1
|
Kolb FA, Westhof E, Ehresmann B, Ehresmann C, Wagner EG, Romby P. Four-way junctions in antisense RNA-mRNA complexes involved in plasmid replication control: a common theme? J Mol Biol 2001; 309:605-14. [PMID: 11397083 DOI: 10.1006/jmbi.2001.4677] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In several groups of bacterial plasmids, antisense RNAs regulate copy number through inhibition of replication initiator protein synthesis. In plasmid R1, we have recently shown that the inhibitory complex between the antisense RNA (CopA) and its target mRNA (CopT) is characterized by the formation of two intermolecular helices, resulting in a four-way junction structure and a side-by-side helical alignment. Based on lead-induced cleavage and ribonuclease (RNase) V(1) probing combined with molecular modeling, a strikingly similar topology is supported for the complex formed between the antisense RNA (Inc) and mRNA (RepZ) of plasmid Col1b-P9. In particular, the position of the four-way junction and the location of divalent ion-binding site(s) indicate that the structural features of these two complexes are essentially the same in spite of sequence differences. Comparisons of several target and antisense RNAs in other plasmids further indicate that similar binding pathways are used to form the inhibitory antisense-target RNA complexes. Thus, in all these systems, the structural features of both antisense and target RNAs determine the topologically possible and kinetically favored pathway that is essential for efficient in vivo control.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cations, Divalent/metabolism
- Cations, Divalent/pharmacology
- DNA Replication
- DNA, Bacterial/biosynthesis
- DNA, Bacterial/genetics
- Endoribonucleases/metabolism
- Hydrolysis/drug effects
- Lead/metabolism
- Lead/pharmacology
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plasmids/biosynthesis
- Plasmids/genetics
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Templates, Genetic
Collapse
Affiliation(s)
- F A Kolb
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 Rue R. Descartes, Strasbourg Cedex, F-67084, France
| | | | | | | | | | | |
Collapse
|
2
|
Osborn AM, da Silva Tatley FM, Steyn LM, Pickup RW, Saunders JR. Mosaic plasmids and mosaic replicons: evolutionary lessons from the analysis of genetic diversity in IncFII-related replicons. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 9):2267-2275. [PMID: 10974114 DOI: 10.1099/00221287-146-9-2267] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The alpha replicons of the multi-replicon plasmids pGSH500 and pLV1402 have been characterized by DNA sequence analysis. Analysis of the DNA sequence of a 3672 bp HIN:dIII fragment from pFDT100, which contains the pGSH500 alpha replicon, revealed similarity to a number of replicons belonging to, or related to, those of the IncFII family. The replicon region contains copA, tapA, repA and oriR, and replication initiation and termination sites are related to those from the IncFII replicon of R1. A copB gene was found to lie upstream of the HIN:dIII site in the parental plasmid pGSH500. Downstream of oriR, a 707 bp region shows 72.6% identity to a region of the Escherichia coli chromosome at 43.3', suggesting this region of pGSH500 may have been incorporated into the plasmid during a past chromosomal recombination event. Oligonucleotide primers homologous to consensus regions in the copB and repA genes, and the oriR regions from a number of IncFII-related replicons were used to amplify replication regions from pLV1402. Analysis of the amplified regions has shown the presence of copB, copA, tapA and repA genes. Phylogenetic analysis of Rep protein sequences from the RepFIIA family of antisense-control-regulated replicons revealed the presence of three distinct subgroups of Rep proteins. Comparative analysis of DNA and protein sequences from members of the RepFIIA family provides evidence supporting the roles of both non-selective divergence in co-integrate (multi-replicon) plasmids and Chi-mediated-recombination in replicon evolution, and in particular, that such processes may have been widespread in the evolution of the RepFIIA family.
