1
|
Phosphate-Solubilizing Fungi: Current Perspective and Future Need for Agricultural Sustainability. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
High stimulus unmasks positive feedback in an autoregulated bacterial signaling circuit. Proc Natl Acad Sci U S A 2008; 105:17457-62. [PMID: 18987315 DOI: 10.1073/pnas.0807278105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined the effect of positive autoregulation on the steady-state behavior of the PhoQ/PhoP two-component signaling system in Escherichia coli. We found that autoregulation has no effect on the steady-state output for a large range of input stimulus, which was modulated by varying the concentration of magnesium in the growth medium. We provide an explanation for this finding with a simple model of the PhoQ/PhoP circuit. The model predicts that even when autoregulation is manifest across a range of stimulus levels, the effects of positive feedback on the steady-state output emerge only in the limit that the system is strongly stimulated. Consistent with this prediction, amplification associated with autoregulation was observed in growth-limiting levels of magnesium, a condition that strongly activates PhoQ/PhoP. In a further test of the model, we found that strains harboring a phosphatase-defective PhoQ showed strong positive feedback and considerable cell-to-cell variability under growth conditions where the wild-type circuit did not show this behavior. Our results demonstrate a simple and general mechanism for regulating the positive feedback associated with autoregulation within a bacterial signaling circuit to boost response range and maintain a relatively uniform and graded output.
Collapse
|
3
|
The legacy of HfrH: mutations in the two-component system CreBC are responsible for the unusual phenotype of an Escherichia coli arcA mutant. J Bacteriol 2008; 190:3404-7. [PMID: 18326580 DOI: 10.1128/jb.00040-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains derived from HfrH carrying the arcA2 null mutation exhibit a higher respiratory rate, enhanced glucose consumption, and a more-reduced intracellular redox state than arcA deletion mutants of a different lineage. The phenotype of the arcA2 mutants was due to the presence of a creC constitutive mutation introduced by P1 transduction.
Collapse
|
4
|
Blodgett JAV, Zhang JK, Metcalf WW. Molecular cloning, sequence analysis, and heterologous expression of the phosphinothricin tripeptide biosynthetic gene cluster from Streptomyces viridochromogenes DSM 40736. Antimicrob Agents Chemother 2005; 49:230-40. [PMID: 15616300 PMCID: PMC538901 DOI: 10.1128/aac.49.1.230-240.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fosmid library from genomic DNA of Streptomyces viridochromogenes DSM 40736 was constructed and screened for the presence of genes known to be involved in the biosynthesis of phosphinothricin tripeptide (PTT). Eight positives were identified, one of which was able to confer PTT biosynthetic capability upon Streptomyces lividans after integration of the fosmid into the chromosome of this heterologous host. Sequence analysis of the 40,241-bp fosmid insert revealed 29 complete open reading frames (ORFs). Deletion analysis demonstrated that a minimum set of 24 ORFs were required for PTT production in the heterologous host. Sequence analysis revealed that most of these PTT genes have been previously identified in either S. viridochromogenes or S. hygroscopicus (or both), although only 11 out of 24 of these ORFs have experimentally defined functions. Three previously unknown genes within the cluster were identified and are likely to have roles in the stepwise production of phosphonoformate from phosphonoacetaldehyde. This is the first report detailing the entire PTT gene cluster from any producing streptomycete.
Collapse
Affiliation(s)
- Joshua A V Blodgett
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | | | | |
Collapse
|
5
|
Avison MB, Horton RE, Walsh TR, Bennett PM. Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media. J Biol Chem 2001; 276:26955-61. [PMID: 11350954 DOI: 10.1074/jbc.m011186200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified nine genes, the expression of which are regulated by the CreBC two-component system: the first members of the cre regulon. They are divided into eight transcriptional units, each having a promoter-proximal TTCACnnnnnnTTCAC "cre-tag" motif. The cre regulon genes are: the ackA/pta operon, the products of which collectively catalyze the conversion of acetyl-CoA into acetate and ATP; talA, which encodes an enzyme involved in the mobilization of glyceraldehyde-3-phosphate into the pentose phosphate pathway; radC, which encodes a RecG-like DNA recombination/repair function; malE, which is the first gene in the malEFG maltose transporter operon; trgB, which encodes an ADP-ribose pyrophosphorylase; and three other genes, creD, yidS and yieI, the products of which have not been assigned a function. Expression of each of these cre regulon genes is induced via CreBC during growth in minimal media, with the exception of malE, which is more tightly repressed. The diverse functions encoded by the cre regulon suggest that CreBC is a global regulator that sits right at the heart of metabolic control in Escherichia coli.
