1
|
Abstract
An optical trapping technique is implemented to investigate the chemotactic behavior of a marine bacterial strain Vibrio alginolyticus. The technique takes the advantage that the bacterium has only a single polar flagellum, which can rotate either in the counter-clock-wise or clock-wise direction. The two rotation states of the motor can be readily and instantaneously resolved in the optical trap, allowing the flagellar motor switching rate to be measured under different chemical stimulations. In this paper the focus will be on the bacterial response to an impulsive change of chemoattractant serine. Despite different propulsion apparati and motility patterns, cells of V. alginolyticus apparently use a similar response as Escherichia coli to regulate their chemotactic behavior. Specifically, we found that the switching rate of the bacterial motor exhibits a biphasic behavior, showing a fast initial response followed by a slow relaxation to the steady-state switching rate . The measured can be mimicked by a model that has been recently proposed for chemotaxis in E. coli. The similarity in the response to the brief chemical stimulation in these two different bacteria is striking, suggesting that the biphasic response may be evolutionarily conserved. This study also demonstrated that optical tweezers can be a useful tool for chemotaxis studies and should be applicable to other polarly flagellated bacteria.
Collapse
|
2
|
Kanungpean D, Kakuda T, Takai S. Participation of CheR and CheB in the chemosensory response of Campylobacter jejuni. MICROBIOLOGY-SGM 2011; 157:1279-1289. [PMID: 21292743 DOI: 10.1099/mic.0.047399-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in humans and a commensal bacterium of the intestinal tracts of animals, especially poultry. Chemotaxis is an important determinant for chicken colonization of C. jejuni. Adaptation has a crucial role in the gradient-sensing mechanism that underlies chemotaxis. The genome sequence of C. jejuni reveals the presence of genes encoding putative adaptation proteins, CheB and CheR. In-frame deletions of cheB, cheR and cheBR were constructed and the chemosensory behaviour of the resultant mutants was examined on swarm plates. CheB and CheR proteins significantly influence chemotaxis but are not essential for this behaviour to occur. Increased mobility of two methyl-accepting chemotaxis proteins (MCPs), DocC and Tlp1, during SDS-PAGE was detected in the mutants lacking functional CheB in the presence of CheR, presumably resulting from stable methylation of receptors. In vitro studies using tissue culture revealed that deletion of cheR resulted in hyperadherent and hyperinvasive phenotypes, while deletion of cheB resulted in nonadherent, noninvasive phenotypes. Furthermore, the ΔcheBR mutant showed significantly reduced ability to colonize chick caeca. Our data suggest that modification of chemoreceptors by the CheBR system is involved in regulation of chemotaxis in C. jejuni although CheB is apparently not controlled by phosphorylation.
Collapse
Affiliation(s)
- Doungjit Kanungpean
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori 034-8628, Japan
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori 034-8628, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori 034-8628, Japan
| |
Collapse
|
3
|
|
4
|
Kort R, Crielaard W, Spudich JL, Hellingwerf KJ. Color-sensitive motility and methanol release responses in Rhodobacter sphaeroides. J Bacteriol 2000; 182:3017-21. [PMID: 10809677 PMCID: PMC94484 DOI: 10.1128/jb.182.11.3017-3021.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blue-light-induced repellent and demethylation responses, characteristic of behavioral adaptation, were observed in Rhodobacter sphaeroides. They were analyzed by computer-assisted motion analysis and through the release of volatile tritiated compounds from [methyl-(3)H]methionine-labeled cells, respectively. Increases in the stop frequency and the rate of methanol release were induced by exposure of cells to repellent light signals, such as an increase in blue- and a decrease in infrared-light intensity. At a lambda of >500 nm the amplitude of the methanol release response followed the absorbance spectrum of the photosynthetic pigments, suggesting that they function as photosensors for this response. In contrast to the previously reported motility response to a decrease in infrared light, the blue-light response reported here does not depend on the number of photosynthetic pigments per cell, suggesting that it is mediated by a separate sensor. Therefore, color discrimination in taxis responses in R. sphaeroides involves two photosensing systems: the photosynthetic pigments and an additional photosensor, responding to blue light. The signal generated by the former system could result in the migration of cells to a light climate beneficial for photosynthesis, while the blue-light system could allow cells to avoid too-high intensities of (harmful) blue light.
