1
|
Jeong SH, Kim HJ, Lee SJ. New Target Gene Screening Using Shortened and Random sgRNA Libraries in Microbial CRISPR Interference. ACS Synth Biol 2023; 12:800-808. [PMID: 36787424 PMCID: PMC10028695 DOI: 10.1021/acssynbio.2c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 02/16/2023]
Abstract
CRISPR interference (CRISPRi) screening has been used for identification of target genes related to specific phenotypes using single-molecular guide RNA (sgRNA) libraries. In CRISPRi screening, the sizes of random sgRNA libraries contained with the original target recognition sequences are large (∼1012). Here, we demonstrated that the length of the target recognition sequence (TRS) can be shortened in sgRNAs from the original 20 nucleotides (N20) to 9 nucleotides (N9) that is still sufficient for dCas9 to repress target genes in the xylose operon of Escherichia coli, regardless of binding to a promoter or open reading frame region. Based on the results, we constructed random sgRNA plasmid libraries with 5'-shortened TRS lengths, and identified xylose metabolic target genes by Sanger sequencing of sgRNA plasmids purified from Xyl- phenotypic cells. Next, the random sgRNA libraries were harnessed to screen for target genes to enhance violacein pigment production in synthetic E. coli cells. Seventeen target genes were selected by analyzing the redundancy of the TRS in sgRNA plasmids in dark purple colonies. Among them, seven genes (tyrR, pykF, cra, ptsG, pykA, sdaA, and tnaA) have been known to increase the intracellular l-tryptophan pool, the precursor of a violacein. Seventeen cells with a single deletion of each target gene exhibited a significant increase in violacein production. These results indicate that using shortened random TRS libraries for CRISPRi can be simple and cost-effective for phenotype-based target gene screening.
Collapse
Affiliation(s)
- Song Hee Jeong
- Department of Systems Biotechnology,
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic of Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology,
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology,
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic of Korea
| |
Collapse
|
2
|
The microbiome, IgGs and schizophrenia. A R20+ adult-only story. Brain Behav Immun 2023; 107:397-398. [PMID: 36400333 DOI: 10.1016/j.bbi.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
|
3
|
Gäbelein C, Reiter MA, Ernst C, Giger GH, Vorholt JA. Engineering Endosymbiotic Growth of E. coli in Mammalian Cells. ACS Synth Biol 2022; 11:3388-3396. [PMID: 36194551 PMCID: PMC9594318 DOI: 10.1021/acssynbio.2c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endosymbioses are cellular mergers in which one cell lives within another cell and have led to major evolutionary transitions, most prominently to eukaryogenesis. Generation of synthetic endosymbioses aims to provide a defined starting point for studying fundamental processes in emerging endosymbiotic systems and enable the engineering of cells with novel properties. Here, we tested the potential of different bacteria for artificial endosymbiosis in mammalian cells. To this end, we adopted the fluidic force microscopy technology to inject diverse bacteria directly into the cytosol of HeLa cells and examined the endosymbiont-host interactions by real-time fluorescence microscopy. Among them, Escherichia coli grew exponentially within the cytoplasm, however, at a faster pace than its host cell. To slow down the intracellular growth of E. coli, we introduced auxotrophies in E. coli and demonstrated that the intracellular growth rate can be reduced by limiting the uptake of aromatic amino acids. In consequence, the survival of the endosymbiont-host pair was prolonged. The presented experimental framework enables studying endosymbiotic candidate systems at high temporal resolution and at the single cell level. Our work represents a starting point for engineering a stable, vertically inherited endosymbiosis.
