1
|
Behera P, Nikhil KC, Kumar A, Gali JM, De A, Mohanty AK, Ali MA, Sharma B. Comparative proteomic analysis of Salmonella Typhimurium wild type and its isogenic fnr null mutant during anaerobiosis reveals new insight into bacterial metabolism and virulence. Microb Pathog 2019; 140:103936. [PMID: 31862389 DOI: 10.1016/j.micpath.2019.103936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/19/2022]
Abstract
AIM The aim of this study was to understand the role of anaerobic regulator FNR (Fumarate Nitrate Reduction) in Salmonella Typhimurium through proteomic approach. METHODS AND RESULTS We did label free quantitative proteomic analysis of Salmonella Typhimurium PM45 wild type and the fnr null mutant cultured under anaerobic conditions. The data revealed 153 significantly differentially expressed proteins (DEPs) in the mutant out of 1798 total proteins identified. Out of 153 DEPs, 94 proteins were up-regulated (repressed by FNR) and 59 proteins were down-regulated (activated by FNR) in the mutant. The network analysis indicated up-regulation of TCA cycle, electron transport chain and ethanolamine metabolism and down regulation of pyruvate metabolism and glycerol and glycerophospholipid metabolism. CONCLUSIONS Our study showed that FNR represses ethanolamine utilization. The different metabolic pathways such as pyruvate metabolism, glycerol metabolism and glycerophospholipid metabolism were activated by FNR. Further, FNR positively regulated the DNA binding protein Fis, one of the global regulators of virulence in Salmonella Typhimurium. Thus, our finding highlights the pivotal role of FNR in regulating bacterial metabolism and virulence during anaerobiosis for systemic infection of the host.
Collapse
Affiliation(s)
- Parthasarathi Behera
- Department of Veterinary Physiology & Biochemistry, College of Veterinary Sciences & A.H., Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India.
| | - K C Nikhil
- Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Ajay Kumar
- Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Jagan Mohanarao Gali
- Department of Veterinary Physiology & Biochemistry, College of Veterinary Sciences & A.H., Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India
| | - A De
- Department of Veterinary Physiology & Biochemistry, College of Veterinary Sciences & A.H., R. K. Nagar, West Tripura, Tripura, 799008, India
| | - A K Mohanty
- Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - M Ayub Ali
- Department of Veterinary Physiology & Biochemistry, College of Veterinary Sciences & A.H., Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India
| | - Bhaskar Sharma
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
2
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 6. [PMID: 26442941 DOI: 10.1128/ecosalplus.esp-0005-2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. A large number of respiratory pathways can be established by combining different electron donors and acceptors. The respiratory dehydrogenases use quinones as the electron acceptors that are oxidized by the terminal reductase and oxidases. The enzymes vary largely with respect to their composition, architecture, membrane topology, and the mode of energy conservation. Most of the energy-conserving dehydrogenases (FdnGHI, HyaABC, HybCOAB, and others) and the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox-loop mechanism. Two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases and terminal reductases do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known or can be predicted. The H+/2e- ratios for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and the respiratory chains is described and related to the H+/2e- ratios.
Collapse
|
3
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 3. [PMID: 26443736 DOI: 10.1128/ecosalplus.3.2.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli contains a versatile respiratory chain which oxidizes ten different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use even two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. Various respiratory pathways can be established by combining the oxidation of different electron donors and acceptors which are linked by respiratory quinones. The enzymes vary largely with respect to architecture, membrane topology, and mode of energy conservation. Most of the energy-conserving dehydrogenases (e.g., FdnGHI, HyaABC, and HybCOAB) and of the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox loop mechanism. Only two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases (e.g., Ndh, SdhABCD, and GlpD) and of terminal reductases (e.g., FrdABCD and DmsABC) do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known from structural and biochemical studies or can be predicted from sequence information. The H+/2e- ratios of proton translocation for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and of the respiratory chains is described. In contrast to the knowledge on enzyme function are physiological aspects of respiration such as organization and coordination of the electron transport and the use of alternative respiratory enzymes, not well characterized.
Collapse
|
4
|
Pieper R, Zhang Q, Clark DJ, Parmar PP, Alami H, Suh MJ, Kuntumalla S, Braisted JC, Huang ST, Tzipori S. Proteomic View of Interactions of Shiga Toxin-Producing Escherichia coli with the Intestinal Environment in Gnotobiotic Piglets. PLoS One 2013; 8:e66462. [PMID: 23840478 PMCID: PMC3686733 DOI: 10.1371/journal.pone.0066462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/05/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Shiga toxin (Stx)-producing Escherichia coli cause severe intestinal infections involving colonization of epithelial Peyer's patches and formation of attachment/effacement (A/E) lesions. These lesions trigger leukocyte infiltration followed by inflammation and intestinal hemorrhage. Systems biology, which explores the crosstalk of Stx-producing Escherichia coli with the in vivo host environment, may elucidate novel molecular pathogenesis aspects. METHODOLOGY/PRINCIPAL FINDINGS Enterohemorrhagic E. coli strain 86-24 produces Shiga toxin-2 and belongs to the serotype O157:H7. Bacterial cells were scrapped from stationary phase cultures (the in vitro condition) and used to infect gnotobiotic piglets via intestinal lavage. Bacterial cells isolated from the piglets' guts constituted the in vivo condition. Cell lysates were subjected to quantitative 2D gel and shotgun proteomic analyses, revealing metabolic shifts towards anaerobic energy generation, changes in carbon utilization, phosphate and ammonia starvation, and high activity of a glutamate decarboxylase acid resistance system in vivo. Increased abundance of pyridine nucleotide transhydrogenase (PntA and PntB) suggested in vivo shortage of intracellular NADPH. Abundance changes of proteins implicated in lipopolysaccharide biosynthesis (LpxC, ArnA, the predicted acyltransferase L7029) and outer membrane (OM) assembly (LptD, MlaA, MlaC) suggested bacterial cell surface modulation in response to activated host defenses. Indeed, there was evidence for interactions of innate immunity-associated proteins secreted into the intestines (GP340, REG3-γ, resistin, lithostathine, and trefoil factor 3) with the bacterial cell envelope. SIGNIFICANCE Proteomic analysis afforded insights into system-wide adaptations of strain 86-24 to a hostile intestinal milieu, including responses to limited nutrients and cofactor supplies, intracellular acidification, and reactive nitrogen and oxygen species-mediated stress. Protein and lipopolysaccharide compositions of the OM were altered. Enhanced expression of type III secretion system effectors correlated with a metabolic shift back to a more aerobic milieu in vivo. Apparent pathogen pattern recognition molecules from piglet intestinal secretions adhered strongly to the bacterial cell surface.
Collapse
Affiliation(s)
- Rembert Pieper
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail:
| | - Quanshun Zhang
- Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - David J. Clark
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Hamid Alami
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Moo-Jin Suh
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - John C. Braisted
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Shih-Ting Huang
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Saul Tzipori
- Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
5
|
Cohen G, Ilic D, Raupachova J, Hörl WH. Resistin inhibits essential functions of polymorphonuclear leukocytes. THE JOURNAL OF IMMUNOLOGY 2008; 181:3761-8. [PMID: 18768828 DOI: 10.4049/jimmunol.181.6.3761] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The serum levels of resistin, a 12-kDa protein primarily expressed in inflammatory cells in humans, are increased in patients with chronic kidney disease and in those with diabetes mellitus. Both groups of patients have an increased risk of infections mainly as a result of disturbed polymorphonuclear leukocyte (PMNL) functions. Therefore, we investigated the influence of resistin on human PMNLs. Serum resistin concentrations were determined with a sandwich enzyme immunoassay. Using PMNLs from healthy subjects, chemotaxis was tested by the under-agarose method. Flow cytometric assays to measure oxidative burst and phagocytosis were conducted in whole blood. The uptake of deoxyglucose was determined as measure of the PMNL activation state. The activity of intracellular kinases was assessed by Western blotting and by in vitro kinase assays. Resistin inhibited PMNL chemotaxis and decreased the oxidative burst stimulated by Escherichia coli and by PMA, but did not influence PMNL phagocytosis of opsonized E. coli and PMNL glucose uptake. The inhibition of PMNLs by resistin was observed at concentrations found in serum samples of uremic patients, but not in concentrations measured in healthy subjects. Experiments with specific signal transduction inhibitors and measurements of intracellular kinases suggest that PI3K is a major target of resistin. In conclusion, resistin interferes with the chemotactic movement and the stimulation of the oxidative burst of PMNL, and therefore may contribute to the disturbed immune response in patients with increased resistin serum levels such as uremic and diabetic subjects.