Collapse
Affiliation(s)
- R Kort
- Laboratory for Microbiology, E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
5
|
Harrison DM, Skidmore J, Armitage JP, Maddock JR. Localization and environmental regulation of MCP-like proteins in Rhodobacter sphaeroides. Mol Microbiol 1999; 31:885-92. [PMID: 10048031 DOI: 10.1046/j.1365-2958.1999.01226.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chemotaxis to many compounds by Rhodobacter sphaeroides requires transport and at least partial metabolism of the chemoeffector. Previous investigations using phototrophically grown cells have failed to find any homologues of the MCP chemoreceptors identified in Escherichia coli. However, using an antibody raised against the highly conserved domain of E. coli Tsr, MCP-like proteins were identified in R. sphaeroides WS8N. Analysis using Western blotting and immunogold electron microscopy showed that expression of these MCP-like proteins is environmentally regulated and that receptors are targeted to two different cellular locations: the poles of the cells and the cytoplasm. In aerobically grown cells, these proteins were shown by immunoelectron microscopy to localize predominantly to the cell poles and to an electron-dense body in the cytoplasm. Western blot analysis indicated a 17-fold reduction in protein concentration when cells were grown in the light. The number of immunogold particles was also dramatically reduced in anaerobically light-grown cells and their cellular distribution was altered. Fewer receptors localized to the cell poles and more particles randomly distributed within the cell, but the cytoplasmic cluster remained. These trends were more pronounced in cells grown anaerobically under dim light than in those grown anaerobically under bright light, suggesting that expression is controlled by redox state and either light intensity or the extent of photosynthetic membrane synthesis. Recent work on E. coli chemosensing suggests that oligomerization of receptors and chemosensory proteins is important for sensory signalling. The data presented here suggest that this oligomerization can occur with cytoplasmic receptors and also provides an explanation for the multiple copies of chemosensory proteins in R. sphaeroides.
Collapse
Affiliation(s)
- D M Harrison
- Department of Biochemistry, University of Oxford, UK
| | | | | | | |
Collapse
|
6
|
6.5 Characterizing Flagella and Motile Behavior. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
7
|
Nguyen CC, Saier MH. Structural and phylogenetic analysis of the MotA and MotB families of bacterial flagellar motor proteins. Res Microbiol 1996; 147:317-32. [PMID: 8763618 DOI: 10.1016/0923-2508(96)84707-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
MotA and MotB are two well-characterized proteins in Escherichia coli which are believed to function as the proton channel and the anchor, respectively, of the motor component of the bacterial flagellum. We have identified and analysed all currently sequenced members of the MotA and MotB families. Members of these families include (1) these E. coli proteins, (2) their pmf-interacting motor homologues in other bacteria, (3) two ORFs which map downstream of the gene encoding the catabolite repression-mediating CepA protein in Bacillus species and (4) unidentified open reading frames. With one exception (the MotB protein of Rhodobactec sphaeroides), members of the MotB family exhibit a C-terminal domain that is homologous to peptidoglycan-interaction domains of numerous sequenced lipoproteins and outer membrane proteins. Multiple alignments, average hydropathy and similarity plots, and phylogenetic trees have allowed (1) identification of regions of relative conservation, (2) definition of signature sequences for these protein families and (3) determination of relative phylogenetic distances relating all members of each family. The phylogenies of these proteins do not follow those of the organisms from which they were isolated, suggesting the presence of divergent isoforms in many bacteria. Phylogenetic analyses of the peptidoglycan-interaction domains of MotB proteins indicated that, except for MotB of R. sphaeroides, these domains became associated with the MotB proteins early during evolutionary history, before members of the MotB family or members of the outer membrane protein family diverged from each other.