Collapse
|
4
|
Alsohim AS, Taylor TB, Barrett GA, Gallie J, Zhang XX, Altamirano-Junqueira AE, Johnson LJ, Rainey PB, Jackson RW. The biosurfactant viscosin produced byPseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion. Environ Microbiol 2014; 16:2267-81. [DOI: 10.1111/1462-2920.12469] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
Affiliation(s)
| | - Tiffany B. Taylor
- School of Biological Sciences; University of Reading; Reading RG6 6AJ UK
| | - Glyn A. Barrett
- School of Biological Sciences; University of Reading; Reading RG6 6AJ UK
| | - Jenna Gallie
- New Zealand Institute for Advanced Study; Massey University; Auckland New Zealand
- Department of Environmental Microbiology; Eawag; Dübendorf 8600 Switzerland
- Department of Environmental Systems Science; ETH Zürich; Zürich 8092 Switzerland
| | - Xue-Xian Zhang
- New Zealand Institute for Advanced Study; Massey University; Auckland New Zealand
| | | | - Louise J. Johnson
- School of Biological Sciences; University of Reading; Reading RG6 6AJ UK
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study; Massey University; Auckland New Zealand
- Max Planck Institute for Evolutionary Biology; Plön Germany
| | - Robert W. Jackson
- School of Biological Sciences; University of Reading; Reading RG6 6AJ UK
| |
Collapse
|
5
|
Han SH, Anderson AJ, Yang KY, Cho BH, Kim KY, Lee MC, Kim YH, Kim YC. Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. MOLECULAR PLANT PATHOLOGY 2006; 7:463-472. [PMID: 20507461 DOI: 10.1111/j.1364-3703.2006.00352.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Colonization of the roots of tobacco by Pseudomonas chlororaphis O6 induces systemic resistance to the soft-rot pathogen, Erwinia carotovora ssp. carotovara SCC1. A screen of the transposon mutants of P. chlororaphis O6 showed mutants with about a fivefold reduction in ability to induce systemic resistance to the soft-rot disease. These mutations disrupted genes involved in diverse functions: a methyl-accepting chemotaxis protein, biosynthesis of purines, phospholipase C, transport of branched-chain amino acids and an ABC transporter. Additional mutations were detected in the intergenic spacer regions between genes encoding a GGDEF protein and fumarate dehydratase, and in genes of unknown function. The mutants in the ABC transporters did not display reduced root colonization. However, the other mutants had up to 100-fold reduced colonization levels. Generally the production of metabolites important for interactions in the rhizosphere, phenazines and siderophores, was not altered by the mutations. A reduced induction of systemic resistance by a purine biosynthesis mutant with a disrupted purM gene correlated with poor growth rate, lesser production of phenazines and siderophore and low levels of root colonization. These studies showed that multiple determinants are involved in the induction of systemic resistance, with there being a requirement for strong root colonization.
Collapse
Affiliation(s)
- Song Hee Han
- Agricultural Plant Stress Research Center and Environmental-Friendly Agriculture Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Michalodimitrakis KM, Sourjik V, Serrano L. Plasticity in amino acid sensing of the chimeric receptor Taz. Mol Microbiol 2006; 58:257-66. [PMID: 16164563 DOI: 10.1111/j.1365-2958.2005.04821.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taz is a chimeric receptor consisting of the periplasmic, transmembrane and most of the HAMP linker domains of the Escherichia coli aspartate receptor (Tar(Ec)) and the cytoplasmic signalling domain of the E. coli osmosensor EnvZ. Aspartate is one of several attractant ligands normally sensed by Tar and it interacts with Taz to induce OmpR-dependent transcription from the ompC promoter--albeit with reduced sensitivity relative to the chemotactic response it evokes via Tar. By combining Taz with a reporter system that expresses green fluorescent protein (GFP) from the ompC promoter, we were able to examine the interaction of Taz with all 20 natural amino acids. Some amino acids (Leu, Met, Val and Ser) reduced GFP expression, which in the case of leucine is likely attributed to a direct effect on the receptor, rather than an indirect effect through the leucine responsive protein (Lrp). Surprisingly, amino acids like Met and Ser--which are also attractants for Tar--'inhibited' Taz. Moreover, Taz exhibits a higher sensitivity to Leu compared with Asp, which is the inverse of Tar. Our results show the exquisite sensitivity of chemotactic receptors. Small conformational changes induced by making the chimera may have changed the way it responds to different amino acids.
