raineri
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
42
|
Berthomieu P, Jouanin L. Transformation of rapid cycling cabbage (Brassica oleracea var. capitata) with Agrobacterium rhizogenes. PLANT CELL REPORTS 1992; 11:334-8. [PMID: 24201433 DOI: 10.1007/bf00233360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/1991] [Revised: 03/27/1992] [Indexed: 05/22/2023]
Abstract
Genetically transformed cabbage (Brassica oleracea var. capitata) roots were obtained after inoculation with two engineered Agrobacterium rhizogenes strains, each harbouring a plant selectable marker gene in their T-DNA. Axenic root clones resistant to kanamycin or hygromycin B were established, most of which did not exhibit the phenotypic characteristics of Ri-transformed roots. Shoot regeneration was induced from roots after treatment with 2,4-dichlorophenoxyacetic acid (2,4-D). The resulting plants exhibited various phenotypes: some looked normal, while others showed the transformed phenotype observed in other species. Direct evidence for genetic transformation was obtained by molecular hybridization. The trait was transmitted to the progeny. Transformed cabbage plants can be obtained within 6 months using this approach.
Collapse
Affiliation(s)
- P Berthomieu
- Institut des Sciences Végétales, CNRS, Avenue de la Terrasse, 91198, Gif sur Yvette Cédex, France
| | | |
Collapse
|
43
|
Stiller J, Sinec VN, Svoboda S, Němcová B, Macháčková I. Effects of agrobacterial oncogenes in kidney vetch (Anthyllis vulneraria L.). PLANT CELL REPORTS 1992; 11:363-367. [PMID: 24201440 DOI: 10.1007/bf00233367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/1992] [Revised: 04/16/1992] [Indexed: 06/02/2023]
Abstract
Kidney vetch seedlings were induced to form hairy roots by inoculating their mesocotyls with the wild-type strain 15834 of Agrobacterium rhizogenes or with the A. tumefaciens strain C58C1 containing a binary vector system (the pRiA4b as a helper and the vector pCB1346 bearing a pTiC58-derived isopentenyl transferase gene (ipt, cytokinin biosynthetic gene) under control of its native regulatory sequences). Transgenic lines of three distinct phenotypes were selected: (i) Typically, the pRi15834-transformed tissues were stabilized in vitro and maintained for long periods as aseptic, fast-growing, hormone-independent, plagiotropic hairy root cultures which never regenerated shoots and lost the ability to synthesize opines. Their genomic DNA contained both the TL- and the TR-DNA. (ii) One of the HR-lines transgenic for the T-DNA of pRi15834 (named 52AV34) started to regenerate spontaneously into teratomous shoots. The shoots were found to produce opines and both the TL and TR parts of T-DNA were found to be partly deleted and/or rearranged. They contained phytohormones in similar levels as those found in seed-born shoots. (iii) A practically identical morphogenic response as in the line 52AV34 was observed in the clone 27AV46. However, its shooty, dark-green, slow-growing teratomas were proven to be kanamycin-resistant, opine-producing, and double-transformed by the pRiA4b sequences and the ipt gene. They over-produced auxins as well as cytokinins (mainly indoleacetylaspartic acid and ribosides of zeatin and isopentenyladenine).
Collapse
Affiliation(s)
- J Stiller
- Department of Nitrogen Fixation, Institute of Plant Molecular Biology, Czechoslovak Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czechoslovakia
| | | | | | | | | |
Collapse
|
44
|
Thomas MR, Rose RJ, Nolan KE. Genetic transformation of Medicago truncatula using Agrobacterium with genetically modified Ri and disarmed Ti plasmids. PLANT CELL REPORTS 1992; 11:113-117. [PMID: 24213541 DOI: 10.1007/bf00232161] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/1991] [Revised: 01/08/1992] [Indexed: 06/02/2023]
Abstract
Fertile transgenic plants of the annual pasture legume Medicago truncatula were obtained by Agrobacterium-mediated transformation, utilising a disarmed Ti plasmid and a binary vector containing the kanamycin resistance gene under the control of the cauliflower mosaic virus 35S promoter. Factors contributing to the result included an improved plant regeneration protocol and the use of explants from a plant identified as possessing high regeneration capability from tissue culture. Genes present on the T-DNA of the Ri plasmid had a negative effect on somatic embryogenesis. Only tissue inoculated with Agrobacterium strains containing a disarmed Ti plasmid lacking the T-DNA region or a Ri plasmid with an inactivated rol A gene regenerated transgenic plants. Fertile transgenic plants were only obtained with disarmed A. tumefaciens, and the introduced NPT II gene was transmitted to R1 progeny.