Collapse
Affiliation(s)
- C C Nguyen
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
8
|
Michotey V, Toussaint B, Richaud P, Vignais PM. Characterisation of the mcpA and mcpB genes capable of encoding methyl-accepting type chemoreceptors in Rhodobacter capsulatus. Gene 1996; 170:73-6. [PMID: 8621092 DOI: 10.1016/0378-1119(95)00844-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two contiguous mcp genes, mcpA and mcpB, transcribed from the same DNA strand and capable of encoding methyl-accepting chemotaxis proteins (Mcp) have been isolated from Rhodobacter capsulatus (Rc), sequences and overexpressed in Escherichia coli (Ec). The deduced proteins (McpA, 69 171 Da; McpB, 81 629 Da) show a structure similar to that of Ec Mcp. The products of mcpA and mcpB, overproduced in Ec, were recognized by anti-Ec Mcp (Trg) antibodies.
Collapse
Affiliation(s)
- V Michotey
- CEA/Grenoble, Laboratoire de Biochimie Microbienne, CNRS URA 1130 alliée à l'INSERM, DBMS, Grenoble, France
| | | | | | | |
Collapse
|
9
|
Shah DS, Armitage JP, Sockett RE. Rhodobacter sphaeroides WS8 expresses a polypeptide that is similar to MotB of Escherichia coli. J Bacteriol 1995; 177:2929-32. [PMID: 7751310 PMCID: PMC176972 DOI: 10.1128/jb.177.10.2929-2932.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A gene which complements a paralyzed flagellar mutant of Rhodobacter sphaeroides was sequenced. The derived protein sequence has similarity to MotB. R. sphaeroides MotB lacks the C-terminal peptidoglycan-binding motif of other MotB proteins. This divergence of sequence may reflect the unusual, unidirectional, stop-start action of the R. sphaeroides flagellar motor.
Collapse
Affiliation(s)
- D S Shah
- Department of Life Science, Nottingham University, United Kingdom
| | | | | |
Collapse
|
10
|
Nealson KH, Moser DP, Saffarini DA. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl Environ Microbiol 1995; 61:1551-4. [PMID: 11536689 PMCID: PMC167410 DOI: 10.1128/aem.61.4.1551-1554.1995] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.
Collapse
Affiliation(s)
- K H Nealson
- Center for Great Lakes Studies, University of Wisconsin-Milwaukee 53204, USA
| | | | | |
Collapse
|
11
|
Packer HL, Armitage JP. The chemokinetic and chemotactic behavior of Rhodobacter sphaeroides: two independent responses. J Bacteriol 1994; 176:206-12. [PMID: 8282697 PMCID: PMC205032 DOI: 10.1128/jb.176.1.206-212.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhodobacter sphaeroides exhibits two behavioral responses when exposed to some compounds: (i) a chemotactic response that results in accumulation and (ii) a sustained increase in swimming speed. This latter chemokinetic response occurs without any apparent long-term change in the size of the electrochemical proton gradient. The results presented here show that the chemokinetic response is separate from the chemotactic response, although some compounds can induce both responses. Compounds that caused only chemokinesis induced a sustained increase in the rate of flagellar rotation, but chemoeffectors which were also chemotactic caused an additional short-term change in both the stopping frequency and the duration of stops and runs. The response to a change in chemoattractant concentration was a transient increase in the stopping frequency when the concentration was reduced, with adaptation taking between 10 and 60 s. There was also a decrease in the stopping frequency when the concentration was increased, but adaptation took up to 60 min. The nature and duration of both the chemotactic and chemokinetic responses were concentration dependent. Weak organic acids elicited the strongest chemokinetic responses, and although many also caused chemotaxis, there were conditions under which chemokinesis occurred in the absence of chemotaxis. The transportable succinate analog malonate caused chemokinesis but not chemotaxis, as did acetate when added to a mutant able to transport but not grow on acetate. Chemokinesis also occurred after incubation with arsenate, conditions under which chemotaxis was lost, indicating that phosphorylation at some level may have a role in chemotaxis. Aspartate was the only chemoattractant amino acid to cause chemokinesis. Glutamate caused chemotaxis but not chemokinesis. These data suggest that (i) chemotaxis and chemokinesis are separate responses, (ii) metabolism is required for chemotaxis but not chemokinesis, (iii) a reduction in chemoattractant concentration may cause the major chemotactic signal, and (iv) a specific transport pathway(s) may be involved in chemokinetic signalling in R. sphaeroides.