Collapse
Affiliation(s)
- Gerald Cohen
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
6
|
Zheng ZM, Xu YZ, Liu HJ, Guo NN, Cai ZZ, Liu DH. Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol Bioeng 2008; 100:923-32. [PMID: 18551520 DOI: 10.1002/bit.21830] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The glycerol fed-batch fermentation by Klebsiella pneumoniae CGMCC 1.6366 exhibited the sequential synthesis of products, including acetate, 1,3-propanediol (1,3-PD), 2,3-butanediol, ethanol, succinate, and lactate. The dominant flux distribution was shifted from acetate formation to 1,3-PD formation in early- exponential growth phase and then to lactate synthesis in late-exponential growth phase. The underlying physiological mechanism of the above observations has been investigated via the related enzymes, nucleotide, and intermediary metabolites analysis. The carbon flow shift is dictated by the intrinsic physiological state and enzymatic activity regulation. Especially, the internal redox state could serve as a rate-controlling factor for 1,3-PD production. The q(1,3-PD) formation was the combined outcomes of regulations of glycerol dehydratase activity and internal redox balancing. The q(ethanol)/q(acetate) ratios demonstrated the flexible adaptation mechanism of K. pneumoniae preferring ATP generation in early-exponential growth phase. A low PEP to pyruvate ratio corresponded LDH activity increase, leading to lactate accumulation in stationary phase.
Collapse
Affiliation(s)
- Zong-Ming Zheng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
7
|
Rodriguez C, Kwon O, Georgellis D. Effect of D-lactate on the physiological activity of the ArcB sensor kinase in Escherichia coli. J Bacteriol 2004; 186:2085-90. [PMID: 15028693 PMCID: PMC374410 DOI: 10.1128/jb.186.7.2085-2090.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Arc two-component system, comprising the ArcB sensor kinase and the ArcA response regulator, modulates the expression of numerous genes in response to the respiratory growth conditions. Under anoxic growth conditions ArcB autophosphorylates and transphosphorylates ArcA, which in turn represses or activates its target operons. The anaerobic metabolite D-lactate has been shown to stimulate the in vitro autophosphorylating activity of ArcB. In this study, the in vivo effect of D-lactate on the kinase activity of ArcB was assessed. The results demonstrate that D-lactate does not act as a direct signal for activation of ArcB, as previously proposed, but acts as a physiologically significant effector that amplifies ArcB kinase activity.
Collapse
Affiliation(s)
- Claudia Rodriguez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | | | | |
Collapse
|
8
|
Stewart V, Lu Y, Darwin AJ. Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by Escherichia coli K-12. J Bacteriol 2002; 184:1314-23. [PMID: 11844760 PMCID: PMC134854 DOI: 10.1128/jb.184.5.1314-1323.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of phi(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that phi(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme.
Collapse
Affiliation(s)
- Valley Stewart
- Section of Microbiology, University of California, O)ne Shields Avenue, Davis, CA 95616-8665, USA.
| | | | | |
Collapse
|
9
|
Schweizer HP, Po C. Regulation of glycerol metabolism in Pseudomonas aeruginosa: characterization of the glpR repressor gene. J Bacteriol 1996; 178:5215-21. [PMID: 8752340 PMCID: PMC178319 DOI: 10.1128/jb.178.17.5215-5221.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The operons of the glp regulon encoding the glycerol metabolic enzymes of Pseudomonas aeruginosa were hitherto believed to be positively regulated by the product of the glpR regulatory gene. During nucleotide sequence analysis of the region located upstream of the previously characterized glpD gene, encoding sn-glycerol-3-phosphate dehydrogenase, an open reading frame (glpR) was identified which encodes a protein of 251 amino acids that is 59% identical to the Glp repressor from Escherichia coli and could be expressed as a 28-kDa protein in a T7 expression system. Inactivation of chromosomal glpR by gene replacement resulted in constitutive expression of glycerol transport activity and glpD activity. These activities were strongly repressed after introduction of a multicopy plasmid containing the glpR gene; the same plasmid also efficiently repressed expression of a glpT-lacZ+ transcriptional fusion in an E. coli glpR mutant. Analysis of the glpD and glpF upstream region identified conserved palindromic sequences which were 70% identical to the E. coli glp operator consensus sequence. The results suggest that the operons of the glp regulon in P. aeruginosa are negatively regulated by the action of a glp repressor.
Collapse
Affiliation(s)
- H P Schweizer
- Department of Microbiology, Colorado State University, Fort Collins 80523, USA
| | | |
Collapse
|
10
|
Varga ME, Weiner JH. Physiological role of GlpB of anaerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. Biochem Cell Biol 1995; 73:147-53. [PMID: 7576488 DOI: 10.1139/o95-018] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli is encoded by an operon of three genes, glpACB. The promoter distal gene, glpB, encodes a 44-kilodalton polypeptide that is not part of the purified soluble dehydrogenase. By recombinant plasmid complementation, in a strain harboring a chromosomal deletion of glpACB, we found that all three genes were essential for anaerobic growth on glycerol-3-phosphate (G3P). By isolation of inner membrane preparations we confirmed the cytoplasmic membrane localization of GlpB. GlpB displayed an electron paramagnetic resonance spectrum that suggested the presence of iron-sulfur center(s) within GlpB. We used this spectrum to show that the center(s) were reduced by the artificial reductant dithionite and by the physiological substrate G3P but not by lactate or formate. The center(s) were oxidized by fumarate. These data indicated that GlpB mediates electron transfer from the soluble GlpAC dimer to the terminal electron acceptor fumarate via the membrane-bound menaquinone pool.
Collapse
Affiliation(s)
- M E Varga
- University of Alberta, Edmonton, Canada
| | | |
Collapse
|
11
|
Gunsalus RP, Park SJ. Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol 1994; 145:437-50. [PMID: 7855430 DOI: 10.1016/0923-2508(94)90092-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A variety of pathways for carbon and electron flow in the bacterium Escherichia coli and in other enteric bacteria are differentially expressed depending on whether molecular oxygen is present in the cell environment. This review briefly summarizes the metabolic pathways operative during aerobic versus anaerobic cell growth, and provides a regulatory overview for how the cell controls expression of the many genes involved in these processes. The cell has two distinctly different transcriptional regulators, consisting of the Fnr and the ArcA/ArcB regulatory proteins to accomplish this task. Together, they coordinate gene expression to adjust carbon flow with electron flow and energy generation so that cells can balance growth in an efficiently coupled manner.
Collapse
Affiliation(s)
- R P Gunsalus
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024
| | | |
Collapse
|
12
|
Truniger V, Boos W. Mapping and cloning of gldA, the structural gene of the Escherichia coli glycerol dehydrogenase. J Bacteriol 1994; 176:1796-800. [PMID: 8132480 PMCID: PMC205274 DOI: 10.1128/jb.176.6.1796-1800.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
gldA, the structural gene for the NAD(+)-dependent glycerol dehydrogenase, was mapped at 89.2 min on the Escherichia coli linkage map, cotransducible with, but not adjacent to, the glpFKX operon encoding the proteins for the uptake and phosphorylation of glycerol. gldA was cloned, and its position on the physical map of E. coli was determined. The expression of gldA was induced by hydroxyacetone under stationary-phase growth conditions.