Collapse
Affiliation(s)
- M R Thomas
- Department of Biological Sciences, The University of Newcastle, 2308, New South Wales, Australia
| | | | | |
Collapse
|
45
|
Kumar V, Jones B, Davey MR. Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea. PLANT CELL REPORTS 1991; 10:135-138. [PMID: 24221492 DOI: 10.1007/bf00232044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/1991] [Indexed: 06/02/2023]
Abstract
Glycine argyrea accession G1420 was evaluated for its response to inoculation with Agrobacterium rhizogenes strains LBA9402 and A4T, carrying wild type Ri plasmids, and by strains R1601 and A4TIII with engineered plasmids. Hypocotyls from young seedlings were the most responsive in producing roots at inoculation sites. Root production was also dependent on bacterial concentration. Excised, cultured roots produced green nodular callus which regenerated shoots on SC2 medium containing 1.1 mg l(-1) 6-benzylaminopurine and 0.005 mg l(-1) indole-3-butyric acid. The transformed nature of the roots and of callus regenerating shoots was confirmed by the presence of opines and by dot blot analysis for Ri TL-DNA. Tissues regenerated from roots transformed by A. rhizogenes strains R1601 and A4TIII exhibited NPTII enzyme activity, confirming the stable integration and expression of the chimaeric kanamycin resistance gene in transgenic tissues.
Collapse
Affiliation(s)
- V Kumar
- Plant Genetic Manipulation Group, Department of Botany, University of Nottingham, NG7 2RD, Nottingham, UK
| | | | | |
Collapse
|
46
|
Phelep M, Petit A, Martin L, Duhoux E, Tempé J. Transformation and Regeneration of a Nitrogen-Fixing Tree, Allocasuarina Verticillata Lam. Nat Biotechnol 1991. [DOI: 10.1038/nbt0591-461] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
McInnes E, Morgan AJ, Mulligan BJ, Davey MR. Roots induced on cucumber cotyledons by the agropine Ri plasmid TR-DNA exhibit the transformed phenotype. PLANT CELL REPORTS 1991; 9:647-650. [PMID: 24213669 DOI: 10.1007/bf00231808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/1990] [Revised: 12/01/1990] [Indexed: 06/02/2023]
Abstract
Cucumber explants were transformed by Agrabacterium strains carrying Ri plasmids with functional TL and TR-DNAs, and by strains whose pRi had an intact TR-DNA but a disarmed TL-DNA lacking open reading frames (ORFs) 3 to 9, 10 (rol A), 11 (rol B), 12 (rol C), 13, 14, 15 (rol D), 16 and 17. Roots induced by all strains exhibited extensive root hair formation under axenic conditions, synthesised opines, and contained TR-specific DNA. These results confirm that the TR-DNA of an agropine Ri plasmid is able to elicit the transformed root phenotype in this plant.
Collapse
Affiliation(s)
- E McInnes
- Plant Genetic Manipulation Group, Department of Botany, University of Nottingham, NG7 2RD, Nottingham, UK
| | | | | | | |
Collapse
|
48
|
Bouchez D, Tourneur J. Organization of the agropine synthesis region of the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid 1991; 25:27-39. [PMID: 1852015 DOI: 10.1016/0147-619x(91)90004-g] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The agropine/mannopine synthesis region of the TR region of the Ri plasmid of Agrobacterium rhizogenes strain A4 was localized on the basis of sequence similarity with probes from Ti plasmids of Agrobacterium tumefaciens and analysis of transposon insertions. The nucleotide sequence of the right part of the TR-DNA of pRiA4, encompassing the three genes involved in mannityl-opine synthesis, was determined and compared to the sequence of the corresponding region of the octopine-type Ti plasmid pTi15955. The organization of this region is strongly conserved between Ri and Ti plasmids, but the similarity is restricted to the coding sequences: no homology was detected in the 5' and 3' flanking sequences. The mas1' and ags proteins are the most conserved, showing more than 68% amino acid conservation, whereas the mas2' proteins are only 59% identical. Significant G/C content and codon usage differences are observed between pTi15955 and pRiA4. An open reading frame strongly similar to that of bacterial repressors is situated immediately to the right of the TR region.
Collapse
Affiliation(s)
- D Bouchez
- Laboratoire de Biologie Cellulaire INRA, Versailles, France
| | | |
Collapse
|
49
|
|
50
|
Use of Agrobacterium rhizogenes to Create Chimeric Apple Trees Through Genetic Grafting. Nat Biotechnol 1991. [DOI: 10.1038/nbt0191-80] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|