Collapse
Affiliation(s)
- H L Packer
- Department of Biochemistry, University of Oxford, England
| | | |
Collapse
|
12
|
Robinson JB, Bauer WD. Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti. J Bacteriol 1993; 175:2284-91. [PMID: 8468289 PMCID: PMC204516 DOI: 10.1128/jb.175.8.2284-2291.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The relationship between chemotaxis and transport of C4 dicarboxylic acids was analyzed with Rhizobium meliloti dct mutants defective in one or all of the genes required for dicarboxylic acid transport. Succinate, malate, and fumarate were moderately potent chemoattractants for wild-type R. meliloti and appeared to share a common chemoreceptor. While dicarboxylate transport is inducible, taxis to succinate was shown to be constitutive. Mutations in the dctA and dctB genes both resulted in the reduction, but not elimination, of chemotactic responses to succinate, indicating that transport via DctA or chemosensing via DctB is not essential for C4 dicarboxylate taxis, although they appear to contribute to it. Mutations in dctD and rpoN genes did not affect taxis to succinate. Aspartate, which is also transported by the dicarboxylate transport system, elicited strong chemotactic responses via a chemoreceptor distinct from the succinate-malate-fumarate receptor. Taxis to aspartate was unaltered in dctA and dctB mutants but was considerably reduced in both dctD and rpoN mutants, indicating that aspartate taxis is strongly dependent on elements responsible for transcriptional activation of dctA. Methylation and methanol release experiments failed to show a significant increase in methyl esterification of R. meliloti proteins in response to any of the attractants tested.
Collapse
Affiliation(s)
- J B Robinson
- Department of Agronomy, Ohio State University, Columbus 43210
| | | |
Collapse
|
13
|
Zhulin IB, Armitage JP. Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense. J Bacteriol 1993; 175:952-8. [PMID: 8432718 PMCID: PMC193006 DOI: 10.1128/jb.175.4.952-958.1993] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Observations of free-swimming and antibody-tethered Azospirillum brasilense cells showed that their polar flagella could rotate in both clockwise and counterclockwise directions. Rotation in a counterclockwise direction caused forward movement of free-swimming cells, whereas the occasional change in the direction of rotation to clockwise caused a brief reversal in swimming direction. The addition of a metabolizable chemoattractant, e.g., malate or proline, had two distinct effects on the swimming behavior of the bacteria: (i) a short-term decrease in reversal frequency from 0.33 to 0.17 s-1 and (ii) a long-term increase in the mean population swimming speed from 13 to 23 microns s-1. A. brasilense therefore shows both chemotaxis and chemokinesis in response to temporal gradients of some chemoeffectors. Chemokinesis was dependent on the growth state of the cells and may depend on an increase in the electrochemical proton gradient above a saturation threshold. Analysis of behavior of a methionine auxotroph, assays of in vivo methylation, and the use of specific antibodies raised against the sensory transducer protein Tar of Escherichia coli all failed to demonstrate the methylation-dependent pathway for chemotaxis in A. brasilense. The range of chemicals to which A. brasilense shows chemotaxis and the lack of true repellents indicate an alternative chemosensory pathway probably based on metabolism of chemoeffectors.
Collapse
Affiliation(s)
- I B Zhulin
- Department of Biochemistry, University of Oxford, England
| | | |
Collapse
|
14
|
Poole PS, Smith MJ, Armitage JP. Chemotactic signalling in Rhodobacter sphaeroides requires metabolism of attractants. J Bacteriol 1993; 175:291-4. [PMID: 8416904 PMCID: PMC196125 DOI: 10.1128/jb.175.1.291-294.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rhodobacter sphaeroides showed chemotaxis towards L-alanine but not towards the analog 2-aminoisobutyrate. 2-Aminoisobutyrate and alanine were shown to share a common transport system, but 2-aminoisobutyrate was not metabolized. Chemotaxis towards alanine was inhibited by structurally unrelated metabolites, suggesting cross-inhibition by common metabolic intermediates.