Collapse
Affiliation(s)
- V Truniger
- Department of Biology, University of Konstanz, Germany
| | | |
Collapse
|
13
|
Dong JM, Taylor JS, Latour DJ, Iuchi S, Lin EC. Three overlapping lct genes involved in L-lactate utilization by Escherichia coli. J Bacteriol 1993; 175:6671-8. [PMID: 8407843 PMCID: PMC206779 DOI: 10.1128/jb.175.20.6671-6678.1993] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In Escherichia coli, the lct locus at min 80 on the chromosome map is associated with ability to grow on L-lactate and to synthesize a substrate-inducible flavin-linked dehydrogenase. Similar to that of the glpD-encoded aerobic glycerol-3-phosphate dehydrogenase, the level of induced enzyme activity is elevated by aerobiosis. Both of these controls are mediated by the two-component signal transduction system ArcB/ArcA, although sensitivity to the control is much more striking for L-lactate dehydrogenase. This study disclosed that the lct locus contained three overlapping genes in the clockwise order of lctD (encoding a flavin mononucleotide-dependent dehydrogenase), lctR (encoding a putative regulator), and lctP (encoding a permease) on the chromosomal map. These genes, however, are transcribed in the counterclockwise direction. No homology in amino acid sequence was found between aerobic glycerol-3-phosphate dehydrogenase and L-lactate dehydrogenase. A phi (lctD-lac) mutant was inducible by L-lactate but not D-lactate. Although the mutant lost the ability to grow on L-lactate, growth on D-lactate, known to depend on a different enzyme, remained normal.
Collapse
Affiliation(s)
- J M Dong
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
14
|
Dong Q, Ebright RH. DNA binding specificity and sequence of Xanthomonas campestris catabolite gene activator protein-like protein. J Bacteriol 1992; 174:5457-61. [PMID: 1322886 PMCID: PMC206387 DOI: 10.1128/jb.174.16.5457-5461.1992] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Xanthomonas campestris catabolite gene activator protein-like protein (CLP) can substitute for the Escherichia coli catabolite gene activator protein (CAP) in transcription activation at the lac promoter (V. de Crecy-Lagard, P. Glaser, P. Lejeune, O. Sismeiro, C. Barber, M. Daniels, and A. Danchin, J. Bacteriol. 172:5877-5883, 1990). We show that CLP has the same DNA binding specificity as CAP at positions 5, 6, and 7 of the DNA half site. In addition, we show that the amino acids at positions 1 and 2 of the recognition helix of CLP are identical to the amino acids at positions 1 and 2 of the recognition helix of CAP:i.e., Arg at position 1 and Glu at position 2.
Collapse
Affiliation(s)
- Q Dong
- Department of Chemistry, Rutgers University, New Brunswick, New Jersey 08855
| | | |
Collapse
|
15
|
Wong K, Kwan H. Transcription ofglpTofEscherichia coliK12 is regulated by anaerobiosis andfnr. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05280.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Larson T, Cantwell J, van Loo-Bhattacharya A. Interaction at a distance between multiple operators controls the adjacent, divergently transcribed glpTQ-glpACB operons of Escherichia coli K-12. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42669-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Zhang XP, Gunasekera A, Ebright YW, Ebright RH. Derivatives of CAP having no solvent-accessible cysteine residues, or having a unique solvent-accessible cysteine residue at amino acid 2 of the helix-turn-helix motif. J Biomol Struct Dyn 1991; 9:463-73. [PMID: 1667734 DOI: 10.1080/07391102.1991.10507929] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Escherichia coli catabolite gene activator protein (CAP) is a helix-turn-helix motif sequence-specific DNA binding protein. CAP contains a unique solvent-accessible cysteine residue at amino acid 10 of the helix-turn-helix motif. In published work, we have constructed a prototype semi-synthetic site-specific DNA cleavage agent from CAP by use of cysteine-specific chemical modification to incorporate a nucleolytic chelator-metal complex at amino acid 10 of the helix-turn-helix motif [Ebright, R., Ebright, Y., Pendergrast, P.S. and Gunasekera, A., Proc. Natl. Acad. Sci. USA 87, 2882-2886 (1990)]. Construction of second-generation semi-synthetic site-specific DNA cleavage agents from CAP requires the construction of derivatives of CAP having unique solvent-accessible cysteine residues at sites within CAP other than amino acid 10 of the helix-turn-helix motif. In the present work, we have constructed and characterized two derivatives of CAP having no solvent-accessible cysteine residues: [Ser178]CAP and [Leu178]CAP. In addition, in the present work, we have constructed and characterized one derivative of CAP having a unique solvent-accessible cysteine residue at amino acid 2 of the helix-turn-helix motif: [Cys170;Ser178]CAP.
Collapse
Affiliation(s)
- X P Zhang
- Department of Chemistry and Waksman Institute, Rutgers University, New Brunswick, NJ 08855
| | | | | | | |
Collapse
|
18
|
Rasmussen LJ, Møller PL, Atlung T. Carbon metabolism regulates expression of the pfl (pyruvate formate-lyase) gene in Escherichia coli. J Bacteriol 1991; 173:6390-7. [PMID: 1917868 PMCID: PMC208971 DOI: 10.1128/jb.173.20.6390-6397.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The anaerobic expression of pfl is reduced both in a strain mutated in the pgi gene and in a pfkA pfkB double mutant strain when cells are grown in medium supplemented with glucose. When cells are grown in medium supplemented with either fructose or pyruvate, no reduction is observed in these strains. The amount of pyruvate in the cells may be responsible for the reduced expression of pfl in the strains mutated in the genes encoding the glycolytic enzymes. Because of the lowered oxygen concentration in the medium, the expression of pfl is induced when an exponentially growing culture enters the stationary phase. This induction is increased when the Casamino Acid concentration is raised 10-fold or when the medium is supplemented with NaCl. Superhelicity of DNA is decreased in a pgi mutant strain grown in medium supplemented with glucose. The superhelicity is also changed, but the opposite way, in a wild-type strain grown in medium supplemented with Casamino Acids at a high concentration or 0.3 M sodium chloride. Our data show that changes in superhelicity do not affect the aerobic expression of pfl but might be important for the anaerobic induction of pfl.
Collapse
Affiliation(s)
- L J Rasmussen
- Department of Microbiology, Technical University of Denmark, Copenhagen
| | | | | |
Collapse
|
19
|
Hsieh LS, Burger RM, Drlica K. Bacterial DNA supercoiling and [ATP]/[ADP]. Changes associated with a transition to anaerobic growth. J Mol Biol 1991; 219:443-50. [PMID: 1646892 DOI: 10.1016/0022-2836(91)90185-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Shifting Escherichia coli from aerobic to anaerobic growth caused changes in the ratio of [ATP]/[ADP] and in negative supercoiling of chromosomal and plasmid DNA. Shortly after lowering oxygen tension, both [ATP]/[ADP] and supercoiling transiently decreased. Under conditions of exponential anaerobic growth, both were higher than under aerobic conditions. These correlations may reflect an effect of [ATP]/[ADP] on DNA gyrase, since in vitro [ATP]/[ADP] influences the level of plasmid supercoiling attained when gyrase is either introducing or removing supercoils. When the supercoiling activity of gyrase was perturbed by a mutation in gyrB, a shift to anaerobic conditions resulted in plasmid supercoil relaxation similar to that seen with wild-type. However, the low level of supercoiling in the mutant persisted during a time when supercoiling in wild-type recovered and then exceeded aerobic levels. Thus, changes in oxygen tension can alter DNA supercoiling through an effect on gyrase, and correlations exist between changes in supercoiling and changes in the intracellular ratio of [ATP]/[ADP].
