1
|
Transferable mechanisms of quinolone resistance. Int J Antimicrob Agents 2012; 40:196-203. [DOI: 10.1016/j.ijantimicag.2012.02.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/20/2022]
|
2
|
Ullrich MS, Schergaut M, Boch J, Ullrich B. Temperature-responsive genetic loci in the plant pathogen Pseudomonas syringae pv. glycinea. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2457-2468. [PMID: 11021922 DOI: 10.1099/00221287-146-10-2457] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Plant-pathogenic bacteria may sense variations in environmental factors, such as temperature, to adapt to plant-associated habitats during pathogenesis or epiphytic growth. The bacterial blight pathogen of soybean, Pseudomonas syringae pv. glycinea PG4180, preferentially produces the phytotoxin coronatine at 18 degrees C and infects the host plant under conditions of low temperature and high humidity. A miniTn5-based promoterless glucuronidase (uidA) reporter gene was used to identify genetic loci of PG4180 preferentially expressed at 18 or 28 degrees C. Out of 7500 transposon mutants, 61 showed thermoregulated uidA expression as determined by a three-step screening procedure. Two-thirds of these mutants showed an increased reporter gene expression at 18 degrees C whilst the remainder exhibited higher uidA expression at 28 degrees C. MiniTn5-uidA insertion loci from these mutants were subcloned and their nucleotide sequences were determined. Several of the mutants induced at 18 degrees C contained the miniTn5-uidA insertion within the 32.8 kb coronatine biosynthetic gene cluster. Among the other mutants with increased uidA expression at 18 degrees C, insertions were found in genes encoding formaldehyde dehydrogenase, short-chain dehydrogenase and mannuronan C-5-epimerase, in a plasmid-borne replication protein, and in the hrpT locus, involved in pathogenicity of P. syringae. Among the mutants induced at 28 degrees C, insertions disrupted loci with similarities to a repressor of conjugal plasmid transfer, UV resistance determinants, an isoflavanoid-degrading enzyme, a HU-like DNA-binding protein, two additional regulatory proteins, a homologue of bacterial adhesins, transport proteins, LPS synthesis enzymes and two proteases. Genetic loci from 13 mutants did not show significant similarities to any database entries. Results of plant inoculations showed that three of the mutants tested were inhibited in symptom development and in planta multiplication rates. Temperature-shift experiments suggested that all of the identified loci showed a rather slow induction of expression upon change of temperature.
Collapse
Affiliation(s)
- Matthias S Ullrich
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany1
| | - Marion Schergaut
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany1
| | - Jens Boch
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany1
| | - Beate Ullrich
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany1
| |
Collapse
|
3
|
Preston KE, Radomski CC, Venezia RA. Nucleotide sequence of a 7-kb fragment of pACM1 encoding an IncM DNA primase and other putative proteins associated with conjugation. Plasmid 2000; 44:12-23. [PMID: 10873523 DOI: 10.1006/plas.2000.1472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 7-kb fragment of pACM1 (fragment 90¿91) containing one or more kor (kill-override) loci was sequenced, and 28 open reading frames (ORFs; >/=50 codons) were identified. The nucleotide sequence has no significant homologs in the GenBank database except for a 1.3-kb region 98.6% identical to the iml (insensitivity to phage PhiM-mediated lysis) determinant fragment of IncM plasmid R446. Deduced amino acid sequences for several ORFs are homologous to those of known proteins, including the Sog DNA primases of IncI1 plasmids R64 and ColIb-P9 and the TraL, TraM, and TraN products of ColIb-P9. Two protein products of the putative primase ORF (ORF 1, 1100 amino acids) were detected by SDS-PAGE. The 158- and 107-kDa proteins were designated PriL and PriS, respectively. PriS is apparently produced by an in-frame reinitiation of the ORF 1 transcript at a second start codon located between a Sau96I site and a PstI site. The motif EGYATA, conserved among primases and associated with primase function, occurs in the first one-third of the deduced amino acid sequence of PriL and is not included in PriS. Partial suppression of the temperature-sensitive dnaG3 mutation in BW86 was demonstrated by recombinants that overexpressed both PriL and PriS, but not by constructs overexpressing only PriS. Therefore, primase function can be assigned to PriL. Fragment 90/91 represents a portion of the IncM tra region, which has not previously been examined in detail.