Collapse
|
7
|
Koyanagi T, Katayama T, Suzuki H, Kumagai H. The LIV-I/LS system as a determinant of azaserine sensitivity of Escherichia coliK-12. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09680.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Koyanagi T, Katayama T, Suzuki H, Kumagai H. Identification of the LIV-I/LS system as the third phenylalanine transporter in Escherichia coli K-12. J Bacteriol 2004; 186:343-50. [PMID: 14702302 PMCID: PMC305776 DOI: 10.1128/jb.186.2.343-350.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the active transport of phenylalanine is considered to be performed by two different systems, AroP and PheP. However, a low level of accumulation of phenylalanine was observed in an aromatic amino acid transporter-deficient E. coli strain (DeltaaroP DeltapheP Deltamtr Deltatna DeltatyrP). The uptake of phenylalanine by this strain was significantly inhibited in the presence of branched-chain amino acids. Genetic analysis and transport studies revealed that the LIV-I/LS system, which is a branched-chain amino acid transporter consisting of two periplasmic binding proteins, the LIV-binding protein (LIV-I system) and LS-binding protein (LS system), and membrane components, LivHMGF, is involved in phenylalanine accumulation in E. coli cells. The K(m) values for phenylalanine in the LIV-I and LS systems were determined to be 19 and 30 micro M, respectively. Competitive inhibition of phenylalanine uptake by isoleucine, leucine, and valine was observed for the LIV-I system and, surprisingly, also for the LS system, which has been assumed to be leucine specific on the basis of the results of binding studies with the purified LS-binding protein. We found that the LS system is capable of transporting isoleucine and valine with affinity comparable to that for leucine and that the LIV-I system is able to transport tyrosine with affinity lower than that seen with other substrates. The physiological importance of the LIV-I/LS system for phenylalanine accumulation was revealed in the growth of phenylalanine-auxotrophic E. coli strains under various conditions.
Collapse
Affiliation(s)
- Takashi Koyanagi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
9
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
10
|
Affiliation(s)
- S A Haney
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109
| | | |
Collapse
|
11
|
Gibson AL, Wagner LM, Collins FS, Oxender DL. A bacterial system for investigating transport effects of cystic fibrosis--associated mutations. Science 1991; 254:109-11. [PMID: 1718037 DOI: 10.1126/science.1718037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
LIV-I, a high-affinity system that transports neutral, branched-chain amino acids into Escherichia coli, has two components, LivG and LivF, that are homologous to the cystic fibrosis (CF) transmembrane conductance regulator (CFTR). CF-associated mutations of human CFTR were introduced into corresponding regions of LivG, and their effects on leucine transport could be grouped into three classes. Mutations were found that (i) abolished LIV-I--directed transport, (ii) retained about a quarter of wild-type activity at the Michaelis-Menten constant (KM), and (iii) had minimal activity at the KM. A mutation equivalent to a benign polymorphism had no effect on transport. The correlation of these mutational phenotypes in LivG and CFTR suggests that the LIV-I prokaryotic transporter is functionally similar to the CF protein and that this similarity can be exploited to clarify the properties of the nucleotide-binding fold in this superfamily of proteins.
