1
|
Chang H, Replogle JM, Vather N, Tsao-Wu M, Mistry R, Liu JM. A cis-regulatory antisense RNA represses translation in Vibrio cholerae through extensive complementarity and proximity to the target locus. RNA Biol 2015; 12:136-48. [PMID: 25826566 PMCID: PMC4615234 DOI: 10.1080/15476286.2015.1017203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As with all facultative pathogens, Vibrio cholerae must optimize its cellular processes to adapt to different environments with varying carbon sources and to environmental stresses. More specifically, in order to metabolize mannitol, V. cholerae must regulate the synthesis of MtlA, a mannitol transporter protein produced exclusively in the presence of mannitol. We previously showed that a cis-acting small RNA (sRNA) expressed by V. cholerae, MtlS, appears to post-transcriptionally downregulate the expression of mtlA and is produced in the absence of mannitol. We hypothesized that since it is complementary to the 5′ untranslated region (UTR) of mtlA mRNA, MtlS may affect synthesis of MtlA by forming an mtlA-MtlS complex that blocks translation of the mRNA through occlusion of its ribosome binding site. To test this hypothesis, we used in vitro translation assays in order to examine the role MtlS plays in mtlA regulation and found that MtlS is sufficient to suppress translation of transcripts harboring the 5′ UTR of mtlA. However, in a cellular context, the 5′ UTR of mtlA is not sufficient for targeted repression by endogenous MtlS; additional segments from the coding region of mtlA play a role in the ability of the sRNA to regulate translation of mtlA mRNA. Additionally, proximity of transcription sites between the sRNA and mRNA significantly affects the efficacy of MtlS.
Collapse
Affiliation(s)
- Howard Chang
- a Department of Chemistry; Pomona College ; Claremont , CA USA
| | | | | | | | | | | |
Collapse
|
2
|
Kumar S, Smith KP, Floyd JL, Varela MF. Cloning and molecular analysis of a mannitol operon of phosphoenolpyruvate-dependent phosphotransferase (PTS) type from Vibrio cholerae O395. Arch Microbiol 2010; 193:201-8. [PMID: 21184218 DOI: 10.1007/s00203-010-0663-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/26/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022]
Abstract
A putative mannitol operon of the phosphoenolpyruvate phosphotransferase (PTS) type was cloned from Vibrio cholerae O395, and its activity was studied in Escherichia coli. The 3.9-kb operon comprising three genes is organized as mtlADR. Based on the sequence analysis, these were identified as genes encoding a putative mannitol-specific enzyme IICBA (EII(Mtl)) component (MtlA), a mannitol-1-phosphate dehydrogenase (MtlD), and a mannitol operon repressor (MtlR). The transport of [(3)H]mannitol by the cloned mannitol operon in E. coli was 13.8 ± 1.4 nmol/min/mg protein. The insertional inactivation of EII(Mtl) abolished mannitol and sorbitol transport in V. cholerae O395. Comparison of the mannitol utilization apparatus of V. cholerae with those of Gram-negative and Gram-positive bacteria suggests highly conserved nature of the system. MtlA and MtlD exhibit 75% similarity with corresponding sequences of E. coli mannitol operon genes, while MtlR has 63% similarity with MtlR of E. coli. The cloning of V. cholerae mannitol utilization system in an E. coli background will help in elucidating the functional properties of this operon.
Collapse
Affiliation(s)
- Sanath Kumar
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| | | | | | | |
Collapse
|
3
|
Riemann L, Azam F. Widespread N-acetyl-D-glucosamine uptake among pelagic marine bacteria and its ecological implications. Appl Environ Microbiol 2002; 68:5554-62. [PMID: 12406749 PMCID: PMC129920 DOI: 10.1128/aem.68.11.5554-5562.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dissolved free and combined N-acetyl-D-glucosamine (NAG) is among the largest pools of amino sugars in the ocean. NAG is a main structural component in chitin and a substantial constituent of bacterial peptidoglycan and lipopolysaccharides. We studied the distribution and kinetics of NAG uptake by the phosphoenolpyruvate:NAG phosphotransferase systems (PTS) in marine bacterial isolates and natural bacterial assemblages in near-shore waters. Of 78 bacterial isolates examined, 60 took up 3H-NAG, while 18 showed no uptake. No systematic pattern in NAG uptake capability relative to phylogenetic affiliation was found, except that all isolates within Vibrionaceae took up NAG. Among 12 isolates, some showed large differences in the relationship between polymer hydrolysis (measured as chitobiase activity) and uptake of the NAG, the hydrolysis product. Pool turnover time and estimated maximum ambient concentration of dissolved NAG in samples off Scripps Pier (La Jolla, Calif.) were 5.9 +/- 3.0 days (n = 10) and 5.2 +/- 0.9 nM (n = 3), respectively. Carbohydrate competition experiments indicated that glucose, glucosamine, mannose, and fructose were taken up by the same system as NAG. Sensitivity to the antibiotic and NAG structural analog streptozotocin (STZ) was developed into a culture-independent approach, which demonstrated that approximately one-third of bacteria in natural marine assemblages that were synthesizing DNA took up NAG. Isolates possessing a NAG PTS system were found to be predominantly facultative anaerobes. These results suggest the hypothesis that a substantial fraction of bacteria in natural pelagic assemblages are facultative anaerobes. The adaptive value of fermentative metabolism in the pelagic environment is potentially significant, e.g., to bacteria colonizing microenvironments such as marine snow that may experience periodic O2-limitation.