Collapse
Affiliation(s)
- K E Preston
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York 12208, USA.
| | | | | |
Collapse
|
4
|
Abstract
pACM1 is a conjugative multiresistance (putative IncM) plasmid from Klebsiella oxytoca. In order to make a structural and functional map, cloned fragments of pACM1 were systematically isolated from pUC19 libraries using DNA probes from previously cloned fragments. All but approximately 3.6 kb of the plasmid were cloned and a consensus map is presented. Certain pACM1 fragments were "unclonable" (i.e., could not be detected among transformants) unless a 7-kb KpnI fragment was also present in the recombinant construct. Restriction sites found in a portion of the 7-kb KpnI fragment resemble those of the iml determinant region of IncM plasmid R446; therefore, the 7-kb fragment is probably within or includes part of the IncM tra (conjugation) operon. It is probable that pACM1 has loci functionally similar to the kil (lethal) and kor (kill override) loci in the tra operons of IncN or IncP plasmids. pACM1 can be a valuable model for the study of IncM plasmids.
Collapse
Affiliation(s)
- K E Preston
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York 12208, USA
| | | |
Collapse
|
5
|
Holcík M, Rodríguez M, Couse A, Cherton-Horvat G, Iyer VN. Conditionally lethal genes in the N pilus region of plasmid pCU1. Plasmid 1999; 42:53-9. [PMID: 10413666 DOI: 10.1006/plas.1999.1414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasmid genes or regions that are conditionally lethal to Escherichia coli have been called kil and those lethal to Klebsiella but not to E. coli have been called kik. Both classes of genes are found in or close to the N pilus region of the plasmid pCU1 and the closely related plasmid pKM101. Here we describe two new and overlapping lethal genes that are located between kikA and traA of the plasmid pCU1 and display host specificity. KilC is lethal in E. coli and Klebsiella while kikC is lethal only in Klebsiella. The previously identified korA gene is sufficient to override the lethality of kilC in trans or in cis but is insufficient to override kikC. kilC expression in E. coli leads to cell death accompanied by an increase in average cell length without affecting septum formation.
Collapse
Affiliation(s)
- M Holcík
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
| | | | | | | | | |
Collapse
|
6
|
Paterson ES, Moré MI, Pillay G, Cellini C, Woodgate R, Walker GC, Iyer VN, Winans SC. Genetic analysis of the mobilization and leading regions of the IncN plasmids pKM101 and pCU1. J Bacteriol 1999; 181:2572-83. [PMID: 10198024 PMCID: PMC93686 DOI: 10.1128/jb.181.8.2572-2583.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conjugative IncN plasmids pKM101 and pCU1 have previously been shown to contain identical oriT sequences as well as conserved restriction endonuclease cleavage patterns within their tra regions. Complementation analysis and sequence data presented here indicate that these two plasmids encode essentially identical conjugal DNA-processing proteins. This region contains three genes, traI, traJ, and traK, transcribed in the same orientation from a promoter that probably lies within or near the conjugal transfer origin (oriT). Three corresponding proteins were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and complementation analysis confirmed that this region contains three tra complementation groups. All three proteins resemble proteins of the IncW plasmid R388 and other plasmids thought to have roles in processing of plasmid DNA during conjugation. The hydropathy profile of TraJ suggests a transmembrane topology similar to that of several homologous proteins. Both traK and traI were required for efficient interplasmid site-specific recombination at oriT, while traJ was not required. The leading region of pKM101 contains three genes (stbA, stbB, and stbC), null mutations in which cause elevated levels of plasmid instability. Plasmid instability was observed only in hosts that are proficient in interplasmid recombination, suggesting that this recombination can potentially lead to plasmid loss and that Stb proteins somehow overcome this, possibly via site-specific multimer resolution.