Collapse
Affiliation(s)
- L S Hsieh
- Public Health Research Institute, New York, NY 10016
| | | | | |
Collapse
|
20
|
Baker KP, Boxer DH. Regulation of the chlA locus of Escherichia coli K12: involvement of molybdenum cofactor. Mol Microbiol 1991; 5:901-7. [PMID: 1906967 DOI: 10.1111/j.1365-2958.1991.tb00764.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The chlA locus encodes functions required for the biosynthesis of the molybdopterin part of the molybdenum cofactor. Mutants, carrying gene fusions at the chlA locus, which place beta-galactosidase expression under the control of the chlA promoter, have been isolated employing lambda placMu1 as the mutagen. The mutants exhibited beta-galactosidase expression which was greatly enhanced when grown anaerobically. Secondary mutations at the chlB, D, E or G loci did not affect the high level of expression. The fnr gene product was not required for the anaerobic expression. Bacteriophage lambda transducing phages were isolated which carried the phi(chlA-lac) mutations and were used to construct chlA+/phi(clA-lac) merodiploids. The merodiploids exhibited a much lower level of expression but showed the same characteristics as strains carrying lac fusions to the single chromosomal chlA locus. Genetic evidence is presented which strongly suggests that the molybdenum cofactor is a repressor of chlA expression. The anaerobic enhancement of chlA expression is mediated via a mechanism that is distinct from the molybdenum cofactor effect.
Collapse
Affiliation(s)
- K P Baker
- Department of Biochemistry, Dundee University, UK
| | | |
Collapse
|
21
|
Fu HA, Iuchi S, Lin EC. The requirement of ArcA and Fnr for peak expression of the cyd operon in Escherichia coli under microaerobic conditions. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:209-13. [PMID: 1851949 DOI: 10.1007/bf00273605] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transcriptional regulation of cyd, encoding the cytochrome d complex for O2 scavenging, was studied in Escherichia coli by monitoring phi(cyd-lac) expression under atmospheres containing 0-21% O2. Peak expression of this operon occurred under microaerobic conditions. Mutations in arcA (a trans-acting regulatory gene involved in aerobic respiration) greatly lowered phi(cyd-lac) expression under all conditions. Mutations in fnr (a trans-acting regulatory gene involved in anaerobic respiration) shifted the pattern of phi(cyd-lac) expression, lowering the microaerobic and aerobic expression. In an arcA-fnr double mutant, phi(cyd-lac) expression became insignificant, irrespective of the availability of O2. It thus appears that the expression of the phi(cyd-lac) operon is under dual control by the two pleiotropic activators, ArcA and Fnr, which interact to give the peak microaerobic expression.
Collapse
Affiliation(s)
- H A Fu
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
22
|
Wolfson JS, Hooper DC, McHugh GL, Bozza MA, Swartz MN. Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. Antimicrob Agents Chemother 1990; 34:1938-43. [PMID: 1963289 PMCID: PMC171968 DOI: 10.1128/aac.34.10.1938] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Norfloxacin, ofloxacin, and other new quinolones, which are antagonists of the enzyme DNA gyrase, rapidly kill bacteria by largely unknown mechanisms. Earlier, we isolated, after mutagenesis, Escherichia coli DS1, which exhibited reduced killing by quinolones. We evaluated the killing of DS1 and several other strains by quinolones and beta-lactams. In time-killing studies with norfloxacin, DS1 was killed 1 to 2 log10 units compared to 4 to 5 log10 units for the wild-type parent strain KL16, thus revealing that DS1 is a high-persistence (hip) mutant. DS1 exhibited a similar high-persistence pattern for the beta-lactam ampicillin and reduced killing by drugs that differed in their affinities for penicillin-binding proteins, including cefoxitin, cefsulodin, imipenem, mecillinam, and piperacillin. Conjugation and P1 transduction studies identified a novel mutant locus (termed hipQ) in the 2-min region of the DS1 chromosome necessary for reduced killing by norfloxacin and ampicillin. E. coli KL500, which was isolated for reduced killing by norfloxacin without mutagenesis, exhibited reduced killing by ampicillin. E. coli HM23, a hipA (34 min) mutant that was isolated earlier for reduced killing by ampicillin, also exhibited high persistence to norfloxacin. DS1 differed from HM23, however, in the map location of its hip mutation, lack of cold sensitivity, and reduced killing by coumermycin. Results of these studies with strains DS1, KL500, and HM23 demonstrate overlap in the pathways of killing of E. coli by quinolones and beta-lactams and identify hipQ, a new mutant locus that is involved in a high-persistence pattern of reduced killing by norfloxacin and ampicillin.
Collapse
Affiliation(s)
- J S Wolfson
- Infectious Disease Unit, Medical Services, Massachusetts General Hospital, Boston
| | | | | | | | | |
Collapse
|
23
|
Abstract
Bacteria which can grow in different environments have developed regulatory systems which allow them to exploit specific habitats to their best advantage. In the facultative anaerobe Escherichia coli two transcriptional regulators controlling independent networks of oxygen-regulated gene expression have been identified. One is a two-component sensor-regulator system (ArcB-A), which represses a wide variety of aerobic enzymes under anaerobic conditions. The other is FNR, the transcriptional regulator which is essential for expressing anaerobic respiratory processes. The purpose of this review is to summarize what is known about FNR. The fnr gene was initially defined by the isolation of some pleiotropic mutants which characteristically lacked the ability to use fumarate and nitrate as reducible substrates for supporting anaerobic growth and several other anaerobic respiratory functions. Its role as a transcriptional regulator emerged from genetic and molecular studies in which its homology with CRP (the cyclic AMP receptor protein which mediates catabolite repression) was established and has since been particularly important in identifying the structural basis of its regulatory specificities. FNR is a member of a growing family of CRP-related regulatory proteins which have a DNA-binding domain based on the helix-turn-helix structural motif, and a characteristic beta-roll that is involved in nucleotide-binding in CRP. The FNR protein has been isolated in a monomeric form (Mr 30,000) which exhibits a high but as yet non-specific affinity for DNA. Nevertheless, the DNA-recognition site and important residues conferring the functional specificity of FNR have been defined by site-directed mutagenesis. A consensus for the sequences that are recognized by FNR in the promoter regions of FNR-regulated genes, has likewise been identified. The basic features of the genes and operons regulated by FNR are reviewed, and examples in which FNR functions negatively as an anaerobic repressor as well as positively as an anaerobic activator, are included. Less is known about the way in which FNR senses anoxia and is thereby transformed into its 'active' form, but it seems likely that cysteine residues and possibly a metal ion are involved. Four of the five cysteine residues of FNR are clustered in an essential N-terminal 'domain' which is conserved in FNR and the HlyX protein of Actinobacillus pleuropneumoniae, but not in CRP or the FixK protein of Rhizobium meliloti. The relationships between FNR and other oxygen-related systems in E. coli are discussed, as well as parallel systems in other organisms.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Spiro
- Department of Molecular Biology and Biotechnology, University of Sheffield, U.K
| | | |
Collapse
|
24
|
Zhang XP, Ebright RH. Substitution of 2 base pairs (1 base pair per DNA half-site) within the Escherichia coli lac promoter DNA site for catabolite gene activator protein places the lac promoter in the FNR regulon. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38360-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Zhang XP, Ebright RH. Identification of a contact between arginine-180 of the catabolite gene activator protein (CAP) and base pair 5 of the DNA site in the CAP-DNA complex. Proc Natl Acad Sci U S A 1990; 87:4717-21. [PMID: 2162054 PMCID: PMC54188 DOI: 10.1073/pnas.87.12.4717] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have used site-directed mutagenesis to replace amino acid 1 of the recognition alpha-helix of the catabolite gene activator protein (CAP), Arg-180, with glycine and with alanine. Substitution of Arg-180 of CAP eliminated specificity between G.C, A.T, C.G, and T.A at base pair 5 of the DNA half-site. The effect was position-specific: substitution of Arg-180 did not eliminate specificity between G.C, A.T, C.G, and T.A at base pair 7 of the DNA half-site. We conclude, in agreement with the model for the structure of the CAP-DNA complex [Weber, I. & Steitz, T. (1984) Proc. Natl. Acad. Sci. USA 81, 3973-3977; and Ebright, R., Cossart, P., Gicquel-Sanzey, B. & Beckwith, J. (1984) Proc. Natl. Acad. Sci. USA 81, 7274-7278], that Arg-180 of CAP makes a specificity-determining contact with base pair 5 of the DNA half-site in the CAP-DNA complex. The identification of the contact by Arg-180 in this report, in conjunction with the identification of the contact by Glu-181 in a previous report [Ebright, R., Cossart, P., Gicquel-Sanzey, B. & Beckwith, J. (1984) Nature (London) 311, 232-235], provides information sufficient to define the orientation of the helix-turn-helix motif of CAP with respect to DNA in the CAP-DNA complex.
