1
|
Buchmann D, Schwabe M, Weiss R, Kuss AW, Schaufler K, Schlüter R, Rödiger S, Guenther S, Schultze N. Natural phenolic compounds as biofilm inhibitors of multidrug-resistant Escherichia coli - the role of similar biological processes despite structural diversity. Front Microbiol 2023; 14:1232039. [PMID: 37731930 PMCID: PMC10507321 DOI: 10.3389/fmicb.2023.1232039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023] Open
Abstract
Multidrug-resistant gram-negative pathogens such as Escherichia coli have become increasingly difficult to treat and therefore alternative treatment options are needed. Targeting virulence factors like biofilm formation could be one such option. Inhibition of biofilm-related structures like curli and cellulose formation in E. coli has been shown for different phenolic natural compounds like epigallocatechin gallate. This study demonstrates this effect for other structurally unrelated phenolics, namely octyl gallate, scutellarein and wedelolactone. To verify whether these structurally different compounds influence identical pathways of biofilm formation in E. coli a broad comparative RNA-sequencing approach was chosen with additional RT-qPCR to gain initial insights into the pathways affected at the transcriptomic level. Bioinformatical analysis of the RNA-Seq data was performed using DESeq2, BioCyc and KEGG Mapper. The comparative bioinformatics analysis on the pathways revealed that, irrespective of their structure, all compounds mainly influenced similar biological processes. These pathways included bacterial motility, chemotaxis, biofilm formation as well as metabolic processes like arginine biosynthesis and tricarboxylic acid cycle. Overall, this work provides the first insights into the potential mechanisms of action of novel phenolic biofilm inhibitors and highlights the complex regulatory processes of biofilm formation in E. coli.
Collapse
Affiliation(s)
- David Buchmann
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Michael Schwabe
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Romano Weiss
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Andreas W. Kuss
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Nadin Schultze
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Matilla MA, Monteagudo-Cascales E, Krell T. Advances in the identification of signals and novel sensing mechanisms for signal transduction systems. Environ Microbiol 2023; 25:79-86. [PMID: 35896893 DOI: 10.1111/1462-2920.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/16/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
3
|
Bodhankar GA, Tohidifar P, Foust ZL, Ordal GW, Rao CV. Characterization of Opposing Responses to Phenol by Bacillus subtilis Chemoreceptors. J Bacteriol 2022; 204:e0044121. [PMID: 35007157 PMCID: PMC9017305 DOI: 10.1128/jb.00441-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis employs 10 chemoreceptors to move in response to chemicals in its environment. While the sensing mechanisms have been determined for many attractants, little is known about the sensing mechanisms for repellents. In this work, we investigated phenol chemotaxis in B. subtilis. Phenol is an attractant at low, micromolar concentrations and a repellent at high, millimolar concentrations. McpA was found to be the principal chemoreceptor governing the repellent response to phenol and other related aromatic compounds. In addition, the chemoreceptors McpC and HemAT were found to govern the attractant response to phenol and related compounds. Using chemoreceptor chimeras, McpA was found to sense phenol using its signaling domain rather than its sensing domain. These observations were substantiated in vitro, where direct binding of phenol to the signaling domain of McpA was observed using saturation transfer difference nuclear magnetic resonance. These results further advance our understanding of B. subtilis chemotaxis and further demonstrate that the signaling domain of B. subtilis chemoreceptors can directly sense chemoeffectors. IMPORTANCE Bacterial chemotaxis is commonly thought to employ a sensing mechanism involving the extracellular sensing domain of chemoreceptors. Some ligands, however, appear to be sensed by the signaling domain. Phenolic compounds, commonly found in soil and root exudates, provide environmental cues for soil microbes like Bacillus subtilis. We show that phenol is sensed as both an attractant and a repellent. While the mechanism for sensing phenol as an attractant is still unknown, we found that phenol is sensed as a repellent by the signaling domain of the chemoreceptor McpA. This study furthers our understanding of the unconventional sensing mechanisms employed by the B. subtilis chemotaxis pathway.
Collapse
Affiliation(s)
- Girija A. Bodhankar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Payman Tohidifar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zachary L. Foust
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - George W. Ordal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Noncanonical Sensing Mechanisms for Bacillus subtilis Chemoreceptors. J Bacteriol 2022; 204:e0002722. [PMID: 35323015 DOI: 10.1128/jb.00027-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bodhankar et al. reported a noncanonical sensing mechanism that involves signal interaction with the McpA chemoreceptor signaling domain resulting in a chemorepellence response of Bacillus subtilis. The identified repellent binding site is analogous to that for attractant binding in McpB, another B. subtilis chemoreceptor.
Collapse
|
5
|
Karmakar R. State of the art of bacterial chemotaxis. J Basic Microbiol 2021; 61:366-379. [PMID: 33687766 DOI: 10.1002/jobm.202000661] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4-6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve "run" and "tumble." The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis.