Collapse
Affiliation(s)
- E S Paterson
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Holčík M, Iyer VM. Conditionally lethal genes associated with bacterial plasmids. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 11):3403-3416. [PMID: 9387219 DOI: 10.1099/00221287-143-11-3403] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Martin Holčík
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa Ontario Canada K1S5B6
| | - V M Iyer
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa Ontario Canada K1S5B6
| |
Collapse
|
8
|
Clerch B, Rivera E, Llagostera M. Identification of a pKM101 region which confers a slow growth rate and interferes with susceptibility to quinolone in Escherichia coli AB1157. J Bacteriol 1996; 178:5568-72. [PMID: 8824598 PMCID: PMC178392 DOI: 10.1128/jb.178.19.5568-5572.1996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The effect of plasmid pKM101 on the survival of Escherichia coli AB1157, growing in minimal medium, in the presence of a 4-quinolone DNA gyrase inhibitor was investigated. The presence of this plasmid decreased susceptibility to the quinolone ciprofloxacin, whereas mucAB genes present in a multicopy plasmid did not. The same effect of pKM101 was detected in a recA430 mutant, confirming that it was not really related to the SOS response. In contrast, when survival assays were performed under amino acid starvation conditions, pKM101 did not confer protection against ciprofloxacin. All of these results indicated that the synthesis of a product(s), different from MucAB, which was encoded by the plasmid pKM101 increased the rate of survival of the AB1157 strain in the presence of quinolone. To identify the gene(s) responsible for this phenotype, several plasmid derivatives carrying different portions of pKM101 were constructed. The 2.2-kb region containing korB, traL, korA, and traM genes was sufficient to decrease susceptibility to quinolone. This plasmidic fragment also made the AB1157 host strain grow more slowly (the Slo phenotype). Moreover, the suppression of the Slo phenotype by addition of adenine to the cultures abolished the decreased susceptibility to quinolone. These results are evidence that the protection against quinolone conferred by this region of pKM101 in strain AB1157 is a direct consequence of the slow growth rate.
Collapse
Affiliation(s)
- B Clerch
- Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| | | | | |
Collapse
|
9
|
Moré MI, Pohlman RF, Winans SC. Genes encoding the pKM101 conjugal mating pore are negatively regulated by the plasmid-encoded KorA and KorB proteins. J Bacteriol 1996; 178:4392-9. [PMID: 8755865 PMCID: PMC178204 DOI: 10.1128/jb.178.15.4392-4399.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The IncN plasmid pKM101 contains a group of 11 genes thought to be required for the synthesis of its conjugal pilus and mating pore. Within this region are two genes, kilA and kilB, either of which is conditionally lethal to the cell. kilA was previously shown to be allelic with traL, and we now show that kilB is allelic with traE. In the same region, genetic studies previously defined two loci, korA and korB (kor for kill override), which together prevent lethality mediated by kilA and kilB. We now identify the genes that encode KorA and KorB functions. To determine whether KorA and KorB proteins influence tra gene transcription, we constructed beta-galactosidase fusions to three promoters in this region and measured their expression in the presence of KorA, KorB, and both proteins. KorA and KorB together repressed transcription of all three promoters, while neither protein alone affected transcription. We identified all three transcriptional start sites by primer extension analysis. Two putative binding sites for these proteins, designated kor boxes, contain 26 identical nucleotides in a 29-nucleotide region. The electrophoretic mobilities (of DNA fragments containing kor boxes were retarded by cell extracts containing both KorA and KorB but were not retarded by extracts containing just KorA or just KorB. DNase I footprinting analysis of one of these promoters demonstrates that KorA and/or KorB binds to a region containing a kor box.
Collapse
Affiliation(s)
- M I Moré
- Section of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
10
|
Rodríguez M, Holcík M, Iyer VN. Lethality and survival of Klebsiella oxytoca evoked by conjugative IncN group plasmids. J Bacteriol 1995; 177:6352-61. [PMID: 7592409 PMCID: PMC177484 DOI: 10.1128/jb.177.22.6352-6361.1995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The transmission of plasmid pCU1 (or other IncN group plasmid) into a population of Klebsiella oxytoca cells reduces the viability of the population. A 2,400-bp region adjacent to traA is responsible for this phenotype and includes two regions, called kikA and kikC. Klebsiella cells which received this region and survived were found to acquire a chromosomal mutation which renders them immune to killing even after the plasmid is cured from the cells. To obtain insight into the mode of this apparent lethality, an appropriate pCU1lacZ derivative was constructed. It could be introduced with high efficiency into Klebsiella cells. Analyses of the resultant colonies indicate that the loss of viability is not a consequence of the death of plasmid-free segregants. On the contrary and unlike postsegregational killing by plasmids, cells survived by losing the plasmid or by acquiring, secondarily, a chromosomal mutation which confers immunity to killing.