Collapse
Affiliation(s)
- A L Gibson
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109
| | | | | | | |
Collapse
|
12
|
Hoshino T, Kose K. Genetic analysis of the Pseudomonas aeruginosa PAO high-affinity branched-chain amino acid transport system by use of plasmids carrying the bra genes. J Bacteriol 1990; 172:5540-3. [PMID: 2120184 PMCID: PMC526864 DOI: 10.1128/jb.172.10.5540-5543.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
About 30 mutants of Pseudomonas aeruginosa PAO defective in the high-affinity branched-chain amino acid transport system (LIV-I) were isolated by the selection for resistance to 4-aza-DL-leucine, a toxic leucine analog for LIV-I. All of the mutants were complemented by plasmid pKTH24, harboring the braC gene, which encodes the branched-chain amino acid-binding protein, and the four open reading frames named braD, braE, braF, and braG (T. Hoshino and K. Kose, J. Bacteriol. 172:5531-5539, 1990). We identified five cistrons corresponding to these bra genes by complementation analysis with various derivatives of pKTH24, confirming that the braD, braE, braF, and braG genes are required for the LIV-I transport system. We also found mutations that seem likely to be mutations in a promoter region for the bra genes and those with polarity in the intercistronic region between braC and braD. Analysis with an omega interposon showed that the bra genes are organized as an operon and are cotranscribed in the order braC-braD-braE-braF-braG from a promoter located in the 5'-flanking region of the braC gene.
Collapse
Affiliation(s)
- T Hoshino
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | |
Collapse
|
13
|
Hoshino T, Kose K. Cloning, nucleotide sequences, and identification of products of the Pseudomonas aeruginosa PAO bra genes, which encode the high-affinity branched-chain amino acid transport system. J Bacteriol 1990; 172:5531-9. [PMID: 2120183 PMCID: PMC526863 DOI: 10.1128/jb.172.10.5531-5539.1990] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A DNA fragment of Pseudomonas aeruginosa PAO containing genes specifying the high-affinity branched-chain amino acid transport system (LIV-I) was isolated. The fragment contained the braC gene, encoding the binding protein for branched-chain amino acids, and the 4-kilobase DNA segment adjacent to 3' of braC. The nucleotide sequence of the 4-kilobase DNA fragment was determined and found to contain four open reading frames, designated braD, braE, braF, and braG. The braD and braE genes specify very hydrophobic proteins of 307 and 417 amino acid residues, respectively. The braD gene product showed extensive homology (67% identical) to the livH gene product, a component required for the Escherichia coli high-affinity branched-chain amino acid transport systems. The braF and braG genes encode proteins of 255 and 233 amino acids, respectively, both containing amino acid sequences typical of proteins with ATP-binding sites. By using a T7 RNA polymerase/promoter system together with plasmids having various deletions in the braDEFG region, the braD, braE, braF, and braG gene products were identified as proteins with apparent Mrs of 25,500, 34,000, 30,000, and 27,000, respectively. These proteins were found among cell membrane proteins on a sodium dodecyl sulfate-polyacrylamide gel stained with Coomassie blue.
Collapse
Affiliation(s)
- T Hoshino
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | |
Collapse
|
14
|
Adams MD, Wagner LM, Graddis TJ, Landick R, Antonucci TK, Gibson AL, Oxender DL. Nucleotide sequence and genetic characterization reveal six essential genes for the LIV-I and LS transport systems of Escherichia coli. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38417-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Abstract
The ugp promoter (pugp) responsible for expression of the binding-protein-dependent sn-glycerol-3-phosphate transport system in Escherichia coli was cloned into a small multicopy plasmid pTER5, a derivative of pBR322, between the transcription terminators rpoCt and tL1. The resulting expression vector, pPH3, permits convenient insertion of structural genes containing their own translational-initiation regions, into the multiple-cloning site derived from the pUC19 plasmid. The efficiency and regulatory properties of pugp were measured using xylE and lacZ as reporter genes, which code for the corresponding enzymes catechol-2,3-dioxygenase (C23O) and beta-galactosidase (beta Gal), respectively. Enzyme activities were virtually completely repressed in the presence of excess inorganic phosphates (Pi) and high concentrations of glucose. Maximal induction was observed at limiting Pi (less than 0.1 mM) and normal levels of glucose (0.2-0.4%). The maximum expression of the pugp-directed beta Gal synthesis was approx. 80% of that directed by strong ptac. When the xylE gene was maximally expressed, the induced enzyme constituted approx. 50% of total cellular protein as judged by laser densitometry following sodium dodecyl sulfate-polyacrylamide-gel electrophoresis. These results suggest the usefulness of the pugp in expression vectors for strong, but controlled, expression of cloned genes in E. coli. This Pi controlled vector can be adapted to large-scale fermentation by using Pi-limiting growth conditions.