Collapse
Affiliation(s)
- Richa Karmakar
- Department of Physics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Chemotaxis of Pseudomonas putida F1 to Alcohols Is Mediated by the Carboxylic Acid Receptor McfP. Appl Environ Microbiol 2019; 85:AEM.01625-19. [PMID: 31471307 DOI: 10.1128/aem.01625-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
Although alcohols are toxic to many microorganisms, they are good carbon and energy sources for some bacteria, including many pseudomonads. However, most studies that have examined chemosensory responses to alcohols have reported that alcohols are sensed as repellents, which is consistent with their toxic properties. In this study, we examined the chemotaxis of Pseudomonas putida strain F1 to n-alcohols with chain lengths of 1 to 12 carbons. P. putida F1 was attracted to all n-alcohols that served as growth substrates (C2 to C12) for the strain, and the responses were induced when cells were grown in the presence of alcohols. By assaying mutant strains lacking single or multiple methyl-accepting chemotaxis proteins, the receptor mediating the response to C2 to C12 alcohols was identified as McfP, the ortholog of the P. putida strain KT2440 receptor for C2 and C3 carboxylic acids. Besides being a requirement for the response to n-alcohols, McfP was required for the response of P. putida F1 to pyruvate, l-lactate, acetate, and propionate, which are detected by the KT2440 receptor, and the medium- and long-chain carboxylic acids hexanoic acid and dodecanoic acid. β-Galactosidase assays of P. putida F1 carrying an mcfP-lacZ transcriptional fusion showed that the mcfP gene is not induced in response to alcohols. Together, our results are consistent with the idea that the carboxylic acids generated from the oxidation of alcohols are the actual attractants sensed by McfP in P. putida F1, rather than the alcohols themselves.IMPORTANCE Alcohols, released as fermentation products and produced as intermediates in the catabolism of many organic compounds, including hydrocarbons and fatty acids, are common components of the microbial food web in soil and sediments. Although they serve as good carbon and energy sources for many soil bacteria, alcohols have primarily been reported to be repellents rather than attractants for motile bacteria. Little is known about how alcohols are sensed by microbes in the environment. We report here that catabolizable n-alcohols with linear chains of up to 12 carbons serve as attractants for the soil bacterium Pseudomonas putida, and rather than being detected directly, alcohols appear to be catabolized to acetate, which is then sensed by a specific cell-surface chemoreceptor protein.
Collapse
|
7
|
Huang Z, Ni B, Jiang CY, Wu YF, He YZ, Parales RE, Liu SJ. Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds inComamonas testosteroni. Mol Microbiol 2016; 101:224-37. [DOI: 10.1111/mmi.13385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Zhou Huang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Bin Ni
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- IMCAS-RCEECAS Joint Laboratory for Environmental Microbial Technology; Beijing China
| | - Yu-Fan Wu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yun-Zhe He
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Rebecca E. Parales
- Department of Microbiology and Molecular Genetics; University of California; Davis CA 95616 USA
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- IMCAS-RCEECAS Joint Laboratory for Environmental Microbial Technology; Beijing China
| |
Collapse
|
8
|
Karmakar R, Uday Bhaskar RVS, Jesudasan RE, Tirumkudulu MS, Venkatesh KV. Enhancement of Swimming Speed Leads to a More-Efficient Chemotactic Response to Repellent. Appl Environ Microbiol 2016; 82:1205-1214. [PMID: 26655753 PMCID: PMC4751852 DOI: 10.1128/aem.03397-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/02/2015] [Indexed: 11/20/2022] Open
Abstract
Negative chemotaxis refers to the motion of microorganisms away from regions with high concentrations of chemorepellents. In this study, we set controlled gradients of NiCl2, a chemorepellent, in microchannels to quantify the motion of Escherichia coli over a broad range of concentrations. The experimental technique measured the motion of the bacteria in space and time and further related the motion to the local concentration profile of the repellent. Results show that the swimming speed of bacteria increases with an increasing concentration of repellent, which in turn enhances the drift velocity. The contribution of the increased swimming speed to the total drift velocity was in the range of 20 to 40%, with the remaining contribution coming from the modulation of the tumble frequency. A simple model that incorporates receptor dynamics, including adaptation, intracellular signaling, and swimming speed variation, was able to qualitatively capture the observed trend in drift velocity.