Collapse
Affiliation(s)
- M Rodríguez
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
11
|
Pohlman RF, Genetti HD, Winans SC. Common ancestry between IncN conjugal transfer genes and macromolecular export systems of plant and animal pathogens. Mol Microbiol 1994; 14:655-68. [PMID: 7891554 DOI: 10.1111/j.1365-2958.1994.tb01304.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The DNA sequence of a cluster of pKM101 conjugal transfer genes was determined and aligned with the genetic map of the plasmid. Eighteen genes were identified, at least eight and probably 11 of which are required for efficient conjugation. These tra genes are homologous to and colinear with genes found in the virB operon of Agrobacterium tumefaciens Ti plasmids. Seven pKM101 tra genes are also homologous to ptl genes of Bordetella pertussis, which direct the export of pertussis toxin. We used TnphoA to construct translational fusions between pKM101 genes and the Escherichia coli phoA gene, which encodes alkaline phosphatase, and provide evidence that at least 11 of the 18 genes are either fully or partially exported from the cytoplasm.
Collapse
Affiliation(s)
- R F Pohlman
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
12
|
Hagège J, Pernodet JL, Sezonov G, Gerbaud C, Friedmann A, Guérineau M. Transfer functions of the conjugative integrating element pSAM2 from Streptomyces ambofaciens: characterization of a kil-kor system associated with transfer. J Bacteriol 1993; 175:5529-38. [PMID: 8366038 PMCID: PMC206609 DOI: 10.1128/jb.175.17.5529-5538.1993] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
pSAM2 is an 11-kb integrating element from Streptomyces ambofaciens. During matings, pSAM2 can be transferred at high frequency, forming pocks, which are zones of growth inhibition of the recipient strain. The nucleotide sequences of the regions involved in pSAM2 transfer, pock formation, and maintenance have been determined. Seven putative open reading frames with the codon usage typical of Streptomyces genes have been identified: traSA (306 amino acids [aa]), orf84 (84 aa), spdA (224 aa), spdB (58 aa), spdC (51 aa), spdD (104 aa), and korSA (259 aa). traSA is essential for pSAM2 intermycelial transfer and pock formation. It could encode a protein with similarities to the major transfer protein, Tra, of pIJ101. TraSA protein contains a possible nucleotide-binding sequence and a transmembrane segment. spdA, spdB, spdC, and spdD influence pock size and transfer efficiency and may be required for intramycelial transfer. A kil-kor system similar to that of pIJ101 is associated with pSAM2 transfer: the korSA (kil-override) gene product could control the expression of the traSA gene, which has lethal effects when unregulated (Kil phenotype). The KorSA protein resembles KorA of pIJ101 and repressor proteins belonging to the GntR family. Thus, the integrating element pSAM2 possesses for transfer general features of nonintegrating Streptomyces plasmids: different genes are involved in the different steps of the intermycelial and intramycelial transfer, and a kil-kor system is associated with transfer. However, some differences in the functional properties, organization, and sizes of the transfer genes compared with those of other Streptomyces plasmids have been found.
Collapse
Affiliation(s)
- J Hagège
- Laboratoire de Biologie et Génétique Moléculaire, Université Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
13
|
Belogurov AA, Delver EP, Rodzevich OV. IncN plasmid pKM101 and IncI1 plasmid ColIb-P9 encode homologous antirestriction proteins in their leading regions. J Bacteriol 1992; 174:5079-85. [PMID: 1321121 PMCID: PMC206324 DOI: 10.1128/jb.174.15.5079-5085.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The IncN plasmid pKM101 (a derivative of R46), like the IncI1 plasmid ColIb-P9, carries a gene (ardA, for alleviation of restriction of DNA) encoding an antirestriction function. ardA was located about 4 kb from the origin of transfer, in the region transferred early during bacterial conjugation. The nucleotide sequence of ardA was determined, and an appropriate polypeptide with the predicted molecular weight of about 19,500 was identified in maxicells of Escherichia coli. Comparison of the deduced amino acid sequences of the antirestriction proteins of the unrelated plasmids pKM101 and ColIb (ArdA and Ard, respectively) revealed that these proteins have about 60% identity. Like ColIb Ard, pKM101 ArdA specifically inhibits both the restriction and modification activities of five type I systems of E. coli tested and does not influence type III (EcoP1) restriction or the 5-methylcytosine-specific restriction systems McrA and McrB. However, in contrast to ColIb Ard, pKM101 ArdA is effective against the type II enzyme EcoRI. The Ard proteins are believed to overcome the host restriction barrier during bacterial conjugation. We have also identified two other genes of pKM101, ardR and ardK, which seem to control ardA activity and ardA-mediated lethality, respectively. Our findings suggest that ardR may serve as a genetic switch that determines whether the ardA-encoded antirestriction function is induced during mating.