Collapse
Affiliation(s)
- X P Zhang
- Department of Chemistry, Rutgers University, New Brunswick, NJ 08855
| | | |
Collapse
|
26
|
Unden G, Trageser M, Duchêne A. Effect of positive redox potentials (greater than +400 mV) on the expression of anaerobic respiratory enzymes in Escherichia coli. Mol Microbiol 1990; 4:315-9. [PMID: 2187148 DOI: 10.1111/j.1365-2958.1990.tb00598.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The expression of fumarate reductase and other enzymes of anaerobic respiration in Escherichia coli was studied as a function of the redox potential (Eh) in the medium. Redox potentials up to +300 mV allowed full expression of fumarate reductase (frd) genes. Higher values resulted in decreased expression. The relationship between Eh and expression of frd could be approximated by the Nernst equation, assuming a redox couple with a midpoint potential Eo' = +400 mV to 440 mV. At Eh values greater than +510 mV (generated anaerobically by hexacyanoferrate(III] the degree of repression was the same as that obtained by O2. Hexacyanoferrate(III) also caused decreased activities of dimethylsulphoxide (DMSO), nitrite and nitrate reductases. Since expression of these enzymes depends on FNR, the gene activator of anaerobic respiratory genes, it is suggested that the function of FNR is controlled by a redox couple of Eo' = +400 mV to 440 mV.
Collapse
Affiliation(s)
- G Unden
- Institut für Mikrobiologie, J. W. Goethe-Universität, Frankfurt, FRG
| | | | | |
Collapse
|
27
|
Multiple regulatory elements for the glpA operon encoding anaerobic glycerol-3-phosphate dehydrogenase and the glpD operon encoding aerobic glycerol-3-phosphate dehydrogenase in Escherichia coli: further characterization of respiratory control. J Bacteriol 1990; 172:179-84. [PMID: 2403539 PMCID: PMC208416 DOI: 10.1128/jb.172.1.179-184.1990] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Escherichia coli, sn-glycerol-3-phosphate can be oxidized by two different flavo-dehydrogenases, an anaerobic enzyme encoded by the glpACB operon and an aerobic enzyme encoded by the glpD operon. These two operons belong to the glp regulon specifying the utilization of glycerol, sn-glycerol-3-phosphate, and glycerophosphodiesters. In glpR mutant cells grown under conditions of low catabolite repression, the glpA operon is best expressed anaerobically with fumarate as the exogenous electron acceptor, whereas the glpD operon is best expressed aerobically. Increased anaerobic expression of glpA is dependent on the fnr product, a pleiotropic activator of genes involved in anaerobic respiration. In this study we found that the expression of a glpA1(Oxr) (oxygen-resistant) mutant operon, selected for increased aerobic expression, became less dependent on the FNR protein but more dependent on the cyclic AMP-catabolite gene activator protein complex mediating catabolite repression. Despite the increased aerobic expression of glpA1(Oxr), a twofold aerobic repressibility persisted. Moreover, anaerobic repression by nitrate respiration remained normal. Thus, there seems to exist a redox control apart from the FNR-mediated one. We also showed that the anaerobic repression of the glpD operon was fully relieved by mutations in either arcA (encoding a presumptive DNA recognition protein) or arcB (encoding a presumptive redox sensor protein). The arc system is known to mediate pleiotropic control of genes of aerobic function.
Collapse
|
28
|
Andersson DI, Roth JR. Redox regulation of the genes for cobinamide biosynthesis in Salmonella typhimurium. J Bacteriol 1989; 171:6734-9. [PMID: 2687249 PMCID: PMC210570 DOI: 10.1128/jb.171.12.6734-6739.1989] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transcription of the cobinamide biosynthetic genes (the CobI operon) was induced under three different physiological conditions: anaerobiosis (anaerobic respiration or fermentation), aerobic respiration at low oxygen levels, and aerobic respiration with a partial block of the electron transport chain. After a shift to inducing conditions, there was a time lag of approximately 50 min before the onset of CobI induction. Under conditions of anaerobic respiration, the level of CobI transcription was dependent on the nature of both the electron donor (carbon and energy source) and the acceptor. Cells grown with electron acceptors with a lower midpoint potential showed higher CobI expression levels. The highest level of CobI transcription observed was obtained with glycerol as the carbon source and fumarate as the electron acceptor. The high induction seen with glycerol was reduced by mutational blocks in the glycerol catabolic pathway, suggesting that glycerol does not serve as a gratuitous inducer but must be metabolized to stimulate CobI transcription. In the presence of oxygen, CobI operon expression was induced 6- to 20-fold by the following: inhibition of cytochrome o oxidase with cyanide, mutational blockage of ubiquinone biosynthesis, and starvation of mutant cells for heme. We suggest that the CobI operon is induced in response to a reducing environment within the cell and not by the absence of oxygen per se.
Collapse
Affiliation(s)
- D I Andersson
- Department of Biology, University of Utah, Salt Lake City 84112
| | | |
Collapse
|
29
|
Khosla C, Bailey JE. Characterization of the oxygen-dependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J Bacteriol 1989; 171:5995-6004. [PMID: 2681149 PMCID: PMC210464 DOI: 10.1128/jb.171.11.5995-6004.1989] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The gene coding for the Vitreoscilla hemoglobin (VHb) molecule has been cloned and functionally expressed in Escherichia coli. By using a plasmid-encoded gene as well as single-copy integrants, the oxygen-dependent VHb gene (VHb) promoter was shown to be functional in E. coli. The promoter was maximally induced under microaerobic conditions (dissolved oxygen levels of less than 2% air saturation). Direct analysis of mRNA levels as well as the use of gene fusions with lacZ showed that oxygen-dependent regulation occurred at the level of transcription. Transcriptional activity decreased substantially under anaerobic conditions, suggesting the presence of a regulatory mechanism that is maximally induced under hypoxic but not completely anaerobic conditions in E. coli. Primer extension analysis was used to identify the existence of two overlapping promoters within a 150-base-pair region upstream of the structural VHb gene. The oxygen-dependent activity of both promoters was qualitatively similar, suggesting the existence of a common mechanism by which available oxygen concentrations influence expression from the two promoters. Analysis of promoter activity in crp and cya mutants showed that both cyclic AMP and catabolite activator protein were required for full activity of the promoter. The VHb promoter contained a region of significant homology to the catabolite activator protein-binding site near the E. coli lac promoter.
Collapse
Affiliation(s)
- C Khosla
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
30
|
Abstract
In enteric bacteria, the expression of many genes encoding various anaerobic electron transfer functions is controlled by FNR, the product of the autoregulated fnr gene. FNR is structurally and functionally homologous to CAP, the catabolite gene activator protein, and increased FNR production strongly stimulates transcription of its target genes. By analysis of RNA produced in vivo the promoters of four FNR-dependent genes were localized and shown to display a common arrangement. A 22bp dyad symmetry was found about 30 nucleotides upstream of the transcriptional startpoints and a similar sequence was shown to overlap the site of transcription initiation in the negatively controlled fnr gene. The consensus sequence for the half site recognized by FNR (AAA-TTGAT) is only slightly different from that of CAP (AA-TGTGA). Studies with two mutant frd promoters from Escherichia coli, displaying altered regulation and FNR response, provided additional evidence for recognition of this sequence by FNR.