Collapse
Affiliation(s)
- T Z Su
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606
| | | | | |
Collapse
|
16
|
Hoshino T, Kose K. Cloning and nucleotide sequence of braC, the structural gene for the leucine-, isoleucine-, and valine-binding protein of Pseudomonas aeruginosa PAO. J Bacteriol 1989; 171:6300-6. [PMID: 2509433 PMCID: PMC210503 DOI: 10.1128/jb.171.11.6300-6306.1989] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gene for the leucine-, isoleucine-, and valine-binding protein (LIVAT-BP) in Pseudomonas aeruginosa PAO was isolated, and its nucleotide sequence was determined. The gene consisted of 1,119 nucleotides specifying a protein of 373 amino acid residues. Determination of the N-terminal amino acid sequence of the LIVAT-BP purified from P. aeruginosa shock fluid suggested that the N-terminal 26 residues of the gene product are cleaved off posttranslationally, showing the characteristic features of procaryotic signal peptides. The amino acid composition of the mature product predicted from the nucleotide sequence was in good agreement with that of the purified LIVAT-BP. The plasmid carrying the LIVAT-BP gene restored the activity of the high-affinity branched-chain amino acid transport system (the leucine, isoleucine, valine [LIV-I] transport system) in the braC310 mutant of P. aeruginosa, confirming that braC is the structural gene for LIVAT-BP. The mutant LIVAT-BP lacking a 16-amino-acid peptide in the middle was found to be functional in the LIV-I transport system. LIVAT-BP showed extensive homology (51% identical) to the LIV- and leucine-specific-binding proteins of Escherichia coli K-12, which are coded for by the livJ and livK genes, respectively, suggesting that the role of the proteins in the LIV-I transport systems is analogous in both organisms.
Collapse
Affiliation(s)
- T Hoshino
- Laboratory of Molecular Cellular Biology, Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | |
Collapse
|
17
|
Cottam AN, Ayling PD. Genetic studies of mutants in a high-affinity methionine transport system in Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:358-63. [PMID: 2540412 DOI: 10.1007/bf00339743] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A total of 30 metP mutations defective in the high-affinity methionine transport system were linked in P1 transduction to the zaf-1351::Tn10 insertion mutation at min 5-6 on the Salmonella typhimurium chromosome map. The relationship of metP to several other markers in this region was studied. Methionine transport was strongly inhibited by arsenate, suggesting that the metP system belongs to the shock-sensitive category and possesses a periplasmic binding protein. However, other experiments provided less clear cut evidence. Transport activity was only slightly reduced by osmotic shock; a methionine binding activity was detected in shock fluids from the wild-type strain, and although this activity was reduced by 50% in 3 frameshift mutants, mutants without any activity were not found. No differences were detected in the shock fluids of the 30 mutants when examined by SDS-polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- A N Cottam
- Department of Applied Biology, University of Hull, UK
| | | |
Collapse
|
18
|
Suzuki H, Kumagai H, Echigo T, Tochikura T. Molecular cloning of Escherichia coli K-12 ggt and rapid isolation of gamma-glutamyltranspeptidase. Biochem Biophys Res Commun 1988; 150:33-8. [PMID: 2892489 DOI: 10.1016/0006-291x(88)90482-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Based on the results of mapping of ggt, eight strains were selected from a gene library of E. coli. One of the strains harboring pLC9-12 was found to show 14 times higher gamma-glutamyltranspeptidase activity per cell than the wild type strain. The ggt was subcloned to the BamHI site of pUC18 and the recombinant plasmid pSH101 was obtained. Ggt- phenotype of gamma-glutamyltranspeptidase-deficient mutants was complemented by pSH101. The specific activity of the enzyme in cells harboring pSH101 was 37-fold higher than that in the wild type cells. gamma-Glutamyltranspeptidase was isolated from the periplasmic fraction of the cells by simple two steps and crystallized.