Collapse
Affiliation(s)
- A A Belogurov
- Department of Genetic Engineering, National Cardiology Research Center, Moscow, Russia
| | | | | |
Collapse
|
14
|
Hengen PN, Denicourt D, Iyer VN. Isolation and characterization of kikA, a region on IncN group plasmids that determines killing of Klebsiella oxytoca. J Bacteriol 1992; 174:3070-7. [PMID: 1569033 PMCID: PMC205963 DOI: 10.1128/jb.174.9.3070-3077.1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transfer of the IncN group plasmid pCU1 from Escherichia coli to Klebsiella oxytoca by conjugation kills a large proportion (90 to 95%) of the recipients of plasmid DNA, whereas transfer to E. coli or even to the closely related Enterobacter aerogenes does not. Two regions, kikA and kikB, have been identified on pCU1 that contribute to the Kik (killing in klebsiellas) phenotype. We have localized the kikA region to 500 bp by deletion analysis and show by DNA-DNA hybridization that kikA is highly conserved among the plasmids of incompatibility group N. The expression in K. oxytoca of kikA under the control of the strong inducible E. coli tac promoter results in loss of cell viability. The nucleotide sequence showed two overlapping open reading frames (ORFs) within the kikA region. The first ORF codes for a putative polypeptide of 104 amino acids (ORF104). The second ORF codes for a 70-amino-acid polypeptide (ORF70). The properties of the putative protein encoded by ORF104 and gene fusions of kikA to alkaline phosphatase by using TnphoA suggest that killing may involve an association with the bacterial membrane; however, we could not rule out the possibility that ORF70 plays a role in the Kik phenotype.
Collapse
Affiliation(s)
- P N Hengen
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
15
|
Little CA, Tweats DJ, Pinney RJ. Plasmid pGW16, a derivative of pKM101, increases post-UV DNA synthesis, but sensitises some strains of Escherichia coli to UV. Mutat Res 1991; 249:177-87. [PMID: 2067531 DOI: 10.1016/0027-5107(91)90144-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasmid pKM101, which carries muc genes that are analogous in function to chromosomal umu genes, protected Escherichia coli strains AB1157 uvrB+ umuC+, JC3890 uvrB umuC+, TK702 uvrB+ umuC and TK501 uvrB umuC against ultraviolet irradiation (UV). Plasmid pGW16, a derivative of pKM101 selected for its increased spontaneous mutator effect, also gave some protection to the UmuC-deficient strains, TK702 and TK501. However, it sensitised the wild-type strain AB1157 to low, but protected against high doses of UV, whilst sensitising strain JC3890 to all UV doses tested. Even though its UV-protecting effects varied, pGW16 was shown to increase both spontaneous and UV-induced mutation in all strains. Another derivative of pKM101, plasmid pGW12, was shown to have lost all spontaneous and UV-induced mutator effects and did not affect post-UV survival. Plasmids pKM101 and pGW16 increased post-UV DNA synthesis in strains AB1157 and TK702, whereas pGW12 had no effect. Similarly, the wild-type UV-protecting plasmids R46, R446b and R124 increased post-UV DNA synthesis in strain TK501, but the non-UV-protecting plasmids R1, RP4 and R6K had no effect. These results accord with the model for error-prone DNA repair that requires umu or muc gene products for chain elongation after base insertion opposite non-coding lesions. They also suggest that the UV-sensitizing effects of pGW16 on umu+ strains can be explained in terms of overactive DNA repair resulting in lethal, rather than repaired UV-induced lesions.