Collapse
Affiliation(s)
- M B Avison
- Bristol Centre for Antimicrobial Research and Evaluation, Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom.
| | | | | | | |
Collapse
|
6
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
7
|
Kim SK, Wilmes-Riesenberg MR, Wanner BL. Involvement of the sensor kinase EnvZ in the in vivo activation of the response-regulator PhoB by acetyl phosphate. Mol Microbiol 1996; 22:135-47. [PMID: 8899716 DOI: 10.1111/j.1365-2958.1996.tb02663.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three signalling pathways lead to activation of the phosphate (Pho) regulon by phosphorylation of the response-regulator PhoB in Escherichia coli. One pathway responds to the extracellular inorganic phosphate (PI) level and leads to activation by the Pi sensor kinase, PhoR. The other two pathways are Pi independent and are apparent in the absence of PhoR. One Pi-independent pathway responds to the level of an unknown catabolite and leads to activation by the catabolite regulatory sensor kinase, CreC (originally called PhoM); the other Pi-independent pathway responds to acetyl phosphate and leads to activation by a process requiring acetyl phosphate. Here we show that activation of PhoB by acetyl phosphate can require the sensor kinase EnvZ. Accordingly, we propose that the in vivo activation of PhoB by acetyl phosphate (and perhaps other two-component response-regulators as well) probably always requires a certain kinase that can vary depending upon the growth conditions.
Collapse
Affiliation(s)
- S K Kim
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
8
|
Abstract
The Escherichia coli phosphate (PHO) regulon includes 31 (or more) genes arranged in eight separate operons. All are coregulated by environmental (extra-cellular) phosphate and are probably involved in phosphorus assimilation. Pi control of these genes requires the sensor PhoR, the response regulator PhoB, the binding protein-dependent Pi-specific transporter Pst, and the accessory protein PhoU. During Pi limitation, PhoR turns on genes of the PHO regulon by phosphorylating PhoB that in turn activates transcription by binding to promoters that share an 18-base consensus PHO Box. When Pi is in excess, PhoR, Pst, and PhoU together turn off the PHO regulon, presumably by dephosphorylating PhoB. In addition, two Pi-independent controls that may be forms of cross regulation turn on the PHO regulon in the absence of PhoR. The sensor CreC, formerly called PhoM, phosphorylates PhoB in response to some (unknown) catabolite, while acetyl phosphate may directly phosphorylate PhoB. Cross regulation of the PHO regulon by CreC and acetyl phosphate may be examples of underlying control mechanisms important for the general (global) control of cell growth and metabolism.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
9
|
Rabin RS, Stewart V. Either of two functionally redundant sensor proteins, NarX and NarQ, is sufficient for nitrate regulation in Escherichia coli K-12. Proc Natl Acad Sci U S A 1992; 89:8419-23. [PMID: 1528845 PMCID: PMC49931 DOI: 10.1073/pnas.89.18.8419] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nitrate acts through the response regulator NarL to activate and repress anaerobic respiratory gene expression in Escherichia coli. The narX gene product encodes a cognate sensor (histidine protein kinase). However, previous work discovered that NarL-mediated nitrate regulation is essentially normal in delta narX deletion mutants. In other two-component regulatory systems studied, the cognate sensor gene is essential for normal regulation. We suggested that NarX-mediated signal transduction reactions are also provided by a functionally redundant nitrate sensor, NarQ. We report here the identification and analysis of narQ insertion mutants. In narX+ strains, a narQ::Tn10 insertion had no perceptible effect on nitrate regulation. However, the same narQ::Tn10 insertion eliminated nitrate regulation when present in delta narX deletion strains. Thus, either narX+ or narQ+ was sufficient for essentially normal NarL-mediated nitrate regulation. The narQ gene mapped to 53 minutes on the E. coli genetic map, a location distinct from all known nitrate regulatory or target genes. The predicted NarQ sequence shares substantial similarity with NarX, particularly in the histidine protein kinase region and in a region of shared similarity with the methyl-accepting chemotaxis proteins. Both NarQ and NarX apparently have N-terminal periplasmic domains, but the primary structures of these regions are largely dissimilar in the two sequences. Analysis of narX* and narL missense alleles in narQ+ versus narQ::Tn10 backgrounds suggests that NarQ and NarX may have subtle functional differences.