Collapse
Affiliation(s)
- P S Poole
- Department of Microbiology, University of Reading, Whiteknights, United Kingdom
| | | | | |
Collapse
|
15
|
Morgan DG, Baumgartner JW, Hazelbauer GL. Proteins antigenically related to methyl-accepting chemotaxis proteins of Escherichia coli detected in a wide range of bacterial species. J Bacteriol 1993; 175:133-40. [PMID: 8416890 PMCID: PMC196106 DOI: 10.1128/jb.175.1.133-140.1993] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The four methyl-accepting chemotaxis proteins of Escherichia coli, often called transducers, are transmembrane receptor proteins that exhibit substantial identity among the sequences of their cytoplasmic domains. Thus, antiserum raised to one of these proteins recognizes the others and might be expected to recognize related proteins in other bacteria. We used antiserum raised to the transducer Trg in immunoblot experiments to probe a wide range of bacterial species for the presence of antigenically related proteins. Such proteins were detected in over 20 different species, representing 6 of the 11 eubacterial phyla defined by analysis of rRNA sequences as well as one archaebacterial group. Species containing proteins antigenically related to the transducers of E. coli included members of all four subdivisions of the phylum in which E. coli is placed, members of four of the six subdivisions of spirochetes, and two gliding bacteria. These observations provide substantial support for the notion that methyl-accepting taxis proteins are widely distributed among the diversity of bacterial species.
Collapse
Affiliation(s)
- D G Morgan
- Department of Biochemistry/Biophysics, Washington State University, Pullman 99164-4660
| | | | | |
Collapse
|
16
|
Willison JC. Biochemical genetics revisited: the use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria. FEMS Microbiol Rev 1993; 10:1-38. [PMID: 8431308 DOI: 10.1111/j.1574-6968.1993.tb05862.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The biochemical genetics approach is defined as the use of mutants, in comparative studies with the wild-type, to obtain information about biochemical and physiological processes in complex metabolic systems. This approach has been used extensively, for example in studies on the bioenergetics of the photosynthetic bacteria, but has been applied less frequently to studies of intermediary carbon and nitrogen metabolism in phototrophic organisms. Several important processes in photosynthetic bacteria--the regulation of nitrogenase synthesis and activity, the control of intracellular redox balance during photoheterotrophic growth, and chemotaxis--have been shown to involve metabolism. However, current understanding of carbon and nitrogen metabolism in these organisms is insufficient to allow a complete understanding of these phenomena. The purpose of the present review is to give an overview of carbon and nitrogen metabolism in the photosynthetic bacteria, with particular emphasis on work carried out with mutants, and to indicate areas in which the biochemical genetics approach could be applied successfully. In particular, it will be argued that, in the case of Rhodobacter capsulatus and Rb. sphaeroides, two species which are fast-growing, possess a versatile metabolism, and have been extensively studied genetically, it should be possible to obtain a complete, integrated description of carbon and nitrogen metabolism, and to undertake a qualitative and quantitative analysis of the flow of carbon and reducing equivalents during photoheterotrophic growth. This would require a systematic biochemical genetic study employing techniques such as HPLC, NMR, and mass spectrometry, which are briefly discussed. The review is concerned mainly with Rb. capsulatus and Rb. sphaeroides, since most studies with mutants have been carried out with these organisms. However, where possible, a comparison is made with other species of purple non-sulphur bacteria and with purple and green sulphur bacteria, and recent literature relevant to these organisms has been cited.
Collapse
Affiliation(s)
- J C Willison
- Département de Biologie Moléculaire et Structurale, Centre d'Etudes Nucléaires de Grenoble, France
| |
Collapse
|
17
|
Dolla A, Fu R, Brumlik MJ, Voordouw G. Nucleotide sequence of dcrA, a Desulfovibrio vulgaris Hildenborough chemoreceptor gene, and its expression in Escherichia coli. J Bacteriol 1992; 174:1726-33. [PMID: 1548224 PMCID: PMC205772 DOI: 10.1128/jb.174.6.1726-1733.1992] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The amino acid sequence of DcrA (Mr = 73,000), deduced from the nucleotide sequence of the dcrA gene from the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, indicates a structure similar to the methyl-accepting chemotaxis proteins from Escherichia coli, including a periplasmic NH2-terminal domain (Mr = 20,700) separated from the cytoplasmic COOH-terminal domain (Mr = 50,300) by a hydrophobic, membrane-spanning sequence of 20 amino acid residues. The sequence homology of DcrA and these methyl-accepting chemotaxis proteins is limited to the COOH-terminal domain. Analysis of dcrA-lacZ fusions in E. coli by Western blotting (immunoblotting) and activity measurements indicated a low-level synthesis of a membrane-bound fusion protein of the expected size (Mr = approximately 137,000). Expression of the dcrA gene under the control of the Desulfovibrio cytochrome c3 gene promoter and ribosome binding site allowed the identification of both full-length DcrA and its NH2-terminal domain in E. coli maxicells.