Collapse
Affiliation(s)
- K Eiglmeier
- Laboratoire de Génétique Moléculaire Bactérienne, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Ye SZ, Larson TJ. Structures of the promoter and operator of the glpD gene encoding aerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli K-12. J Bacteriol 1988; 170:4209-15. [PMID: 3045087 PMCID: PMC211429 DOI: 10.1128/jb.170.9.4209-4215.1988] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide sequence of a 690-base-pair DNA segment containing the control region for the glpD gene encoding aerobic sn-glycerol-3-phosphate dehydrogenase was determined. An ATG translation initiation codon with an adjacent ribosome-binding site was found which preceded an open reading frame continuing 61 codons to the end of the DNA that was sequenced. The start site for transcription, identified by using primer extension analysis, was located 42 base pairs upstream from the proposed Met start codon. The transcription start site was preceded by a region containing typical -10 and -35 sequences found in bacterial promoters. A binding site for the cyclic AMP-cyclic AMP receptor protein complex (identified by comparison with the consensus-binding sequence and verified by using DNase I footprinting) was located just upstream from the -35 sequence, centered at position -63. The interaction site for the glp repressor was identified by using DNase I footprinting. It consisted of a 49-base-pair region which started at the -10 sequence and continued to position +38. This region contained two directly repeated sequences, each possessing hyphenated dyad symmetry, which suggests that the operator is tandemly repeated. The presence of two adjacent operators may explain why expression of the glpD gene is the most sensitive to repressor when compared with expression of the other operons that are members of the glp regulon.
Collapse
Affiliation(s)
- S Z Ye
- Department of Biochemistry and Nutrition, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | | |
Collapse
|
33
|
|
34
|
Dorman CJ, Barr GC, Ni Bhriain N, Higgins CF. DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J Bacteriol 1988; 170:2816-26. [PMID: 2836373 PMCID: PMC211208 DOI: 10.1128/jb.170.6.2816-2826.1988] [Citation(s) in RCA: 214] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We show that several interacting environmental factors influence the topology of intracellular DNA. Negative supercoiling of DNA in vivo is increased by anaerobic growth and is also influenced by growth phase. The tonB promoter of Escherichia coli and Salmonella typhimurium was found to be highly sensitive to changes in DNA supercoiling. Expression was increased by novobiocin, an inhibitor of DNA gyrase, and was decreased by factors which increase DNA superhelicity. Expression of the plasmid-encoded tonB gene was enhanced by gamma delta insertions in cis in a distance- and orientation-independent fashion. Both the res site and the TnpR protein of gamma delta, which is known to function as a type I topoisomerase, were required for this activation. tonB expression increased during the growth cycle and was reduced by anaerobiosis. There was excellent correlation between tonB expression from a plasmid and the level of supercoiling of that plasmid under a wide range of conditions. The chromosomal tonB gene was regulated in a manner identical to that of the plasmid-encoded gene. Thus, the physiological regulation of tonB expression in response to anaerobiosis and growth phase appears to be mediated by environmentally induced changes in DNA superhelicity.
Collapse
Affiliation(s)
- C J Dorman
- Department of Biochemistry, University of Dundee, Scotland
| | | | | | | |
Collapse
|
35
|
Cole ST, Eiglmeier K, Ahmed S, Honore N, Elmes L, Anderson WF, Weiner JH. Nucleotide sequence and gene-polypeptide relationships of the glpABC operon encoding the anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli K-12. J Bacteriol 1988; 170:2448-56. [PMID: 3286606 PMCID: PMC211154 DOI: 10.1128/jb.170.6.2448-2456.1988] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nucleotide sequence of a 4.8-kilobase SacII-PstI fragment encoding the anaerobic glycerol-3-phosphate dehydrogenase operon of Escherichia coli has been determined. The operon consists of three open reading frames, glpABC, encoding polypeptides of molecular weight 62,000, 43,000, and 44,000, respectively. The 62,000- and 43,000-dalton subunits corresponded to the catalytic GlpAB dimer. The larger GlpA subunit contained a putative flavin adenine dinucleotide-binding site, and the smaller GlpB subunit contained a possible flavin mononucleotide-binding domain. The GlpC subunit contained two cysteine clusters typical of iron-sulfur-binding domains. This subunit was tightly associated with the envelope fraction and may function as the membrane anchor for the GlpAB dimer. Analysis of the GlpC primary structure indicated that the protein lacked extended hydrophobic sequences with the potential to form alpha-helices but did contain several long segments capable of forming transmembrane amphipathic helices.
Collapse
Affiliation(s)
- S T Cole
- Biochimie des Régulations Cellulaires, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Bonnefoy V, Fons M, Ratouchniak J, Pascal MC, Chippaux M. Aerobic expression of the nar operon of Escherichia coli in a fnr mutant. Mol Microbiol 1988; 2:419-25. [PMID: 2840556 DOI: 10.1111/j.1365-2958.1988.tb00047.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mutations allowing aerobic expression of the anaerobically controlled nar operon have been located in the autoregulated fnr gene. Cloning and sequencing of the mutant fnrd20 allele, and fnr mRNA quantitation by dot blot assay, revealed that the mutation was the result of an IS5 insertion into the control region of fnr that enhanced transcription of the fnr gene at least ten-fold. Examination of the regulatory region of the negatively autoregulated fnr gene indicated that it shared homologous sequences with the positively Fnr-controlled frd and nar operons. The increase in fnr transcription in the fnrd20 mutated allele could be partly the result of loss of autoregulation, since the IS5 separated the Fnr target site from the '-35' region of the promoter.
Collapse
Affiliation(s)
- V Bonnefoy
- Laboratoire de Chimie Bactérienne, CNRS, Marseille, France
| | | | | | | | | |
Collapse
|
37
|
Stewart V, Parales J. Identification and expression of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J Bacteriol 1988; 170:1589-97. [PMID: 2832370 PMCID: PMC211006 DOI: 10.1128/jb.170.4.1589-1597.1988] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Previous studies have shown that narL+ is required for nitrate induction of nitrate reductase synthesis and for nitrate inhibition of fumarate reductase synthesis in Escherichia coli. We cloned narL on a 5.1-kilobase HindIII fragment. Our clone also contained a previously unidentified gene, which we propose to designate as narX, as well as a portion of narK. Maxicell experiments indicated that narL and narX encode proteins with approximate MrS of 28,000 and 66,000, respectively. narX insertion mutations reduced nitrate reductase structural gene expression by less than twofold. Expression of phi (narL-lacZ) operon fusions was weakly induced by nitrate but was indifferent to aerobiosis and independent of fnr. Expression of phi (narX-lacZ) operon fusions was induced by nitrate and was decreased by narL and fnr mutations. A phi (narK-lacZ) operon fusion was induced by nitrate, and its expression was fully dependent on narL+ and fnr+. Analysis of these operon fusions indicated that narL and narX are transcribed counterclockwise with respect to the E. coli genetic map and that narK is transcribed clockwise.
Collapse
Affiliation(s)
- V Stewart
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
38
|
Abstract
Oxygen can be either beneficial or detrimental for diazotrophy in organisms capable of an aerobic catabolism. It supports the production of a substrate for nitrogenase (ATP), but it can also inhibit the activity and repress the synthesis of this enzyme. Here, aspects of the relevant physiology are reviewed with particular emphasis on those relating to the mechanism of O2 regulation of nitrogenase synthesis.