Collapse
Affiliation(s)
- Lasse Riemann
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA.
| | | |
Collapse
|
4
|
Binet MRB, Rager MN, Bouvet OMM. Fructose and mannose metabolism in Aeromonas hydrophila: identification of transport systems and catabolic pathways. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 4):1113-1121. [PMID: 9579084 DOI: 10.1099/00221287-144-4-1113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aeromonas hydrophila was examined for fructose and mannose transport systems. A. hydrophila was shown to possess a phosphoenolpyruvate (PEP): fructose phosphotransferase system (fructose-PTS) and a mannose-specific PTS, both induced by fructose and mannose. The mannose-PTS of A. hydrophila exhibited cross-reactivity with Escherichia coli mannose-PTS proteins. The fructose-PTS proteins exhibited cross-reactivities with E. coli and Xanthomonas campestris fructose-PTS proteins. In A. hydrophila grown on mannose as well as on fructose, the phosphorylated derivative accumulated from fructose was fructose 1-phosphate. Identification of fructose 1-phosphate was confirmed by 13C-NMR spectroscopy. 1-Phosphofructokinase (1-PFK), which converts the product of the PTS reaction to fructose 1,6-diphosphate, was present in A. hydrophila grown with fructose but not on mannose. An inducible phosphofructomutase (PFM) activity, an unusual enzyme converting fructose 1-phosphate to fructose 6-phosphate, was detected in extracts induced by mannose or fructose. These results suggest that in cells grown on fructose, fructose 1-phosphate could be converted to fructose 1,6-diphosphate either directly by the 1-PFK activity or via fructose 6-phosphate by the PFM and 6-phosphofructokinase activities. In cells grown on mannose, the degradation of fructose 1-phosphate via PFM and the Embden-Meyerhof pathway appeared to be a unique route.
Collapse
Affiliation(s)
- Marie R B Binet
- Unité des Entérobactéries, Institut National de la Santé et de la Recherche U389, Institut Pasteur, 75724 Paris cedex 15, France
| | - Marie-Noelle Rager
- Service de Résonance Magnétique Nucléaire, URA 403, Ecole Nationale Supérieure de Chimie de Paris, 75231 Paris cedex 05, France
| | - Odile M M Bouvet
- Unité des Entérobactéries, Institut National de la Santé et de la Recherche U389, Institut Pasteur, 75724 Paris cedex 15, France
| |
Collapse
|
5
|
Binet MR, Bouvet OM. Transport of glucose by a phosphoenolpyruvate:mannose phosphotransferase system in Pasteurella multocida. Res Microbiol 1998; 149:83-94. [PMID: 9766212 DOI: 10.1016/s0923-2508(98)80024-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pasteurella multocida was examined for glucose and mannose transport. P. multocida was shown to possess a phosphoenolpyruvate (PEP):mannose phosphotransferase system (PTS) that transports glucose as well as mannose and was functionally similar to the Escherichia coli mannose PTS. Phosphorylated proteins with molecular masses similar to those of E. coli mannose PTS proteins were visualized when incubated with 32P-PEP. The presence of an enzyme IIAGlc which could play an important role in regulation, as described in other Gram-negative bacteria, was detected. The enzymes of the pentose-phosphate pathway were present in P. multocida growth on glucose. The activity of 6-phosphofructokinase (the key enzyme of the Embden-Meyerhof pathway (EMP)), was very low in cell extracts, suggesting that EMP is not the major pathway for glucose catabolism.
Collapse
Affiliation(s)
- M R Binet
- Unité des Entérobactéries, INSERM U389, Institut Pasteur, Paris
| | | |
Collapse
|
6
|
Bouma CL, Roseman S. Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the glucose and N-acetylglucosamine permeases. J Biol Chem 1996; 271:33457-67. [PMID: 8969209 DOI: 10.1074/jbc.271.52.33457] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chitin catabolism by the marine bacterium Vibrio furnissii involves chemotaxis to and transport of N-acetyl-D-glucosamine (GlcNAc) and D-glucose. We report the properties of the respective permeases that complemented E. coli Glc- Man- mutants. Although the V. furnissii Glc-specific permease (55,941 Da) shares 38% identity with E. coli IIGlc (ptsG), it is 67% identical to MalX of the E. coli maltose operon (Reidl, J., and Boos, W. (1991) J. Bacteriol. 173, 4862-4876). An adjacent open reading frame encodes a protein with 52% identity to E. coli MalY. Glc phosphorylation requires only V. furnissii MalX and the accessory phosphoenolpyruvate:glycose phosphotransferase system proteins. The V. furnissii equivalent of IIGlc was not found in the 25,000 transformants screened. The GlcNAc/Glc-specific permease (52,894 Da) shares 47% identity with the N-terminal, hydrophobic domain of E. coli IINag, but is unique among IINag proteins in that it lacks the C-terminal domain and thus requires IIIGlc for sugar fermentation in vivo and phosphorylation in vitro. While there are similarities between the phosphoenolpyruvate:glycose phosphotransferase system of V. furnissii and enteric bacteria, the differences may be important for survival of V. furnissii in the marine environment.