Collapse
Affiliation(s)
- A Dolla
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
18
|
Alam M, Hazelbauer GL. Structural features of methyl-accepting taxis proteins conserved between archaebacteria and eubacteria revealed by antigenic cross-reaction. J Bacteriol 1991; 173:5837-42. [PMID: 1909323 PMCID: PMC208317 DOI: 10.1128/jb.173.18.5837-5842.1991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A number of eubacterial species contain methyl-accepting taxis proteins that are antigenically and thus structurally related to the well-characterized methyl-accepting chemotaxis proteins of Escherichia coli. Recent studies of the archaebacterium Halobacterium halobium have characterized methyl-accepting taxis proteins that in some ways resemble and in other ways differ from the analogous eubacterial proteins. We used immunoblotting with antisera raised to E. coli transducers to probe shared structural features of methyl-accepting proteins from archaebacteria and eubacteria and found substantial antigenic relationships. This implies that the genes for the contemporary methyl-accepting proteins are related through an ancestral gene that existed before the divergence of arachaebacteria and eubacteria. Analysis by immunoblot of mutants of H. halobium defective in taxis revealed that some strains were deficient in covalent modification of methyl-accepting proteins although the proteins themselves were present, while other strains appeared to be missing specific methyl-accepting proteins.
Collapse
Affiliation(s)
- M Alam
- Department of Biochemistry/Biophysics, Washington State University, Pullman 99164-4660
| | | |
Collapse
|
19
|
Sockett RE, Armitage JP. Isolation, characterization, and complementation of a paralyzed flagellar mutant of Rhodobacter sphaeroides WS8. J Bacteriol 1991; 173:2786-90. [PMID: 1850401 PMCID: PMC207858 DOI: 10.1128/jb.173.9.2786-2790.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A paralyzed Rhodobacter sphaeroides mutant strain (PARA1) was isolated by a motility screening procedure following mutagenesis of wild-type R. sphaeroides WS8-N with the transposable element TnphoA (Tn5 IS50L::phoA). PARA1 synthesized a wild-type level of flagellin, as detected by Western immunoblotting with antiflagellar antiserum. Flagellar staining showed that flagellin was assembled into apparently normal external flagellar filaments. Electron micrographs of basal body structures from PARA1 showed that some ring structures that were present were similar to those in wild-type R. sphaeroides WS8-N. PARA1 cells were nonmotile under all growth conditions. No pseudorevertants to motility were seen when PARA1 was grown in the presence of kanamycin to select for the presence of the transposon. The presence of the single copy of TnphoA in the PARA1 chromosome was demonstrated by Southern blotting. Western blotting of cytoplasmic, periplasmic, and membrane fractions of PARA1 with anti-alkaline phosphatase antiserum showed that the transposon had been inserted in-frame into a gene encoding a membrane protein. A SalI restriction endonuclease fragment was cloned from the chromosome of PARA1; this fragment contained a portion of the transposon and R. sphaeroides DNA sequence 5' of the site of insertion. This flanking R. sphaeroides DNA sequence was used to probe an R. sphaeroides WS8 cosmid library. A cosmid designated c19 hybridized to the probe, and a SalI restriction endonuclease fragment derived from this cosmid restored wild-type motility to PARA1 when introduced into this mutant strain by conjugation. The significance of this finding in a bacterium with unidirectionally rotating flagella is discussed.