Collapse
Affiliation(s)
- Richa Karmakar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - R V S Uday Bhaskar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rajesh E Jesudasan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Mahesh S Tirumkudulu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
9
|
Bi S, Lai L. Bacterial chemoreceptors and chemoeffectors. Cell Mol Life Sci 2015; 72:691-708. [PMID: 25374297 PMCID: PMC11113376 DOI: 10.1007/s00018-014-1770-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/05/2014] [Accepted: 10/23/2014] [Indexed: 01/11/2023]
Abstract
Bacteria use chemotaxis signaling pathways to sense environmental changes. Escherichia coli chemotaxis system represents an ideal model that illustrates fundamental principles of biological signaling processes. Chemoreceptors are crucial signaling proteins that mediate taxis toward a wide range of chemoeffectors. Recently, in deep study of the biochemical and structural features of chemoreceptors, the organization of higher-order clusters in native cells, and the signal transduction mechanisms related to the on-off signal output provides us with general insights to understand how chemotaxis performs high sensitivity, precise adaptation, signal amplification, and wide dynamic range. Along with the increasing knowledge, bacterial chemoreceptors can be engineered to sense novel chemoeffectors, which has extensive applications in therapeutics and industry. Here we mainly review recent advances in the E. coli chemotaxis system involving structure and organization of chemoreceptors, discovery, design, and characterization of chemoeffectors, and signal recognition and transduction mechanisms. Possible strategies for changing the specificity of bacterial chemoreceptors to sense novel chemoeffectors are also discussed.
Collapse
Affiliation(s)
- Shuangyu Bi
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
10
|
Wang X, Long T, Ford RM. Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber. Biotechnol Bioeng 2012; 109:1622-8. [DOI: 10.1002/bit.24437] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/27/2011] [Accepted: 01/03/2012] [Indexed: 11/11/2022]
|
11
|
Ortega-Calvo JJ, Molina R, Jimenez-Sanchez C, Dobson PJ, Thompson IP. Bacterial tactic response to silver nanoparticles. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:526-34. [PMID: 23761331 DOI: 10.1111/j.1758-2229.2011.00252.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, we investigated the tactic response of Pseudomonas putida G7, a representative soil bacterium, towards silver nanoparticles (AgNPs). The study integrated the characterization of surface area and size distribution of AgNPs, toxicity determinations, based on ATP production, and assessment of the repellent reaction by means of an inverted capillary assay ('chemical-in-pond' method), and changes in the motility behaviour determined by computer-assisted motion analysis. Our data demonstrate, for the first time, that nanoparticles can elicit a negative tactic response in bacteria at low but environmentally relevant, sublethal concentrations. Data obtained by the chemical-in-pond method indicated that cells exposed to 0.1 mg l(-1) of two AgNPs preparations, differing in particle size (maximum diameter ≤ 100 nm and ≤ 150 nm respectively), were repelled in the gradients created inside the capillaries. However, cells exposed to similar low concentration of AgNO3 did not demonstrate any detectable repellent response, although it reduced cell viability by 20%, a decrease comparable to that caused by AgNPs. Computer analysis of swimming behaviour of cells exposed to AgNPs (0.2 mg l(-1) ) revealed a significant increase in turning events, as compared with unexposed controls, which is characteristic of bacterial repellent response. Greater AgNPs concentrations (up to 100 mg l(-1) ) also induced changes in the swimming behaviour, although they did not induce any detectable repellent response as determined by the chemical-in-pond assays. In contrast, AgNO3 failed to induce the repellent swimming behaviour within the wide range of concentrations tested (0.001-100 mg l(-1) ), and caused a significant inhibition of cell motility at a concentration above 0.1 mg l(-1) . The evidence presented here suggests there are likely to be alternative mechanisms by which nano-scale silver induces a repellent response, which is more direct than the toxic response of macro-forms of silver, attributed to ion formation and exposure.
Collapse
Affiliation(s)
- José-Julio Ortega-Calvo
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), C.S.I.C., Apartado 1052, E-41080-Seville, Spain
| | | | | | | | | |
Collapse
|
12
|
Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism. J Bacteriol 2011; 193:6597-604. [PMID: 21965561 DOI: 10.1128/jb.05987-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The four transmembrane chemoreceptors of Escherichia coli sense phenol as either an attractant (Tar) or a repellent (Tap, Trg, and Tsr). In this study, we investigated the Tar determinants that mediate its attractant response to phenol and the Tsr determinants that mediate its repellent response to phenol. Tar molecules with lesions in the aspartate-binding pocket of the periplasmic domain, with a foreign periplasmic domain (from Tsr or from several Pseudomonas chemoreceptors), or lacking nearly the entire periplasmic domain still mediated attractant responses to phenol. Similarly, Tar molecules with the cytoplasmic methylation and kinase control domains of Tsr still sensed phenol as an attractant. Additional hybrid receptors with signaling elements from both Tar and Tsr indicated that the transmembrane (TM) helices and HAMP domain determined the sign of the phenol-sensing response. Several amino acid replacements in the HAMP domain of Tsr, particularly attractant-mimic signaling lesions at residue E248, converted Tsr to an attractant sensor of phenol. These findings suggest that phenol may elicit chemotactic responses by diffusing into the cytoplasmic membrane and perturbing the structural stability or position of the TM bundle helices, in conjunction with structural input from the HAMP domain. We conclude that behavioral responses to phenol, and perhaps to temperature, cytoplasmic pH, and glycerol, as well, occur through a general sensing mechanism in chemoreceptors that detects changes in the structural stability or dynamic behavior of a receptor signaling element. The structurally sensitive target for phenol is probably the TM bundle, but other behaviors could target other receptor elements.