Collapse
Affiliation(s)
- R S Rabin
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101
| | | |
Collapse
|
10
|
Wilmes-Riesenberg MR, Wanner BL. TnphoA and TnphoA' elements for making and switching fusions for study of transcription, translation, and cell surface localization. J Bacteriol 1992; 174:4558-75. [PMID: 1378054 PMCID: PMC206251 DOI: 10.1128/jb.174.14.4558-4575.1992] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe a set of elements based on the transposon TnphoA for making transcriptional fusions to the lacZ gene and for making translational fusions to the phoA or lacZ structural gene. Each element can be switched, one for another, by homologous recombination, thereby allowing testing for transcription, translation, or cell surface localization determinants at the same site within a gene. We describe three kinds of elements for making each fusion type. Two kinds are transposition proficient (Tnp+): one encodes kanamycin resistance, and the other encodes tetracycline resistance. The third kind is transposition defective (Tnp-) and encodes kanamycin resistance. In addition, we describe one Tnp- element that has no reporter gene and encodes chloramphenicol resistance; this element is used primarily as a tool to aid in switching fusions. Switching is efficient because each element has in common 254 bp of DNA at the phoA end and 187 bp (or more) of DNA at the IS50R end of TnphoA, and switching is straightforward because individual elements encode different drug resistances. Thus, switched recombinants can be selected as drug-resistant transductants, and they can be recognized as ones that have lost the parental drug resistance and fusion phenotype. Further, switching Tnp+ elements to Tnp- elements reduces problems due to transposition that can arise in P1 crosses or cloning experiments. Some TnphoA and TnphoA' elements cause polar mutations, while others provide an outward promoter for downstream transcription. This feature is especially useful in the determination of operon structures. Strategies for the use of TnphoA and TnphoA' elements in gene analysis are also described.
Collapse
|
11
|
Wanner BL, Wilmes-Riesenberg MR. Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli. J Bacteriol 1992; 174:2124-30. [PMID: 1551836 PMCID: PMC205829 DOI: 10.1128/jb.174.7.2124-2130.1992] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two controls of the phosphate (PHO) regulon require sensor proteins that are protein kinases that phosphorylate the regulator, PhoB, which in turn activates transcription only when phosphorylated. Pi control requires the Pi sensor PhoR; the other control is Pi independent and requires the sensor CreC (formerly called PhoM). Here we describe an additional control of the PHO regulon which is Pi independent and requires neither PhoR nor CreC. This control is regulated by a two-step pathway in carbon metabolism in which acetyl coenzyme A, Pi, and ADP are converted into acetate, coenzyme A, and ATP via the enzymes phosphotransacetylase (Pta) and acetate kinase (AckA). It responds to the synthesis of acetyl phosphate, an intermediate in the Pta-AckA pathway. Since the synthesis of acetyl phosphate via this pathway leads to the incorporation of Pi into ATP, the primary phosphoryl donor in metabolism, we propose that a regulatory coupling(s) may exist between the PHO regulon, which encodes genes for Pi uptake, and genes for enzymes in central metabolism for incorporation of Pi into ATP. Regulatory interactions of this sort may be important in global control. Further, it provides a functional basis for the concept of cross-regulation in the PHO regulon. This is also the first evidence that acetyl phosphate may have a role as an effector of gene regulation.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
12
|
Romeo T, Moore J, Smith J. A simple method for cloning genes involved in glucan biosynthesis: isolation of structural and regulatory genes for glycogen synthesis in Escherichia coli. Gene X 1991; 108:23-9. [PMID: 1662181 DOI: 10.1016/0378-1119(91)90483-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A simple and widely applicable method for cloning genes involved in glucan biosynthesis is described. An Escherichia coli genomic library was prepared in the low-copy plasmid, pLG339, and E. coli transformants from this library were screened by staining with iodine vapor. Colonies that stained darker than the control were isolated and characterized. The three classes of clones that were identified included: (i) plasmids encoding E. coli glycogen biosynthetic (glg) structural genes, (ii) clones that resulted in elevated glycogen levels, but did not encode glg structural genes or enhance the level of the first enzyme of the pathway, ADPglucose pyrophosphorylase (AGPP), and (iii) clones that enhanced the level of AGPP, but did not encode this enzyme. Two clones from the latter class also enhanced glgC'-'lacZ-encoded beta-galactosidase activity, and may encode factors that regulate the expression of glg structural genes. It should be possible to readily clone glycogen biosynthetic genes from other bacterial species via this method. The method could be made specific for a desired glg gene by using a recipient strain that is defective in the gene of interest.