Collapse
Affiliation(s)
- A Mark Osborn
- School of Biological Sciences, Life Science Building, The University of Liverpool, PO Box 147, Liverpool L69 7ZB, UK1
| | - Fernanda M da Silva Tatley
- Department of Biochemistry, University of Otago, Dunedin, New Zealand4
- Department of Medical Biochemistry2 and Department of Medical Microbiology3, Medical School, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Lafras M Steyn
- School of Biological Sciences, Life Science Building, The University of Liverpool, PO Box 147, Liverpool L69 7ZB, UK1
| | - Roger W Pickup
- Institute of Freshwater Ecology, Windermere Laboratories, The Ferry House, Ambleside, Cumbria LA22 0LP, UK5
| | - Jon R Saunders
- School of Biological Sciences, Life Science Building, The University of Liverpool, PO Box 147, Liverpool L69 7ZB, UK1
| |
Collapse
|
3
|
Hiraga S, Sugiyama T, Itoh T. Comparative analysis of the replicon regions of eleven ColE2-related plasmids. J Bacteriol 1994; 176:7233-43. [PMID: 7525540 PMCID: PMC197111 DOI: 10.1128/jb.176.23.7233-7243.1994] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The incA gene product of ColE2-P9 and ColE3-CA38 plasmids is an antisense RNA that regulates the production of the plasmid-coded Rep protein essential for replication. The Rep protein specifically binds to the origin and synthesizes a unique primer RNA at the origin. The IncB incompatibility is due to competition for the Rep protein among the origins of the same binding specificity. We localized the regions sufficient for autonomous replication of 15 ColE plasmids related to ColE2-P9 and ColE3-CA38 (ColE2-related plasmids), analyzed their incompatibility properties, and determined the nucleotide sequences of the replicon regions of 9 representative plasmids. The results suggest that all of these plasmids share common mechanisms for initiation of DNA replication and its control. Five IncA specificity types, 4 IncB specificity types, and 9 of the 20 possible combinations of the IncA and IncB types were found. The specificity of interaction of the Rep proteins and the origins might be determined by insertion or deletion of single nucleotides and substitution of several nucleotides at specific sites in the origins and by apparently corresponding insertion or deletion and substitution of amino acid sequences at specific regions in the C-terminal portions of the Rep proteins. For plasmids of four IncA specificity types, the nine-nucleotide sequences at the loop regions of the stem-loop structures of antisense RNAs are identical, suggesting an evolutionary significance of the sequence. The mosaic structures of the replicon regions with homologous and nonhomologous segments suggest that some of them were generated by exchanging functional parts through homologous recombination.
Collapse
Affiliation(s)
- S Hiraga
- Department of Biology, Faculty of Science, Osaka University, Japan
| | | | | |
Collapse
|
4
|
Whelan KF, Colleran E. Restriction endonuclease mapping of the HI2 incompatibility group plasmid R478. J Bacteriol 1992; 174:1197-204. [PMID: 1735713 PMCID: PMC206412 DOI: 10.1128/jb.174.4.1197-1204.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A restriction map of the 272-kb IncHI2 plasmid R478 was constructed by using the enzymes ApaI, XbaI, SalI, and XhoI. The map was derived from cloned restriction fragments from R478 inserted into cosmid and plasmid vectors as well as from double-digestion analysis of R478 and R478 miniplasmids. All previously known resistance determinants were cloned from R478, and their positions were located on the restriction map. A region involved in incompatibility was cloned and mapped. The location of a previously unreported arsenite resistance gene was also determined. The genes encoding tellurite resistance, colicin B resistance, and phage inhibition were found to be associated with a 6.7-kb SalI fragment of R478.
Collapse
Affiliation(s)
- K F Whelan
- Department of Microbiology, University College Galway, Ireland
| | | |
Collapse
|
5
|
Lodwick D, Strike P. Distribution of sequences homologous to the impCAB operon of TP110 among bacterial plasmids of different incompatibility groups. MOLECULAR & GENERAL GENETICS : MGG 1991; 229:27-30. [PMID: 1680217 DOI: 10.1007/bf00264209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mutagenic DNA repair is a function of many naturally occurring plasmids belonging to several different incompatibility groups. A DNA probe corresponding to the impCAB operon of the IncI1 plasmid TP110, which encodes such functions, was used to investigate the distribution of homologous sequences in both related and unrelated plasmids. Southern blotting was used to demonstrate considerable sequence conservation amongst a number of plasmid types, with imp-related sequences being found on plasmids belonging to the I1, I1/B, B and FIV incompatibility groups. However, no homology was detected amongst plasmids of the N and L/M incompatibility groups, many of which carry functionally similar gene clusters. It appears that sequences determining mutagenic repair functions have been largely conserved within any one incompatibility group, but that significant divergent evolution has occurred between groups.