Collapse
Affiliation(s)
- C L Bouma
- Department of Biology and the McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
7
|
Mukhija S, Erni B. Purification by Ni2+ affinity chromatography, and functional reconstitution of the transporter for N-acetylglucosamine of Escherichia coli. J Biol Chem 1996; 271:14819-24. [PMID: 8662917 DOI: 10.1074/jbc.271.25.14819] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The N-acetyl-D-glucosamine transporter (IIGlcNAc) of the bacterial phosphotransferase system couples vectorial translocation to phosphorylation of the transported GlcNAc. IIGlcNAc of Escherichia coli containing a carboxyl-terminal affinity tag of six histidines was purified by Ni2+ chelate affinity chromatography. 4 mg of purified protein was obtained from 10 g (wet weight) of cells. Purified IIGlcNAc was reconstituted into phospholipid vesicles by detergent dialysis and freeze/thaw sonication. IIGlcNAc was oriented randomly in the vesicles as inferred from protein phosphorylation studies. Import and subsequent phosphorylation of GlcNAc were measured with proteoliposomes preloaded with enzyme I, histidine-containing phosphocarrier protein, and phosphoenolpyruvate. Uptake and phosphorylation occurred in a 1:1 ratio. Active extrusion of GlcNAc entrapped in vesicles was also measured by the addition of enzyme I, histidine-containing phosphocarrier protein, and phosphoenolpyruvate to the outside of the vesicles. The Km for vectorial phosphorylation and non-vectorial phosphorylation were 66. 6 +/- 8.2 microM and 750 +/- 19.6 microM, respectively. Non-vectorial phosphorylation was faster than vectorial phosphorylation with kcat 15.8 +/- 0.9 s-1 and 6.2 +/- 0.7 s-1, respectively. Using exactly the same conditions, the purified transporters for mannose (IIABMan, IICMan, IIDMan) and glucose (IICBGlc, IIAGlc) were also reconstituted for comparison. Although the vectorial transport activities of IICBAGlcNAc and IICBGlc. IIAGlc are inhibited by non-vectorial phosphorylation, no such effect was observed with the IIABMan.IICMan.IIDMan complex. This suggests that the molecular mechanisms underlying solute transport and phosphorylation are different for different transporters of the phosphotransferase system.
Collapse
Affiliation(s)
- S Mukhija
- Institute of Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
8
|
Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993; 57:543-94. [PMID: 8246840 PMCID: PMC372926 DOI: 10.1128/mr.57.3.543-594.1993] [Citation(s) in RCA: 865] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
Collapse
Affiliation(s)
- P W Postma
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
9
|
Yu C, Bassler B, Roseman S. Chemotaxis of the marine bacterium Vibrio furnissii to sugars. A potential mechanism for initiating the chitin catabolic cascade. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98365-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Yu C, Lee A, Bassler B, Roseman S. Chitin utilization by marine bacteria. A physiological function for bacterial adhesion to immobilized carbohydrates. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54223-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Role of Na+ in growth, respiration and membrane transport in the marine bacterium Pseudomonas doudoroffii 70. Arch Microbiol 1989. [DOI: 10.1007/bf00277543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Bassler B, Gibbons P, Roseman S. Chemotaxis to chitin oligosaccharides by Vibrio furnissii, a chitinivorous marine bacterium. Biochem Biophys Res Commun 1989; 161:1172-6. [PMID: 2742582 DOI: 10.1016/0006-291x(89)91365-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have reported that Vibrio furnissii, a chitinivorous marine bacterium, expresses a complex apparatus for adhesion/deadhesion to chitin analogues (1). In the present studies, we show that this organism exhibits a chemotactic response (swarming) to chitin oligosaccharides at concentrations as low as 10 microM. In contrast, V. furnissii exhibits slight to no chemotaxis to other utilizable compounds (glycerol, lactate, amino acids), with the exception of L-glutamic acid. V. furnissii may lack the tar (aspartate) receptor of Escherichia coli.
Collapse
Affiliation(s)
- B Bassler
- McCollum-Pratt Institute, Baltimore, Maryland 21218
| | | | | |
Collapse
|
13
|
Grimont PA, Bouvet OM. Diversity of glucose entry routes in the Enterobacteriaceae. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb14106.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|