Collapse
Affiliation(s)
- S Hill
- AFRC-IPSR Division of Nitrogen Fixation, University of Sussex, Brighton, U.K
| |
Collapse
|
39
|
Aliabadi Z, Park YK, Slonczewski JL, Foster JW. Novel regulatory loci controlling oxygen- and pH-regulated gene expression in Salmonella typhimurium. J Bacteriol 1988; 170:842-51. [PMID: 3276666 PMCID: PMC210731 DOI: 10.1128/jb.170.2.842-851.1988] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Three new loci were discovered, each of which participates in the regulation of anaerobic gene expression. The regulatory gene earA negatively regulates the expression of the anaerobiosis-inducible gene aniG as well as that of at least three other genes, as determined by two-dimensional polyacrylamide gel electrophoresis. The earA locus maps at 86 min. The expression of aniG was also shown to be controlled by changes in external pH under aerobic and anaerobic conditions. Maximal expression was observed under anaerobic conditions at an external pH of 6.0. Significant transcriptional activity was also observed under aerobic conditions at pH 6.0. This was in contrast to hyd, whose expression was dependent upon anaerobiosis and varied with external pH. The pH dependence disappeared under fully aerobic conditions. Mutations in earA had no effect upon hyd expression. The two other regulators identified were oxrF, which controls aniH, and oxrG, which, in concert with oxrA and oxrB, controls aniC and aniI. The oxrG locus was mapped to 88 min and appears to code for a positive regulator. Various oxr mutants were subjected to two-dimensional polyacrylamide electrophoretic analysis of anaerobiosis-inducible proteins. Several pathways of anaerobic control were observed by means of these techniques.
Collapse
Affiliation(s)
- Z Aliabadi
- Department of Microbiology, College of Medicine, University of South Alabama, Mobile 36688
| | | | | | | |
Collapse
|
40
|
Birkmann A, Sawers RG, Böck A. Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:535-42. [PMID: 3323848 DOI: 10.1007/bf00327209] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ntr A gene product, required for expression of genes involved in nitrogen fixation (nif) and regulation (ntr), was shown to be necessary for the expression of the two enzymes of the anaerobically inducible formate hydrogenlyase (FHL) pathway, formate dehydrogenase (FDHH) and hydrogenase isoenzyme 3. Consistent with this finding, the gene encoding the selenopolypeptide (fdhF) of FDHH was shown to have a nif consensus promoter. The levels of six other anaerobically inducible enzymes were examined and found to be ntrA independent. Significantly, these latter six enzymes are dependent upon the fnr gene product for their expression while FDHH and hydrogenase 3 are fnr independent. These findings indicate that there are at least two classes of anaerobically regulated promoters: one class which is ntrA dependent and fnr independent and a second class which is fnr dependent and ntr A independent.
Collapse
Affiliation(s)
- A Birkmann
- Lehrstuhl für Mikrobiologie der Universität München, Federal Republic of Germany
| | | | | |
Collapse
|
41
|
Larson TJ, Ye SZ, Weissenborn DL, Hoffmann HJ, Schweizer H. Purification and characterization of the repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K12. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47669-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
42
|
Abstract
The production of the bacterial DNA replication inhibitor Microcin B17 is induced as cultures enter stationary phase. Using S1 nuclease protection assays we have shown that this induction is the result of increased levels of transcription initiation from a promoter located upstream from mcbA, the structural gene for Microcin B17. Upstream from the start site of transcription there is a rather typical -35 region. However, there is no good homology to the consensus -10 region. While most of the cell's transcription is shut off as a result of the cessation of growth, transcription from the mcbA promoter continues for several hours in stationary phase. A single-copy gene fusion between mcbA and lacZ was used to monitor the response of the promoter to different nutritional conditions and in different host backgrounds altered in metabolic regulatory loci. Starvation for nitrogen, phosphate or carbon sources all induced transcription from the promoter. Levels of transcription were reduced in ompR backgrounds. In contrast, mutations in other global regulatory loci, fnr, relA and cya had little or no effect.
Collapse
Affiliation(s)
- N Connell
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | | | | | |
Collapse
|
43
|
Iuchi S, Lin EC. Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli. J Bacteriol 1987; 169:3720-5. [PMID: 3301812 PMCID: PMC212457 DOI: 10.1128/jb.169.8.3720-3725.1987] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector.
Collapse
|
44
|
Jones HM, Gunsalus RP. Regulation of Escherichia coli fumarate reductase (frdABCD) operon expression by respiratory electron acceptors and the fnr gene product. J Bacteriol 1987; 169:3340-9. [PMID: 3298218 PMCID: PMC212388 DOI: 10.1128/jb.169.7.3340-3349.1987] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The fumarate reductase enzyme complex, encoded by the frdABCD operon, allows Escherichia coli to utilize fumarate as a terminal electron acceptor for anaerobic oxidative phosphorylation. To analyze the expression of fumarate reductase, protein and operon fusions were constructed between the frdA and the lacZ genes and introduced onto the E. coli chromosome at the lambda attachment site. Expression of beta-galactosidase from either fusion was increased 10-fold during anaerobic versus aerobic cell growth, increased an additional 1.5-fold by the presence of fumarate, the substrate, and decreased 23-fold by nitrate, a preferred electron acceptor. The addition of trimethylamine-N-oxide as an electron acceptor did not significantly alter frdA'-'lacZ expression. Control of frd operon expression is therefore exerted at the transcriptional level in response to the availability of the electron acceptors oxygen, fumarate, and nitrate. Anaerobic induction of frdA'-'lacZ expression was impaired in an fnr mutant and was restored when the fnr+ gene was provided in trans, thus establishing that the fnr gene product, Fnr, is responsible for the anaerobic activation of frd operon expression. Nitrate repression of frdA'-'lacZ expression was observed under either aerobic or anaerobic cell growth conditions in both wild-type and fnr mutant strains, demonstrating that the mechanism for nitrate repression is independent of nitrate respiration and oxygen control imparted by Fnr. Studies performed with a fnr'-'lacZ protein fusion confirmed that the fnr gene is expressed both aerobically and anaerobically. A model is proposed for the regulation of frdABCD operon expression in response to the availability of the alternate terminal electron acceptors oxygen, nitrate, and fumarate.
Collapse
|
45
|
Iuchi S, Lin EC. The narL gene product activates the nitrate reductase operon and represses the fumarate reductase and trimethylamine N-oxide reductase operons in Escherichia coli. Proc Natl Acad Sci U S A 1987; 84:3901-5. [PMID: 3035558 PMCID: PMC304984 DOI: 10.1073/pnas.84.11.3901] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli, which can utilize O2, nitrate, fumarate, or trimethylamine N-oxide (Me3NO) as terminal electron acceptor, preferentially utilizes the one with the highest redox potential. Thus O2 prevents induction of nitrate, fumarate, and Me3NO reductases, and nitrate curtails the induction of fumarate and Me3NO reductases. Under anaerobic conditions the narL gene product, in the presence of nitrate, is known to activate transcription of the narC operon, which encodes nitrate reductase. This study shows that the same product plays a role in the repression by nitrate of the operons (frd and tor) that encode fumarate and Me3NO reductases. In contrast, the anaerobic repression of ethanol dehydrogenase by nitrate does not require the narL product. Expression of narL does not require the fnr gene product, a pleiotropic activator that is required for full expression of narC, frd, and tor.