Collapse
Affiliation(s)
- D Lodwick
- Department of Genetics and Microbiology, Liverpool University, UK
| | | |
Collapse
|
6
|
Praszkier J, Wei T, Siemering K, Pittard J. Comparative analysis of the replication regions of IncB, IncK, and IncZ plasmids. J Bacteriol 1991; 173:2393-7. [PMID: 1706708 PMCID: PMC207792 DOI: 10.1128/jb.173.7.2393-2397.1991] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Minireplicons from the I-complex plasmids R387 (IncK) and pIE545 (IncZ) were constructed, and the nucleotide sequences of their replication regions were compared with that of the B plasmid, pMU720. The coding sequence of the putative replication protein, RepA, of each plasmid was located. RepA of K and B plasmids were homologous, whereas RepA of Z resembled RepA1 of FII plasmid. Sequences upstream of RepA were conserved in the three I-complex plasmids. Group B and Z plasmids were incompatible.
Collapse
Affiliation(s)
- J Praszkier
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
7
|
Berzal-Herranz A, Wagner EG, Díaz-Orejas R. Control of replication of plasmid R1: the intergenic region between copA and repA modulates the level of expression of repA. Mol Microbiol 1991; 5:97-108. [PMID: 1707477 DOI: 10.1111/j.1365-2958.1991.tb01830.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The RepA protein of plasmid R1 is rate-limiting for initiation of R1 replication. Its synthesis is mainly regulated by interactions of the antisense RNA, CopA, with the leader region of the RepA mRNA, CopT. This work describes the characterization of several mutants with sequence alterations in the intergenic region between the copA gene and the repA reading frame. The analysis showed that most of the mutations led both to a decrease in stability of maintenance of mini-R1 derivatives and to lowered repA expression assayed in translational repA-lacZ fusion constructs. Destruction of the copA gene and replacement of the upstream region by the tac promoter in the latter constructs indicated that these mutations per se alter the expression of repA. In addition, we show that particular mutations in this region can directly affect CopA-mediated control, either by changing the kinetics of interaction of CopA RNA with the RepA mRNA and/or by modifying the activity of the copA promoter. These data indicate the importance of the region analysed in the process that controls R1 replication.
Collapse
|
8
|
Vanooteghem JC, Cornelis GR. Structural and functional similarities between the replication region of the Yersinia virulence plasmid and the RepFIIA replicons. J Bacteriol 1990; 172:3600-8. [PMID: 1694522 PMCID: PMC213333 DOI: 10.1128/jb.172.7.3600-3608.1990] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We sequenced the minimum replication region of the virulence plasmid pYVe439-80 from a serogroup O:9 Yersinia enterocolitica. This sequence is 68% homologous on a 1,873-nucleotide stretch to the sequence of the RepFIIA replicon of the resistance plasmid R100. The sequence contains two open reading frames, repA and repB, encoding proteins of 33,478 and 9,568 daltons, respectively. The amino acid sequences of the two proteins are 77 and 55% identical, respectively, to proteins RepA1 and RepA2 of the R100 replicon. Analysis of minicells transformed with a copy number mutant demonstrated that the replication region of pYVe439-80 directs the synthesis of a 33-kilodalton protein. Disruption of repA, encoding this protein, abolished replication. Two regions of pYVe439-80 are 76 and 70% homologous, respectively, to the copy number control antisense RNA and to the origin of replication region of R100. A mutation introduced in the pYVe439-80 DNA corresponding to the R100 sequence encoding the copy number control antisense RNA resulted in an increase in copy number, indicating a functional homology between the two replicons.