Collapse
Affiliation(s)
- R E Sockett
- Department of Biochemistry, University of Oxford, England
| | | |
Collapse
|
20
|
Poole P, Brown S, Counsell D, Armitage J. The effect of phosphate on the motility of Rhodobacter sphaeroides. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04493.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Swimming changes and chemotactic responses in Rhodobacter sphaeroides do not involve changes in the steady state membrane potential or respiratory electron transport. Arch Microbiol 1990. [DOI: 10.1007/bf00245274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Chemotactic responses of Rhodobacter sphaeroides in the absence of apparent adaptation. Arch Microbiol 1990. [DOI: 10.1007/bf00249007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Abstract
Pseudomonas putida is attracted to at least two groups of aromatic acids: a benzoate group and a benzoylformate group. Members of the benzoate group of chemoattractants stimulated the methylation of a P. putida polypeptide with an apparent molecular weight of 60,000 in sodium dodecyl sulfate-polyacrylamide gels. This polypeptide is presumed to be a methyl-accepting chemotaxis protein for several reasons: its molecular weight is similar to the molecular weights of Escherichia coli methyl-accepting chemotaxis proteins, the amount of time required to attain maximal methylation correlated with the time needed for behavioral adaptation of P. putida cells to benzoate, and methylation was stimulated by benzoate only in cells induced for chemotaxis to benzoate. Also, a mutant specifically defective in benzoate taxis failed to show any stimulation of methylation upon addition of benzoate. Benzoylformate did not stimulate protein methylation in cells induced for benzoylformate chemotaxis, suggesting that sensory input from this second group of aromatic-acid attractants is processed through a different kind of chemosensory pathway. The chemotactic responses of P. putida cells to benzoate and benzoylformate were not sensitive to external pH over a range (6.2 to 7.7) which would vary the protonated forms of these weak acids by a factor of about 30. This indicates that detection of cytoplasmic pH is not the basis for aromatic-acid taxis in P. putida.
Collapse
Affiliation(s)
- C S Harwood
- Department of Microbiology, University of Iowa, Iowa City 52242
| |
Collapse
|
24
|
Poole PS, Armitage JP. Role of metabolism in the chemotactic response of Rhodobacter sphaeroides to ammonia. J Bacteriol 1989; 171:2900-2. [PMID: 2785106 PMCID: PMC209984 DOI: 10.1128/jb.171.5.2900-2902.1989] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rhodobacter sphaeroides only showed chemotaxis towards ammonia if grown under nitrogen-limited conditions. This chemotactic response was completely inhibited by the addition of methionine sulfoximine. There was no effect of methionine sulfoximine treatment on motility or taxis towards propionate, demonstrating that the effect is specific to ammonia taxis. It is known that methionine sulfoximine inhibits glutamine synthetase and hence blocks ammonia assimilation. Methionine sulfoximine does not inhibit ammonia transport in R. sphaeroides; therefore, these results suggest that limited metabolism via a specific pathway is required subsequent to transport to elicit a chemotactic response to ammonia. Bacteria grown on high ammonia show transport but no chemotactic response to ammonia, suggesting that the pathway of assimilation is important in eliciting a chemotactic response.
Collapse
Affiliation(s)
- P S Poole
- Department of Biochemistry, University of Oxford, United Kingdom
| | | |
Collapse
|
25
|
Ames P, Parkinson JS. Transmembrane signaling by bacterial chemoreceptors: E. coli transducers with locked signal output. Cell 1988; 55:817-26. [PMID: 3056621 DOI: 10.1016/0092-8674(88)90137-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Methyl-accepting chemotaxis proteins (MCPs) function as transmembrane signalers in bacteria. We isolated and characterized mutants of the E. coli Tsr protein that produce output signals in the absence of overt stimuli and that are refractory to sensory adaptation. The properties of these "locked" transducers indicate that MCP molecules are capable of generating signals that actively augment clockwise and counter-clockwise rotation of the flagellar motors. Transitions between MCP signaling states can be influenced by amino acid replacements in many parts of the molecule, including the methylation sites, at least one of the two membrane-spanning segments, and a linker region connecting the receptor and signaling domains. These findings suggest that transmembrane signaling may involve direct propagation of conformational changes between the periplasmic and cytoplasmic portions of the MCP molecule.