Collapse
|
13
|
Alexandre G, Crosson S, Shimizu T, Msadek T. Bacterial moving and shaking: the 11th
blast
meeting. Mol Microbiol 2011; 81:8-22. [DOI: 10.1111/j.1365-2958.2011.07694.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Gladys Alexandre
- University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology, 1414 W. Cumberland Avenue, Knoxville, TN 37966, USA
| | - Sean Crosson
- University of Chicago, Department of Biochemistry and Molecular Biology, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Thomas Shimizu
- FOM Institute for Atomic and Molecular Physics, Science Park 104, Amsterdam, 1098 XG, The Netherlands
| | - Tarek Msadek
- Institut Pasteur, Biology of Gram‐Positive Pathogens, Department of Microbiology, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
- CNRS, URA 2172, F‐75015 Paris, France
| |
Collapse
|
14
|
Pandey G, Jain RK. Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 2002; 68:5789-95. [PMID: 12450797 PMCID: PMC134409 DOI: 10.1128/aem.68.12.5789-5795.2002] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Gunjan Pandey
- Institute of Microbial Technology, Chandigarh-160036, India
| | - Rakesh K. Jain
- Institute of Microbial Technology, Chandigarh-160036, India
| |
Collapse
|
15
|
Mazumder R, Phelps TJ, Krieg NR, Benoit RE. Determining chemotactic responses by two subsurface microaerophiles using a simplified capillary assay method. J Microbiol Methods 1999; 37:255-63. [PMID: 10480269 DOI: 10.1016/s0167-7012(99)00072-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A simplified capillary chemotaxis assay utilizing a hypodermic needle, syringe, and disposable pipette tip was developed to measure bacterial tactic responses. The method was applied to two strains of subsurface microaerophilic bacteria. This method was more convenient than the Adler method and required less practice. Isolate VT10 was a strain of Pseudomonas syringae, which was isolated from the shallow subsurface. It was chemotactically attracted toward dextrose, glycerol, and phenol, which could be used as sole carbon sources, and toward maltose, which could not be used. Isolate MR100 was phylogenetically related to Pseudomonas mendocina and was isolated from the deep subsurface. It showed no tactic response to these compounds, although, it could use dextrose, maltose, and glycerol as carbon sources. The chemotaxis results obtained by the new method were verified by using the swarm plate assay technique. The simplified technique may be useful for routine chemotactic testing.
Collapse
Affiliation(s)
- R Mazumder
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | | | | | |
Collapse
|
16
|
Feng X, Baumgartner JW, Hazelbauer GL. High- and low-abundance chemoreceptors in Escherichia coli: differential activities associated with closely related cytoplasmic domains. J Bacteriol 1997; 179:6714-20. [PMID: 9352921 PMCID: PMC179600 DOI: 10.1128/jb.179.21.6714-6720.1997] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Escherichia coli, two high-abundance chemoreceptors are present in cellular dosages approximately ten-fold greater than two low-abundance receptors. In the absence of high-abundance receptors, cells exhibit an abnormally low tumble frequency and the ability of the remaining receptors to mediate directed migration in spatial gradients is substantially compromised. We found that increasing the cellular amount of the low-abundance receptor Trg over a range of dosages did not alleviate these defects and thus concluded that high- and low-abundance receptors are distinguished not simply by their different dosages in a wild-type cell but also by an inherent difference in activity. By creating hybrids of the low-abundance receptor Trg and the high-abundance receptor Tsr, we investigated the possibility that this inherent difference could be localized to a specific receptor domain and found that the cytoplasmic domain of the high-abundance receptor Tsr conferred the essential features of that receptor class on the low-abundance receptor Trg, even though it is in this domain that residue identity between the two receptors is substantially conserved.