Collapse
Affiliation(s)
- J C Vanooteghem
- Unité de Microbiologie, Université de Louvain, Brussels, Belgium
| | | |
Collapse
|
9
|
Jones RF, Debiec-Rychter M, Zukowski K, Wang CY. Activating missense mutations in Ha-ras-1 genes in a malignant subset of bladder lesions induced by N-butyl-N-(4-hydroxybutyl)nitrosamine or N-[4-(5-nitro-2-furanyl)-2-thiazolyl]formamide. Mol Carcinog 1990; 3:393-402. [PMID: 2278634 DOI: 10.1002/mc.2940030612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Urothelial cell cultures generated from urinary bladders from a series of N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)- or N-[4-(5-nitro-2-furanyl)-2-thiazolyl]formamide (FANFT)-treated Fischer 344 rats were examined for activating missense mutations in Ha-ras-1 genes. Our overall objective was to identify oncogene-activating mutations in this system and to determine what altered biological properties correlate with such genetic changes. The urinary bladders from the treated animals showed a spectrum of histopathologies, from simple hyperplasia to transitional cell carcinoma (TCC). Using restriction analysis, oligonucleotide hybridization, and DNA sequencing, we found that approximately 20% (3/14) of the bladder cell cultures had acquired oncogenic single-base substitutions in codon 61 of Ha-ras-1 genes (CAA----AAA or CGA). The donor bladder lesions for these three cultures, which also harbored the same ras-activating mutations, were all classified as stage A or B TCCs. However, four other TCCs also arising in this series were found to have normal Ha-ras genes. Whereas approximately half of the bladder cultures derived from the carcinogen-treated rats were nontumorigenic in athymic mice, the three cultures containing ras oncogenes were all highly tumorigenic (forming tumors within 5 wk of injection into athymic mice). These cultures also displayed a high degree of anchorage-independent growth and NIH 3T3-transforming activity in gene transfer assays. The nontumorigenic cultures were derived from bladder lesions that included three hyperplasias and three stage A TCCs. We conclude that ras-activating missense mutations were present in a malignant subset of bladder lesions induced by BBN or FANFT, but most of the lesions in this system appeared to involve genetic alterations elsewhere. Thus other oncogenes besides activated Ha-ras may apparently be associated with the same bladder histopathologies and transformation markers.
Collapse
Affiliation(s)
- R F Jones
- Department of Chemical Carcinogenesis, Michigan Cancer Foundation, Detroit 48201
| | | | | | | |
Collapse
|
10
|
Abstract
Replication of plasmid deoxyribonucleic acid (DNA) is dependent on three stages: initiation, elongation, and termination. The first stage, initiation, depends on plasmid-encoded properties such as the replication origin and, in most cases, the replication initiation protein (Rep protein). In recent years the understanding of initiation and regulation of plasmid replication in Escherichia coli has increased considerably, but it is only for the ColE1-type plasmids that significant biochemical data about the initial priming reaction of DNA synthesis exist. Detailed models have been developed for the initiation and regulation of ColE1 replication. For other plasmids, such as pSC101, some hypotheses for priming mechanisms and replication initiation are presented. These hypotheses are based on experimental evidence and speculative comparisons with other systems, e.g., the chromosomal origin of E. coli. In most cases, knowledge concerning plasmid replication is limited to regulation mechanisms. These mechanisms coordinate plasmid replication to the host cell cycle, and they also seem to determine the host range of a plasmid. Most plasmids studied exhibit a narrow host range, limited to E. coli and related bacteria. In contrast, some others, such as the IncP plasmid RK2 and the IncQ plasmid RSF1010, are able to replicate in nearly all gram-negative bacteria. This broad host range may depend on the correct expression of the essential rep genes, which may be mediated by a complex regulatory mechanism (RK2) or by the use of different promoters (RSF1010). Alternatively or additionally, owing to the structure of their origin and/or to different forms of their replication initiation proteins, broad-host-range plasmids may adapt better to the host enzymes that participate in initiation. Furthermore, a broad host range can result when replication initiation is independent of host proteins, as is found in the priming reaction of RSF1010.
Collapse
|
11
|
Chuba PJ, Leon MA, Banerjee A, Palchaudhuri S. Cloning and DNA sequence of plasmid determinant iss, coding for increased serum survival and surface exclusion, which has homology with lambda DNA. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:287-92. [PMID: 2546040 DOI: 10.1007/bf00334367] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Escherichia coli K12 cells carrying a cloned 1.4 kb HindIII fragment from plasmid ColV2-K94, showed increased survival in guinea pig serum. The recombinant plasmid also conferred group II surface exclusion, i.e. the cells were reduced in recipient ability towards the incoming plasmid R538drd in conjugation experiments. Southern blotting suggested homology with bacteriophage lambda DNA and to the insertion element IS2. Determination of the DNA sequence of the fragment demonstrated the presence of a truncated IS2 (165 bp), separated by 250 bp from a 900 bp stretch of homology with lambda DNA, beginning within the Rz gene and continuing in the rightward direction on the lambda map. A 97 amino acid open reading frame (ORF) adjacent to Rz and on the opposite strand, remained intact in iss, with several amino acid changes. The ORF in iss is preceded by sequences resembling prokaryotic ribosome binding sites and promoters.