Collapse
|
46
|
Birkmann A, Zinoni F, Sawers G, Böck A. Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of Escherichia coli. Arch Microbiol 1987; 148:44-51. [PMID: 2443100 DOI: 10.1007/bf00429646] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The regulatory elements involved in expression of the gene (fdhF) for the selenopolypeptide of formate dehydrogenase and of a gene (or transcriptional unit) (hyd) specifically responsible for the formation of the gas-evolving hydrogenase (hydrogenase 3) in Escherichia coli were investigated. Formate (or a product of it) is required for expression of both systems since in a pyruvate-formate-lyase deficient mutant induction occurs only when formate is supplemented externally. Under this condition, formate can partially overcome repression by nitrate. The transcription of both the fdhF gene and the hydrogenase-3-encoding systems is independent of the presence of a wild-type fnr gene when formate is present, supporting the view that the Fnr effect on the formation of the formate-hydrogen-lyase pathway is indirect. Mutations blocking the synthesis of a functional molybdenum cofactor also had no major affect on fdhF and hyd expression. The nucleotide sequence of the 5' flanking region of the fdhF gene was determined and the transcription start point of the fdhF gene was localized by nuclease S1 mapping. Nuclease Bal31 generated deletion clones were constructed and the regulation of their expression was studied. Anaerobic expression and induction by formate depended on the presence of a stretch of approximately 185 nucleotides upstream of the translation start. Elements mediating formate induction and oxygen or nitrate repression could not be separated physically. The regulatory features of the fdhF upstream region bear striking resemblance to systems whose expression are dependent upon upstream activating elements.
Collapse
|
47
|
Unden G, Duchene A. On the role of cyclic AMP and the Fnr protein in Escherichia coli growing anaerobically. Arch Microbiol 1987; 147:195-200. [PMID: 3036034 DOI: 10.1007/bf00415284] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The role of adenosine 3',5'-monophosphate (cAMP) and of the Fnr protein, a transcriptional regulator of anaerobic electron transport, in the expression of anaerobic respiration of Escherichia coli was investigated. Under conditions of fermentation or anaerobic respiration intracellular cAMP was formed in concentrations up to 4.6 nmol/g protein. From the enzymes of the anaerobic electron transfer chain from glycerol-3-P to fumarate only the expression of glycerol-3-P dehydrogenase (Freedberg WB, Lin ECC (1973) J Bacteriol 115:816-823), but not that of fumarate reductase required cAMP. Isolated Fnr protein, which has been suggested to be an additional site of action of cAMP under anaerobic conditions did not bind cAMP. It is concluded that cAMP in anaerobic growth like in aerobic growth acts as the effector of CRP and that catabolite repression plays an important regulatory role in anaerobic catabolism. The Fnr protein was present in constant amounts (0.06 mg/g cellular protein) and in constant molar mass (Mr 30,000) in aerobically and in anaerobically grown bacteria. This result excluded regulation of the activity of the Fnr protein by a change of concentration or by processing of the protein.
Collapse
|
48
|
Ehrmann M, Boos W, Ormseth E, Schweizer H, Larson TJ. Divergent transcription of the sn-glycerol-3-phosphate active transport (glpT) and anaerobic sn-glycerol-3-phosphate dehydrogenase (glpA glpC glpB) genes of Escherichia coli K-12. J Bacteriol 1987; 169:526-32. [PMID: 3027032 PMCID: PMC211809 DOI: 10.1128/jb.169.2.526-532.1987] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The glpTQ operon and the glpA and glpB genes are located adjacent to one another near min 49 of the linkage map of Escherichia coli K-12. The positions and directions of transcription of the glpA and glpB genes with respect to the glpTQ operon were determined in the present work. Strains harboring Mu d1(Ap lac) fusions in either glpA or glpB were converted to the respective lambda p1(209) lysogens. Induction of these lysogens with mitomycin C resulted in production of Lac+ phage progeny which carried adjacent chromosomal DNA. Genetic crosses with a collection of glpT mutant strains were performed with several such phage lines. A fine-structure deletion map of the glpT gene was thus constructed. All phages used for this mapping carried DNA starting with the promoter-proximal end of glpT. This indicated that the glpTQ operon and the glpA and glpB genes are transcribed divergently. Additional evidence supporting this conclusion was obtained by physical mapping of restriction endonuclease cleavage sites in plasmids carrying these genes and in plasmids carrying glpA-lacZ or glpB-lacZ fusions. A new designation (glpC) for the gene encoding the 41,000-Mr subunit of the anaerobic sn-glycerol-3-phosphate dehydrogenase was proposed to distinguish it from the glpA gene, which encodes the 62,000-Mr subunit of the dehydrogenase, and the glpB gene, which encodes a membrane anchor subunit of the dehydrogenase. These three genes were present in an operon transcribed in the order glpA glpC glpB in the clockwise direction on the linkage map of E. coli.
Collapse
|
49
|
Iuchi S, Kuritzkes DR, Lin EC. Three classes of Escherichia coli mutants selected for aerobic expression of fumarate reductase. J Bacteriol 1986; 168:1415-21. [PMID: 3536878 PMCID: PMC213654 DOI: 10.1128/jb.168.3.1415-1421.1986] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fumarate reductase (encoded by frd) and succinate dehydrogenase (encoded by sdh) of Escherichia coli are both known to catalyze the interconversion of fumarate and succinate. Fumarate reductase, however, is not inducible aerobically and therefore cannot participate in the dehydrogenation of succinate. Three classes of suppressor mutants, classified as frd oxygen-resistant [frd(Oxr)], constitutive [frd(Con)], and gene amplification [frd(Amp)] mutants, were selected from an sdh strain as pseudorevertants that regained the partial ability to grow aerobically on succinate. All contained increased aerobic levels of fumarate reductase activity. In frd(Oxr) mutants expression of the operon showed increased resistance to aerobic repression. Under anaerobic conditions expression of the operon became less dependent on the fnr+ gene product, a pleiotropic activator protein for genes encoding anaerobic respiratory enzymes. Exogenous fumarate, however, was still required for full induction, and repression by nitrate was undiminished. Thus, aerobic repression and anaerobic nitrate repression appear to involve separate mechanisms. In frd(Con) mutants expression of the operon became highly resistant to aerobic repression. Under anaerobic conditions expression of the operon no longer required the fnr+ gene product or exogenous fumarate and became immune to nitrate repression. In partial diploids bearing an frd(Oxr) or an frd(Con) allele and phi(frd+-lac) there was no mutual regulatory influence between the two genetic loci. Thus, the frd mutations act in cis and hence are probably in the promoter region. In frd(Amp) mutants the frd locus was amplified without significant alteration in the pattern of regulation.
Collapse
|
50
|
Jamieson DJ, Sawers RG, Rugman PA, Boxer DH, Higgins CF. Effects of anaerobic regulatory mutations and catabolite repression on regulation of hydrogen metabolism and hydrogenase isoenzyme composition in Salmonella typhimurium. J Bacteriol 1986; 168:405-11. [PMID: 3020003 PMCID: PMC213465 DOI: 10.1128/jb.168.1.405-411.1986] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hydrogen metabolism in Salmonella typhimurium is differentially regulated by mutations in the two anaerobic regulatory pathways, defined by the fnr (oxrA) and oxrC genes, and is controlled by catabolite repression. The synthesis of the individual hydrogenase isoenzymes is also specifically influenced by fnr and oxrC mutations and by catabolite repression in a manner entirely consistent with the proposed role for each isoenzyme in hydrogen metabolism. Synthesis of hydrogenase isoenzyme 2 was found to be fnr dependent and oxrC independent, consistent with a role in respiration-linked hydrogen uptake which was shown to be similarly regulated. Also in keeping with such a respiratory role was the finding that both hydrogen uptake and the expression of isoenzyme 2 are under catabolite repression. In contrast, formate hydrogenlyase-dependent hydrogen evolution, characteristic of fermentative growth, was reduced in oxrC strains but not in fnr strains. Hydrogenase 3 activity was similarly regulated, consistent with a role in hydrogen evolution. Unlike the expression of hydrogenases 2 and 3, hydrogenase 1 expression was both fnr and oxrC dependent. Hydrogen uptake during fermentative growth was also both fnr and oxrC dependent. This provided good evidence for a distinction between hydrogen uptake during fermentation- and respiration-dependent growth and for a hydrogen-recycling process. The pattern of anaerobic control of hydrogenase activities illustrated the functional diversity of the isoenzymes and, in addition, the physiological distinction between the two anaerobic regulatory pathways, anaerobic respiratory genes being fnr dependent and enzymes required during fermentative growth being oxrC dependent.
Collapse
|