Collapse
Affiliation(s)
- X Feng
- Department of Biochemistry and Biophysics, Washington State University, Pullman 99164-4660, USA
| | | | | |
Collapse
|
17
|
Abstract
When Salmonella typhimurium cells were allowed to swarm on either a minimal or complex semisolid medium, patterns of cell aggregates were formed (depending on the thickness of the medium). No patterns were observed with nonchemotactic mutants. The patterns in a minimal medium were not formed by a mutant in the aspartate receptor for chemotaxis (Tar) or by wild-type cells in the presence of alpha-methyl-D,L-aspartate (an aspartate analog), thus resembling the patterns observed earlier in Escherichia coli (E. O. Budrene and H. C. Berg, Nature [London] 349:630-633, 1991) and S. typhimurium (E. O. Budrene and H. C. Berg, Abstracts of Conference II on Bacterial Locomotion and Signal Transduction, 1993). Distinctively, the patterns in a complex medium had a different morphology and, more importantly, were Tar independent. Furthermore, mutations in any one of the genes encoding the methyl-accepting chemotaxis receptors (tsr, tar, trg, or tcp) did not prevent the pattern formation. Addition of saturating concentrations of the ligands of these receptors to wild-type cells did not prevent the pattern formation as well. A tar tsr tcp triple mutant also formed the patterns. Similar results (no negative effect on pattern formation) were obtained with a ptsI mutant (defective in chemotaxis mediated by the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system [PTS]) and with addition of mannitol (a PTS ligand) to wild-type cells. It therefore appears that at least two different pathways are involved in the patterns formed by S. typhimurium: Tar dependent and Tar independent. Like the Tar-dependent patterns observed by Budrene and Berg, the Tar-independent patterns could be triggered by H(2)O(2), suggesting that both pathways of pattern formation may be triggered by oxidative stress.
Collapse
Affiliation(s)
- Y Blat
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
18
|
Iwama T, Kawagishi I, Gomi S, Homma M, Imae Y. In vivo sulfhydryl modification of the ligand-binding site of Tsr, the Escherichia coli serine chemoreceptor. J Bacteriol 1995; 177:2218-21. [PMID: 7721714 PMCID: PMC176870 DOI: 10.1128/jb.177.8.2218-2221.1995] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Escherichia coli chemoreceptor Tsr mediates an attractant response to serine. We substituted Cys for Thr-156, one of the residues involved in serine sensing. The mutant receptor Tsr-T156C retained serine- and repellent-sensing abilities. However, it lost serine-sensing ability when it was treated in vivo with sulfhydryl-modifying reagents such as N-ethylmaleimide (NEM). Serine protected Tsr-T156C from these reagents. We showed that [3H]NEM bound to Tsr-T156C and that binding decreased in the presence of serine. By pretreating cells with serine and cold NEM, Tsr-T156C was selectively labeled with radioactive NEM. These results are consistent with the location of Thr-156 in the serine-binding site. Chemical modification of the Tsr ligand-binding site provides a basis for simple purification and should assist further in vivo and in vitro investigations of this chemoreceptor protein.
Collapse
Affiliation(s)
- T Iwama
- Department of Molecular Biology, Faculty of Science, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
19
|
Turk SC, van Lange RP, Regensburg-Tuïnk TJ, Hooykaas PJ. Localization of the VirA domain involved in acetosyringone-mediated vir gene induction in Agrobacterium tumefaciens. PLANT MOLECULAR BIOLOGY 1994; 25:899-907. [PMID: 8075405 DOI: 10.1007/bf00028884] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The VirA protein of Agrobacterium tumefaciens is thought to be a receptor for plant phenolic compounds such as acetosyringone. Although it is not known whether the interaction between VirA and the phenolics is direct or requires other phenolic-binding proteins, it is shown in this study that the first 280 amino acids of the VirA protein are not essential for the acetosyringone mediated vir gene induction response. Considering the fact that the cytoplasmic region between the amino acids 283 and 304 is highly conserved between the different VirA proteins, and that deletion of this region abolishes VirA activity, we suggest that the acetosyringone receptor domain is located in this cytoplasmic domain of the VirA protein.
Collapse
Affiliation(s)
- S C Turk
- Institute of Molecular Plant Sciences, Clusius Laboratory, Leiden University, Netherlands
| | | | | | | |
Collapse
|
20
|