Collapse
Affiliation(s)
- C A Little
- Department of Pharmaceutics, School of Pharmacy, University of London, U.K
| | | | | |
Collapse
|
16
|
Abstract
Replication of plasmid deoxyribonucleic acid (DNA) is dependent on three stages: initiation, elongation, and termination. The first stage, initiation, depends on plasmid-encoded properties such as the replication origin and, in most cases, the replication initiation protein (Rep protein). In recent years the understanding of initiation and regulation of plasmid replication in Escherichia coli has increased considerably, but it is only for the ColE1-type plasmids that significant biochemical data about the initial priming reaction of DNA synthesis exist. Detailed models have been developed for the initiation and regulation of ColE1 replication. For other plasmids, such as pSC101, some hypotheses for priming mechanisms and replication initiation are presented. These hypotheses are based on experimental evidence and speculative comparisons with other systems, e.g., the chromosomal origin of E. coli. In most cases, knowledge concerning plasmid replication is limited to regulation mechanisms. These mechanisms coordinate plasmid replication to the host cell cycle, and they also seem to determine the host range of a plasmid. Most plasmids studied exhibit a narrow host range, limited to E. coli and related bacteria. In contrast, some others, such as the IncP plasmid RK2 and the IncQ plasmid RSF1010, are able to replicate in nearly all gram-negative bacteria. This broad host range may depend on the correct expression of the essential rep genes, which may be mediated by a complex regulatory mechanism (RK2) or by the use of different promoters (RSF1010). Alternatively or additionally, owing to the structure of their origin and/or to different forms of their replication initiation proteins, broad-host-range plasmids may adapt better to the host enzymes that participate in initiation. Furthermore, a broad host range can result when replication initiation is independent of host proteins, as is found in the priming reaction of RSF1010.
Collapse
|
17
|
Rotheim MB, Love B, Thatte V, Iyer VN. A demonstration that pCU1 tra gene products are not required in the killing of Klebsiella pneumoniae. Plasmid 1988; 19:161-3. [PMID: 2843936 DOI: 10.1016/0147-619x(88)90054-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
IncN group plasmids, including pCU1, are able to kill Klebsiella pneumoniae when conjugatively transferred from an Escherichia coli donor. Transposon mutagenesis and deletion analysis of the known tra complementation groups were used to demonstrate that the tra gene products inactivated are not required for the Kik phenotype.
Collapse
Affiliation(s)
- M B Rotheim
- Department of Microbiology and Immunology, State University of New York Health Science Center, Syracuse 13210
| | | | | | | |
Collapse
|
18
|
Schnepf HE, Wong HC, Whiteley HR. Expression of a cloned Bacillus thuringiensis crystal protein gene in Escherichia coli. J Bacteriol 1987; 169:4110-8. [PMID: 3040677 PMCID: PMC213716 DOI: 10.1128/jb.169.9.4110-4118.1987] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The expression in Escherichia coli of a cloned crystal protein gene from Bacillus thuringiensis was investigated through the use of fusions of the crystal protein gene promoter to beta-galactosidase and catechol oxidase genes. Analysis of deletion and insertion derivatives of the crystal protein gene promoter showed that a region of B. thuringiensis DNA located between 87 and 258 base pairs upstream from the transcription initiation site caused reduced transcription from this promoter. Insertion of Tn5 145 base pairs upstream from the transcription initiation site resulted in overproduction of the crystal protein. S1 nuclease mapping experiments failed to detect transcription from an outwardly directed promoter in Tn5, indicating that the overproduction resulted from the disruption or repositioning of the transcription-suppressing region.
Collapse
|
19
|
Kendall KJ, Cohen SN. Plasmid transfer in Streptomyces lividans: identification of a kil-kor system associated with the transfer region of pIJ101. J Bacteriol 1987; 169:4177-83. [PMID: 3040681 PMCID: PMC213726 DOI: 10.1128/jb.169.9.4177-4183.1987] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The 8.9-kilobase Streptomyces plasmid pIJ101 is self-transmissible at high frequency into recipient strains. By genetic analysis of the transfer region of the plasmid, we identified six plasmid-encoded loci involved in gene transfer and the associated pocking phenomenon. Two loci, kilA and kilB, could not be cloned into Streptomyces lividans on a minimal pIJ101-based replicon unless suitable kil-override (kor) genes were present, either in cis or in trans. korA could control the lethal effects of both kilA and kilB, whereas korB could control only the effects of kilB. KilB mutants were defective in their pocking reaction; kilA mutants produced no visible pocks whatsoever. Mutations in two other loci, tra and spd, produced no pocks and defective pocks, respectively. These results suggest that kilA, kilB, tra, and spd are intimately involved in plasmid transfer and that the actions of kilA and kilB are regulated by the products of the korA and korB genes.