Collapse
Affiliation(s)
- H Suzuki
- Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Japan
| | | | | | | |
Collapse
|
19
|
Abstract
Various portions of the "high-affinity" L-arabinose transport operon were cloned into the plasmid expression vector pKK223-3 and the operon-encoded protein products were identified. The results indicate that three proteins are encoded by this operon. The first is a 33,000 Mr protein that is the product of the promoter-proximal L-arabinose binding protein coding sequence, araF. A 52,000 Mr protein is encoded by sequence 3' to araF and has been assigned to the araG locus. The sequence 3' to araG encodes a 31,000 Mr protein that has been assigned to the araH locus. Both the araG and araH gene products are localized in the membrane fraction of the cell, implying a role in the membrane-associated complex of the high-affinity L-arabinose transport system. Nuclease S1 protection studies indicate that two operon message populations are present in the cell, a full-length operon transcript and a seven- to tenfold more abundant binding protein-specific message. The relative abundance of these two message populations correlates with the differential expression of the binding protein and the membrane-associated proteins of the transport system.
Collapse
Affiliation(s)
- B F Horazdovsky
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | | |
Collapse
|
20
|
|
21
|
Antonucci TK, Wagner LM, Oxender DL. Cloning, expression, and nucleotide sequence of livR, the repressor for high-affinity branched-chain amino acid transport in Escherichia coli. Proteins 1986; 1:125-33. [PMID: 3329726 DOI: 10.1002/prot.340010204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The livR gene encoding the repressor for high-affinity branched-chain amino acid transport in Escherichia coli has been cloned from a library prepared from the episome F106. The inserted DNA fragment from the initial cloned plasmid, pANT1, complemented two independent, spontaneously derived, regulatory mutations. Subcloning as well as the creation of deletions with Bal31 exonuclease revealed that the entire regulatory region is contained within a 1.1-kb RsaI-SalI fragment. Expression of the pANT plasmids in E. coli minicells showed that the regulatory region encodes one detectable protein with an apparent molecular weight of 21,000. DNA sequencing revealed one open reading frame of 501 bp encoding a protein with a calculated MW of 19,155. The potential secondary structure of the regulatory protein has been predicted and it suggests that the carboxy terminus may fold into three consecutive alpha helices. These results suggest that the livR gene encodes a repressor which plays a role in the regulation of expression of the livJ and the livK transport genes.
Collapse
Affiliation(s)
- T K Antonucci
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606
| | | | | |
Collapse
|
22
|
Nazos PM, Antonucci TK, Landick R, Oxender DL. Cloning and characterization of livH, the structural gene encoding a component of the leucine transport system in Escherichia coli. J Bacteriol 1986; 166:565-73. [PMID: 3009409 PMCID: PMC214642 DOI: 10.1128/jb.166.2.565-573.1986] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The physical location of the genetically defined livH gene was mapped in the 17-kilobase plasmid pOX1 by using transposon Tn5 inactivation mapping and further confirmed by subcloning and complementation analysis. These results indicated that the livH gene maps 3' to livK, the gene encoding the leucine-specific binding protein. Moreover, the nucleotide sequence of the livH gene and its flanking regions was determined. The livH gene is encoded starting 47 base pairs downstream from the livK gene, and it is transcribed in the same direction as the livK gene. The livK-livH intergenic region lacks promoter sequences and contains a GC-rich sequence that could lead to the formation of a stable stem loop structure. The coding sequence of the livH gene, which is 924 base pairs, specifies a very hydrophobic protein of 308 amino acid residues. Expression of livH-containing plasmids in minicells suggested that a poorly expressed protein with an Mr of 30,000 could be the livH gene product.
Collapse
|