Danielson MA, Biemann HP, Koshland DE, Falke JJ. Attractant- and disulfide-induced conformational changes in the ligand binding domain of the chemotaxis aspartate receptor: a 19F NMR study. Biochemistry 1994; 33:6100-9. [PMID: 7910759 PMCID: PMC2897698 DOI: 10.1021/bi00186a009] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The isolated ligand binding domain of the chemotaxis aspartate receptor is the focus of the present study, which both (a) identifies structural regions involved in the attractant-induced conformational change and (b) investigates the kinetic parameters of attractant binding. To analyze the attractant-induced conformational change within the homodimeric domain, 19F NMR is used to monitor six para-fluorophenylalanine (4-F-Phe) positions within each identical subunit of the homodimer. The binding one molecule of aspartate to the homodimer perturbs three of the 4-F-Phe resonances significantly: 4-F-Phe150 in the attractant binding site, 4-F-Phe107 located 26 A from the site, and 4-F-Phe180 at a distance of 40 A from the site. Comparison of the frequency shifts triggered by aspartate and glutamate reveals that these attractants generate different conformations in the vicinity of the attractant site but trigger indistinguishable long-range conformational effects at distant positions. This long-range conformational change is specific for attractant binding, since formation of the Cys36-Cys36' disulfide bond or the nonphysiological binding of 1,10-phenanthroline to an aromatic pocket distal to the attractant site each yield conformational changes which are significantly more localized. The attractant-triggered perturbations detected at 4-F-Phe107 and 4-F-Phe180 indicate that the structural change includes an intrasubunit component communicated through the domain to its C-terminal region, which, in the full-length receptor, continues through the membrane as the second membrane-spanning helix. It would thus appear that the transmembrane signal is transmitted through this helix.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M A Danielson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309
| | | | | | | |
Collapse
|
21
|
Turk SC, van Lange RP, Sonneveld E, Hooykaas PJ. The chimeric VirA-tar receptor protein is locked into a highly responsive state. J Bacteriol 1993; 175:5706-9. [PMID: 8366057 PMCID: PMC206631 DOI: 10.1128/jb.175.17.5706-5709.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The wild-type VirA protein is known to be responsive not only to phenolic compounds but also to sugars via the ChvE protein (G. A. Cangelosi, R. G. Ankenbauer, and E. W. Nester, Proc. Natl. Acad. Sci. USA 87:6708-6712, 1990, and N. Shimoda, A. Toyoda-Yamamoto, J. Nagamine, S. Usami, M. Katayama, Y. Sakagami, and Y. Machida, Proc. Natl. Acad. Sci. USA 87:6684-6688, 1990). It is shown here that the mutant VirA(Ser-44, Arg-45) protein and the chimeric VirA-Tar protein are no longer responsive to sugars and the ChvE protein. However, whereas the chimeric VirA-Tar protein was found to be locked in a highly responsive state, the VirA(Ser-44, Arg-45) mutant protein appeared to be locked in a low responsive state. This difference turned out to be important for tumorigenicity of the host strains in virulence assays on Kalanchoë daigremontiana.
Collapse
Affiliation(s)
- S C Turk
- Clusius Laboratory, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
22
|
Muiry JA, Gunn TC, McDonald TP, Bradley SA, Tate CG, Henderson PJ. Proton-linked L-rhamnose transport, and its comparison with L-fucose transport in Enterobacteriaceae. Biochem J 1993; 290 ( Pt 3):833-42. [PMID: 8384447 PMCID: PMC1132357 DOI: 10.1042/bj2900833] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. An alkaline pH change occurred when L-rhamnose, L-mannose or L-lyxose was added to L-rhamnose-grown energy-depleted suspensions of strains of Escherichia coli. This is diagnostic of sugar-H+ symport activity. 2. L-Rhamnose, L-mannose and L-lyxose were inducers of the sugar-H+ symport and of L-[14C]rhamnose transport activity. L-Rhamnose also induced the biochemically and genetically distinct L-fucose-H+ symport activity in strains competent for L-rhamnose metabolism. 3. Steady-state kinetic measurements showed that L-mannose and L-lyxose were competitive inhibitors (alternative substrates) for the L-rhamnose transport system, and that L-galactose and D-arabinose were competitive inhibitors (alternative substrates) for the L-fucose transport system. Additional measurements with other sugars of related structure defined the different substrate specificities of the two transport systems. 4. The relative rates of H+ symport and of sugar metabolism, and the relative values of their kinetic parameters, suggested that the physiological role of the transport activity was primarily for utilization of L-rhamnose, not for L-mannose or L-lyxose. 5. L-Rhamnose transport into subcellular vesicles of E. coli was dependent on respiration, was optimal at pH 7, and was inhibited by protonophores and ionophores. It was insensitive to N-ethylmaleimide or cytochalasin B. 6. L-Rhamnose, L-mannose and L-lyxose each elicited an alkaline pH change when added to energy-depleted suspensions of L-rhamnose-grown Salmonella typhimurium LT2, Klebsiella pneumoniae, Klebsiella aerogenes, Erwinia carotovora carotovora and Erwinia carotovora atroseptica. The relative rates of subsequent acidification varied, depending on both the organism and the sugar. L-Fucose promoted an alkaline pH change in all the L-rhamnose-induced organisms except the Erwinia species. No L-rhamnose-H+ symport occurred in any organism grown on L-fucose. 7. All these results showed that L-rhamnose transport into the micro-organisms occurred by a system different from that for L-fucose transport. Both systems are energized by the trans-membrane electrochemical gradient of protons. 8. Neither steady-state kinetic measurements nor binding-protein assays revealed the existence of a second L-rhamnose transport system in E. coli.