Collapse
|
20
|
Young C, Burlage RS, Figurski DH. Control of the kilA gene of the broad-host-range plasmid RK2: involvement of korA, korB, and a new gene, korE. J Bacteriol 1987; 169:1315-20. [PMID: 3546270 PMCID: PMC211936 DOI: 10.1128/jb.169.3.1315-1320.1987] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Broad-host-range plasmid RK2 encodes several different kil genes which are potentially lethal to an Escherichia coli host. The kil genes and the essential RK2 replication gene trfA are regulated by the products of kor genes. We have shown previously that kilA can be controlled by a constitutively expressed korA gene. In this study, we have found that the wild-type, autoregulated korA gene is insufficient for control of kilA cloned on high-copy-number plasmids. One of two other genes must also be present with korA. One gene is korB, originally discovered by its ability to control the determinants in the kilB region and later found to affect expression of both trfA and korA. The other is a new gene, korE, which has been cloned from the 2.2' to 4.1' region located between korC and kilA. Studies with a kilA-cat fusion suggest that korA, korB, and korE all participate in the control of kilA gene expression.
Collapse
|
21
|
Kozlowski M, Thatte V, Lau PC, Visentin LP, Iyer VN. Isolation and structure of the replicon of the promiscuous plasmid pCU1. Gene 1987; 58:217-28. [PMID: 2828186 DOI: 10.1016/0378-1119(87)90377-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Evidence is presented to indicate that a PvuII fragment of approx. 2 kb isolated from the 39-kb IncN-group plasmid pCU-1 contains all plasmid-borne determinants for stable maintenance as an extrachromosomal element in Escherichia coli K-12. The fragment was sequenced. The features of this sequence include a group of 13 direct tandem repeats of 37 bp and a second group of two other direct repeats of 30 bp flanking a third partial member of this group. In addition, for a 19-bp sequence that overlaps a member of this second group, there are inverted repeats that straddle the members of the first group. There are three open reading frames within the fragment. We compare features of this sequence with that of other plasmid replicons and draw attention to similar and to dissimilar features.
Collapse
Affiliation(s)
- M Kozlowski
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Pall ML, Hunter BJ. Lowered induction of genetic tandem duplications in Salmonella by the pKM101 plasmid. MOLECULAR & GENERAL GENETICS : MGG 1986; 204:281-4. [PMID: 3531773 DOI: 10.1007/bf00425510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Selection for 3-amino-1,2,4-triazole (AT) resistance in certain strains of Salmonella typhimurium has been previously shown to select for genetic tandem duplications of the histidine operon. We show here that agents which induce tandem duplications are less effective in such induction in the presence of the pKM101 plasmid. The presence of the plasmid also produces an increase in AT-resistance due to mechanisms other than duplication, presumably because pKM101 produces high levels of error-prone repair. We suggest that high levels of error-prone repair may cause decreases in tandem duplication induction and propose that error-prone repair and tandem duplication may be alternative cellular responses to certain DNA lesions.
Collapse
|
23
|
Finan TM, Kunkel B, De Vos GF, Signer ER. Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 1986; 167:66-72. [PMID: 3013840 PMCID: PMC212841 DOI: 10.1128/jb.167.1.66-72.1986] [Citation(s) in RCA: 466] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Using physical and genetic data, we have demonstrated that Rhizobium meliloti SU47 has a symbiotic megaplasmid, pRmeSU47b, in addition to the previously described nod-nif megaplasmid pRmeSU47a. This plasmid includes four loci involved in exopolysaccharide (exo) synthesis as well as two loci involved in thiamine biosynthesis. Mutations at the exo loci have previously been shown to result in the formation of nodules which lack infection threads (Inf-) and fail to fix nitrogen (Fix-). Thus, both megaplasmids contain genes involved in the formation of nitrogen-fixing root nodules. Mutations at two other exo loci were not located on either megaplasmid. To mobilize the megaplasmids, the oriT of plasmid RK2 was inserted into them. On alfalfa, Agrobacterium tumefaciens strains containing pRmeSU47a induced marked root hair curling with no infection threads and Fix- nodules, as reported by others. This plant phenotype was not observed to change with A. tumefaciens strains containing both pRmeSU47a and pRmeSU47b megaplasmids, and strains containing pRmeSU47b alone failed to curl root hairs or form nodules.