Collapse
Affiliation(s)
- P Ames
- Biology Department, University of Utah, Salt Lake City 84112
| | | |
Collapse
|
26
|
Abstract
Tethered rotating cells of Rhodobacter sphaeroides varied widely in their stopping frequency; 45% of cells showed no stops of longer than 1 s, whereas others showed stops of up to several seconds. Individual cells alternated between stops and rotation at a fairly constant rate, without continuous variation. Addition of the chemoattractant propionate to free-swimming cells of R. sphaeroides increased the mean population swimming speed from 15 to 23 microns s-1. After correction for nonmotile cells, the percentage swimming at less than 5 microns s-1 dropped from approximately 22 to 8, whereas the percentage swimming at greater than 50 microns s-1 increased from 6 to 15. However, cells already swimming did not swim faster after propionate addition; the increase in the mean population speed after propionate addition was caused by an increase in the mean run length between stops from 25 to 101 microns. The increased run length was the result of a drop in both the stopping frequency and the length of a stop. Addition of propionate over the range of 10 microM to 1 mM decreased the stopping frequency; this decrease was almost entirely blocked by benzoate, a competitive inhibitor of propionate transport. The chemoattractants acetate and potassium had the same effect as propionate on the distribution of stopping frequency, which demonstrated that this is a general behavioral response to chemotactic stimulation. Adaptation to propionate stimulation was slow and very variable, cultures frequently showing little adaptation over 30 min. This characteristic may be the result of the lack of a highly specific chemosensory system in R. sphaeroides.
Collapse
Affiliation(s)
- P S Poole
- Department of Biochemistry, University of Oxford, United Kingdom
| | | |
Collapse
|
27
|
Armitage JP, Gallagher A, Johnston AW. Comparison of the chemotactic behaviour of Rhizobium leguminosarum with and without the nodulation plasmid. Mol Microbiol 1988; 2:743-8. [PMID: 3210967 DOI: 10.1111/j.1365-2958.1988.tb00085.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The chemotactic behaviour of a strain of Rhizobium leguminosarum biovar viciae was investigated. The flavanoids apigenin and naringenin, inducers of transcription of the nodulation (nod) genes, were both potent attractants but hesperitin, another flavone nod gene inducer, was not. The response of strains containing the Sym plasmid pRL1Jl to apigenin and naringenin was significantly greater than the response of a strain cured of the plasmid, although both strains gave a positive response. Addition of the flavanol kaempferol, an antagonist of nod gene induction, had no detectable effect on the chemotactic response to naringenin or apigenin, but was itself found to be an attractant. The attractant response to a variety of amino acids and sugars was not affected by the presence of the Sym plasmid. Homoserine, the most abundant nitrogenous compound in legume exudates, was also found to be an attractant. However, although the Sym plasmid is required for the biovar to metabolize homoserine as a carbon source, it was not required for the chemotactic response. A group of membrane proteins showed increased methylation in response to stimulation with serine. There was no measurable change in methylation after stimulation with apigenin.
Collapse
Affiliation(s)
- J P Armitage
- Department of Biochemistry, University of Oxford, UK
| | | | | |
Collapse
|
28
|
Abstract
The chemotactic response to a range of chemicals was investigated in the photosynthetic bacterium Rhodobacter sphaeroides, an organism known to lack conventional methyl-accepting sensory transduction proteins. Strong attractants included monocarboxylic acids and monovalent cations. Results suggest that the chemotactic response required the uptake of the chemoeffector, but not its metabolism. If a chemoeffector could block the uptake of another attractant, it also inhibited chemotaxis to that attractant. Sodium benzoate was not an attractant but was a competitive inhibitor of the propionate uptake system. Binding in an active uptake system was therefore insufficient to cause a chemotactic response. At different concentrations, benzoate either blocked propionate chemotaxis or reduced the sensitivity of propionate chemotaxis, an effect consistent with its role as a competitive inhibitor of uptake. Bacteria only showed chemotaxis to ammonium when grown under ammonia-limited conditions, which derepressed the ammonium transport system. Both chemotaxis and uptake were sensitive to the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, suggesting an involvement of the proton motive force in chemotaxis, at least at the level of transport. There was no evidence for internal pH as a sensory signal. These results suggest a requirement for the uptake of attractants in chemotactic sensing in R. sphaeroides.
Collapse
Affiliation(s)
- C J Ingham
- Department of Botany and Microbiology, University College London, London, United Kingdom
| | | |
Collapse
|