Collapse
Affiliation(s)
- J A Muiry
- Department of Biochemistry, University of Cambridge, U.K
| | | | | | | | | | | |
Collapse
|
23
|
Yamamoto K, Imae Y. Cloning and characterization of the Salmonella typhimurium-specific chemoreceptor Tcp for taxis to citrate and from phenol. Proc Natl Acad Sci U S A 1993; 90:217-21. [PMID: 8419927 PMCID: PMC45631 DOI: 10.1073/pnas.90.1.217] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Salmonella typhimurium shows an attractant response to citrate and a repellent response to phenol, and a chemoreceptor mediating these responses has been identified and named Tcp (taxis to citrate and away from phenol). Tcp is one of the methyl-accepting chemotaxis proteins that have a molecular mass of approximately 60 kDa estimated by SDS/PAGE, and its methylation level is increased by citrate and decreased by phenol. Tcp also mediates an attractant response to metal-citrate complexes. The complete nucleotide sequence of the tcp coding region has been determined. The deduced amino acid sequence of Tcp, consisting of 547-amino acid residues, is homologous with that of the aspartate chemoreceptor of S. typhimurium. Thus, Tcp is another member of the bacterial transmembrane chemoreceptor family. Because citrate is a good carbon source for S. typhimurium but is not a carbon source for the closely related species Escherichia coli and because citrate utilization is used as a key diagnostic character to distinguish these species, it is reasonable to assume that Tcp is specific to S. typhimurium.
Collapse
Affiliation(s)
- K Yamamoto
- Department of Molecular Biology, Faculty of Science, Nagoya University, Japan
| | | |
Collapse
|
24
|
Affiliation(s)
- M D Manson
- Department of Biology, Texas A&M University, College Station 77843-3258
| |
Collapse
|
25
|
Milburn MV, Privé GG, Milligan DL, Scott WG, Yeh J, Jancarik J, Koshland DE, Kim SH. Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science 1991; 254:1342-7. [PMID: 1660187 DOI: 10.1126/science.1660187] [Citation(s) in RCA: 331] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The three-dimensional structure of an active, disulfide cross-linked dimer of the ligand-binding domain of the Salmonella typhimurium aspartate receptor and that of an aspartate complex have been determined by x-ray crystallographic methods at 2.4 and 2.0 angstrom (A) resolution, respectively. A single subunit is a four-alpha-helix bundle with two long amino-terminal and carboxyl-terminal helices and two shorter helices that form a cylinder 20 A in diameter and more than 70 A long. The two subunits in the disulfide-bonded dimer are related by a crystallographic twofold axis in the apo structure, but by a noncrystallographic twofold axis in the aspartate complex structure. The latter structure reveals that the ligand binding site is located more than 60 A from the presumed membrane surface and is at the interface of the two subunits. Aspartate binds between two alpha helices from one subunit and one alpha helix from the other in a highly charged pocket formed by three arginines. The comparison of the apo and aspartate complex structures shows only small structural changes in the individual subunits, except for one loop region that is disordered, but the subunits appear to change orientation relative to each other. The structures of the two forms of this protein provide a step toward understanding the mechanisms of transmembrane signaling.
Collapse
Affiliation(s)
- M V Milburn
- Department of Chemistry, University of California, Berkeley 94720
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rice M, Dahlquist F. Sites of deamidation and methylation in Tsr, a bacterial chemotaxis sensory transducer. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92884-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Abstract
The thermosensing ability of the Trg and Tap chemoreceptors in Escherichia coli was investigated after amplifying these receptors in a host strain lacking all four known chemoreceptors (Tar, Tsr, Trg, and Tap). Cells with an increased amount of either Trg or Tap showed mostly smooth swimming and no response to thermal stimuli. However, when the smooth-swimming bias of the cells was reduced by adding Trg- or Tap-mediated repellents, the cells showed clear changes in the swimming pattern upon temperature changes; Trg-containing cells showed tumbling at 23 degrees C but mostly smooth swimming at 32 degrees C, while Tap-containing cells showed smooth swimming at 20 degrees C but tumbling at 32 degrees C. These results indicate that although both Trg and Tap have the ability to sense thermal stimuli, Trg functions as a warm receptor, as reported previously for Tar and Tsr, while Tap functions as a cold receptor.
Collapse
|
28
|
|
29
|
Eisenbach M, Wolf A, Welch M, Caplan SR, Lapidus IR, Macnab RM, Aloni H, Asher O. Pausing, switching and speed fluctuation of the bacterial flagellar motor and their relation to motility and chemotaxis. J Mol Biol 1990; 211:551-63. [PMID: 2407857 DOI: 10.1016/0022-2836(90)90265-n] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wild-type Escherichia coli and Salmonella typhimurium cells, tethered to glass by their flagella, rotate with brief intermittent pauses, the prevalence of which is decreased by attractants and increased by repellents. By attaching latex beads to filaments of a S. typhimurium mutant having straight rather than helical flagella, it was established that the flagella on free cells also pause intermittently. Pausing is therefore an intrinsic feature of the motor and not an artifact associated with tethering. In tethered cells of wild-type strains and non-chemotactic mutants defective in transducers, chemotaxis proteins, or the flagellar switch, both the classical response to chemotactic stimuli (change in direction of rotation from counterclockwise to clockwise or vice versa), and the pausing response to such stimuli, were linked together. No separate signal for pausing was found. In comparing different strains under different stimulation conditions, it was found that cells that never reversed seldom if ever paused, while cells that reversed frequently paused frequently. It is suggested that pausing is the result of futile switching events. A modified description of tumbling and chemotaxis is provided in which pausing, as well as reversal, has a role. Suppression of reversals and pauses by attractant stimuli commonly resulted in an increase in the speed of counterclockwise rotation; this may be because of suppression of pauses or reversals that are too brief to be detected. The clockwise rotation rate of unstimulated cells, which commonly was faster than their counterclockwise rate, was not further increased by repellent stimuli. The rotation rate of any given cell under any given condition was found to fluctuate on all time-scales measured. The study also revealed that some of the common repellents of E. coli and S. typhimurium slow down or stop the motor; these effects are not mediated by the chemotaxis machinery or intracellular pH.