Collapse
|
24
|
Abstract
Plasmid pCU1 was Kik+ (promotes killing of Klebsiella pneumoniae). All Tn5 insertions within the tra region of pCU1 were Kik-. Two other regions, kikA and kikB, were needed. They may be separated on different plasmids, but both must be mobilized into Klebsiella pneumoniae. Establishment of one kik region in K. pneumoniae followed by receipt of the second did not lead to killing. Kik was therefore intracellular and required concerted and transient action of both regions.
Collapse
|
25
|
Schreiner HC, Bechhofer DH, Pohlman RF, Young C, Borden PA, Figurski DH. Replication control in promiscuous plasmid RK2: kil and kor functions affect expression of the essential replication gene trfA. J Bacteriol 1985; 163:228-37. [PMID: 3891728 PMCID: PMC219102 DOI: 10.1128/jb.163.1.228-237.1985] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously reported that broad-host-range plasmid RK2 encodes multiple host-lethal kil determinants (kilA, kilB1, kilB2, and kilC) which are controlled by RK2-specified kor functions (korA, korB, and korC). Here we show that kil and kor determinants have significant effects on RK2 replication control. First, korA and korB inhibit the replication of certain RK2 derivatives, unless plasmid replication is made independent of the essential RK2 gene trfA. Second, kilB1 exerts a strong effect on this interaction. If the target plasmid is defective in kilB1, sensitivity to korA and korB is enhanced at least 100-fold. Thus, korA and korB act negatively on RK2 replication, whereas kilB1 acts in a positive manner to counteract this effect. A mutant RK2 derivative, resistant to korA and korB, was found to have fused a new promoter to trfA, indicating that the targets for korA and korB are at the 5' end of the trfA gene. We constructed a trfA-lacZ fusion and found that synthesis of beta-galactosidase is inhibited by korA and korB. Thus korA, korB, and kilB1 influence RK2 replication by regulating trfA expression. We conclude that the network of kil and kor determinants is part of a replication control system for RK2.
Collapse
|
26
|
Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol 1985; 161:1219-21. [PMID: 2982787 PMCID: PMC215030 DOI: 10.1128/jb.161.3.1219-1221.1985] [Citation(s) in RCA: 307] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A mutation of a cloned gene that has been made by introducing a transposon or some other selectable genetic determinant can be crossed into the gene's original replicon by linearizing the cloned DNA and transforming a recB recC sbcB mutant. A number of applications of this method are described with genes of either chromosomal or plasmid origin.
Collapse
|
27
|
Abstract
pKM101 renders its host a poor recipient in conjugal matings with genetically distinguishable derivatives of itself. The gene(s) primarily responsible for this, denoted eex, is located in between genes required for both conjugal transfer and sensitivity to donor-specific bacteriophage, although it itself is not necessary for transfer. A gene linked to, or coincident with, the region needed for vegetative plasmid replication also inhibited establishment of related plasmids under certain conditions. Construction of an operon fusion between eex and the Escherichia coli lac promoter has shown that this gene is transcribed in a clockwise fashion on the circular map of pKM101. To date, we have not been able to visualize a protein product(s) of the eex gene(s).
Collapse
|
28
|
Abstract
IncN plasmids, including pKM101, strongly inhibit the conjugal transfer of cohabiting IncP plasmids. We localized the pKM101 DNA sufficient for this phenomenon to a 1.1-kilobase region (denoted fip). Two fip-deficient Tn5 insertion derivatives of pKM101 were isolated; neither affected other pKM101-mediated functions. fip did not inhibit either the synthesis of the IncP plasmid's sex pilus or its ability to mediate entry exclusion against other IncP plasmids.
Collapse
|
29
|
Abstract
The conjugal transfer system of the broad-host range IncN plasmid pKM101 was analyzed genetically. Its organization differed significantly from that of the F plasmid. The tra genes are located in three regions, each between 3 and 4 kilobases in length. All of the genes in the first two regions are required for sensitivity to "donor-specific" phage which bind to the plasmid-mediated sex pilus, and these genes therefore are involved in the synthesis, and possibly retraction, of the sex pilus. The plasmid's origin of transfer was localized to a 1.2-kilobase region at an extreme end of the transfer region. Using two different methods, we have identified 11 complementation groups required for transfer. One of these, traC, is of special interest in that mutations at this locus can be partially suppressed if, prior to mating, cells carrying a traC mutant plasmid are incubated with cells which elaborate sex pili but are unable to transfer their plasmids. One possible explanation for this is that pilus-elaborating cells can donate traC gene product to a traC mutant in a form that can be reused.
Collapse
|