Collapse
Affiliation(s)
- P J Chuba
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | | | |
Collapse
|
12
|
Womble DD, Rownd RH. Genetic and physical map of plasmid NR1: comparison with other IncFII antibiotic resistance plasmids. Microbiol Rev 1988; 52:433-51. [PMID: 3070319 PMCID: PMC373158 DOI: 10.1128/mr.52.4.433-451.1988] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
|
14
|
Silva RM, Saadi S, Maas WK. A basic replicon of virulence-associated plasmids of Shigella spp. and enteroinvasive Escherichia coli is homologous with a basic replicon in plasmids of IncF groups. Infect Immun 1988; 56:836-42. [PMID: 3278983 PMCID: PMC259378 DOI: 10.1128/iai.56.4.836-842.1988] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Shigella species and enteroinvasive Escherichia coli strains carry a large (120- to 140-megadalton) plasmid called pINV, which contains genes essential for the invasiveness of these pathogens. Hybridization with specific probes derived from the RepFIC and RepFIB replicons of the IncF1 Ent plasmid P307 showed that pINVs present in 35 clinical isolates are homologous with RepFIC but not RepFIB, regardless of the serogroup of the Shigella or E. coli strain. RepFIC of P307, in turn, is very similar to RepFIIA replicons of IncFII R plasmids. These and other related replicons constitute the RepFIIA family. With one pINV, pWR110, a plasmid of Shigella flexneri 5, we demonstrated the existence of a functional replicon, RepINV, with a restriction map similar to that of RepFIIA of plasmid R1. We isolated the putative inc RNA coding region of RepINV, which is a major determinant of incompatibility. The nucleotide sequence of the RepINV-inc RNA-coding region was determined and compared with the corresponding sequences of RepFIC and RepFIIA. The differences were small, but apparently were sufficient to affect the target specificity of the inc RNAs, thus rendering the replicons compatible with each other. We conclude that pINVs present in Shigella spp. and enteroinvasive E. coli constitute a homogeneous group, containing one basic replicon that belongs to the RepFIIA family of replicons.
Collapse
Affiliation(s)
- R M Silva
- Department of Microbiology, Parasitology, Immunology and Mycology, Escola Paulista de Medicina, Sao Paulo, Brazil
| | | | | |
Collapse
|
15
|
Saadi S, Maas WK, Hill DF, Bergquist PL. Nucleotide sequence analysis of RepFIC, a basic replicon present in IncFI plasmids P307 and F, and its relation to the RepA replicon of IncFII plasmids. J Bacteriol 1987; 169:1836-46. [PMID: 3032897 PMCID: PMC212033 DOI: 10.1128/jb.169.5.1836-1846.1987] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RepFIC is a basic replicon of IncFI plasmid P307 which is located within a 3.09-kilobase SmaI fragment. The nucleotide sequence of this region has been determined and shown to be homologous with the RepFIIA replicon of IncFII plasmids. The two replicons share three homologous regions, HRI, HRII, and HRIII, which are flanked by two nonhomologous regions, NHRI and NHRII. A comparison of coding regions reveals that the two replicons have several features in common. RepFIC, like RepFIIA, codes for a repA2 protein with its amino-terminal codons in HRI and its carboxy-terminal codons in NHRI. Although the codons for the repA1 proteins are located in NHRII, the DNA region containing a putative promoter, ribosomal binding site, and initiation codons is located in HRII. This region also codes for an inc RNA. There are nine base-pair differences between the inc RNA of RepFIIA and that of RepFIC, and as a result, RepFIC and RepFIIA replicons are compatible. An EcoRI fragment from the F plasmid which shows homology with RepFIC of P307 has also been sequenced. This fragment contains only a portion of RepFIC, including the genes for the putative repA2 protein and inc RNA. The region coding for a putative repA1 protein is interrupted by the transposon Tn1000 and shows no homology with the repA1 region of RepFIIA and RepFIC of P307. Our comparative and structural analyses suggest that RepFIC and RepFIIA, although different, have a similar replication mechanism and thus can be assigned to the same replicon family, which we designate the RepFIIA family.
Collapse
|