Collapse
Affiliation(s)
- M Eisenbach
- Department of Membrane Research, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The chemoreceptors responsible for the repellent response of Escherichia coli to phenol were investigated. In the absence of all four known methyl-accepting chemoreceptors (Tar, Tsr, Trg, and Tap), cells showed no response to phenol. However, when Trg, which mediates the attractant response to ribose and galactose, was introduced via a plasmid, the cells acquired a repellent response to phenol. About 1 mM phenol induced a clear repellent response; this response was suppressed by 1 mM ribose. Thus, Trg mediates the repellent response to phenol. Mutant Trg proteins with altered sensing for ribose and galactose showed a normal response to phenol, indicating that the interaction site for phenol differs from that for the ribose- and galactose-binding proteins. Tap, which mediates the attractant response to dipeptides, mediated a weaker repellent response to phenol. Tsr, which mediates the attractant response to serine, mediated an even weaker response to phenol. Trg and Tap were also found to function as intracellular pH sensors. Upon a pH decrease, Trg mediated an attractant response, whereas Tap mediated a repellent response. These results indicate that all the receptors in E. coli have dual functions, mediating both attractant and repellent responses.
Collapse
|
31
|
Lee L, Imae Y. Role of threonine residue 154 in ligand recognition of the tar chemoreceptor in Escherichia coli. J Bacteriol 1990; 172:377-82. [PMID: 2104606 PMCID: PMC208442 DOI: 10.1128/jb.172.1.377-382.1990] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Tar chemoreceptor of Escherichia coli mediates attractant responses to aspartate, maltose, and phenol, repellent responses to Ni2+ and Co2+, and thermoresponses. To understand the role of threonine residue 154, which is located in the ligand-binding domain of Tar, we replaced the residue with serine, isoleucine, and proline by site-directed mutagenesis. The replacements caused reductions in aspartate sensing but had only a small effect on maltose sensing and almost no effect on phenol sensing, repellent sensing, and thermosensing. These results indicate that Thr-154 of Tar is rather specifically involved in aspartate sensing. The reductions in the response threshold for aspartate by the replacements with serine, isoleucine, and proline were less than 1, about 2, and more than 5 orders of magnitude, respectively. When the corresponding threonine residue in the Tsr chemoreceptor was replaced with the same amino acids, roughly similar reductions in the response threshold for serine resulted. Thus, these threonine residues seem to have a common role in detecting the aspartate and serine attractant families. A mechanism by which these chemoreceptors detect the amino acid attractants is discussed.
Collapse
Affiliation(s)
- L Lee
- Department of Molecular Biology, Faculty of Science, Nagoya University, Japan
| | | |
Collapse
|
32
|
Lee L, Mizuno T, Imae Y. Thermosensing properties of Escherichia coli tsr mutants defective in serine chemoreception. J Bacteriol 1988; 170:4769-74. [PMID: 3139636 PMCID: PMC211519 DOI: 10.1128/jb.170.10.4769-4774.1988] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tsr, a chemoreceptor for serine and repellents in Escherichia coli, also functions as a thermoreceptor. The relationship between the chemoreceptor and thermoreceptor functions of Tsr was examined in five tsr mutants with altered serine detection thresholds. The thermosensing abilities of the mutant Tsr proteins were not affected by the alterations in their affinities to serine. In contrast, the ability of serine to inactivate thermoreceptor function was altered in these mutants. The minimal serine concentration required for thermoreceptor inactivation was directly related to the decreased affinity of the mutant Tsr for serine. The amino acid replacements in the mutant receptors were deduced from DNA sequence analyses and occurred at two different locations in the presumed periplasmic domain of Tsr. Two mutations caused histidine or cysteine replacements at arginine 64, whereas three others caused isoleucine or proline replacements at threonine 156.
Collapse
Affiliation(s)
- L Lee
- Department of Molecular Biology, Faculty of Science, Nagoya University, Japan
| | | | | |
Collapse
|