Collapse
Affiliation(s)
- T Romeo
- Department of Microbiology and Immunology, Texas College of Osteopathic Medicine/University of North Texas, Fort Worth 76107
| | | | | |
Collapse
|
13
|
Metcalf WW, Wanner BL. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi. J Bacteriol 1991; 173:587-600. [PMID: 1846145 PMCID: PMC207049 DOI: 10.1128/jb.173.2.587-600.1991] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The phn (psiD) gene cluster is induced during Pi limitation and is required for the use of phosphonates (Pn) as a phosphorus (P) source. Twelve independent Pn-negative (Pn-) mutants have lesions in the phn gene cluster which, as determined on the basis of recombination frequencies, is larger than 10 kbp. This distance formed the basis for determining the complete DNA sequence of a 15.6-kbp BamHI fragment, the sequences of which suggested an operon with 17 open reading frames, denoted (in alphabetical order) the phnA to phnQ genes (C.-M. Chen, Q.-Z. Ye, Z. Zhu, B. L. Wanner, and C. T. Walsh, J. Biol. Chem. 265:4461-4471, 1990) Ten Pn- lesions lie in the phnD, phnE, phnH, phnJ, phnK, phnO, and phnP genes. We propose a smaller gene cluster with 14 open reading frames, phnC to phnP, which probably encode transporter and regulatory functions, in addition to proteins needed in Pn biodegradation. On the basis of the effects on phosphite (Pt), Pi ester, and Pi use, we propose that PhnC, PhnD, and PhnE constitute a binding protein-dependent Pn transporter which also transports Pt, Pi esters, and Pi. We propose that PhnO has a regulatory role because a phnO lesion affects no biochemical function, except for those due to polarity. Presumably, the 10 other phn gene products mostly act in an enzyme complex needed for breaking the stable carbon-phosphorus bond. Interestingly, all Pn- mutations abolish the use not only of Pn but also of Pt, in which P is in the +3 oxidation state. Therefore, Pn metabolism and Pt metabolism are related, supporting a biochemical mechanism for carbon-phosphorus bond cleavage which involves redox chemistry at the P center. Furthermore, our discovery of Pi-regulated genes for the assimilation of reduced P suggests that a P redox cycle may be important in biology.
Collapse
Affiliation(s)
- W W Metcalf
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
14
|
Amemura M, Makino K, Shinagawa H, Nakata A. Cross talk to the phosphate regulon of Escherichia coli by PhoM protein: PhoM is a histidine protein kinase and catalyzes phosphorylation of PhoB and PhoM-open reading frame 2. J Bacteriol 1990; 172:6300-7. [PMID: 2228961 PMCID: PMC526813 DOI: 10.1128/jb.172.11.6300-6307.1990] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcription of the genes in the phosphate regulon in Escherichia coli is activated by PhoB protein, which is phosphorylated by PhoR protein under phosphate-limiting conditions. In the absence of the phoR function, the genes in the phosphate regulon are expressed constitutively and the expression is dependent on the function of phoM and phoB. We constructed a plasmid with a lacZ'-'phoM fusion gene, which encoded a hybrid protein (PhoM1206) in which the hydrophobic amino-terminal half of the native PhoM was replaced by beta-galactosidase. The phoM1206 gene could complement the phoM mutation in vivo. We purified PhoM1206 from the overproducing strain carrying the plasmid; it was autophosphorylated at a histidine residue in the presence of ATP, and the phospho-PhoM1206 phosphorylated PhoB. PhoM1206 could also transphosphorylate the product of phoM-orf2, which is structurally homologous to phoB and located immediately upstream of phoM. Although PhoR1084 that lacked the hydrophobic amino-terminal region of the native PhoR protein transphosphorylated PhoB, it could not phosphorylate PhoM-open reading frame 2. Therefore, cross talk by protein phosphorylation appears to occur from PhoM to PhoB but not from PhoR to PhoM-open reading frame 2.
Collapse
Affiliation(s)
- M Amemura
- Department of Experimental Chemotherapy, Osaka University, Japan
| | | | | | | |
Collapse
|
15
|
Wanner BL, Wilmes MR, Young DC. Control of bacterial alkaline phosphatase synthesis and variation in an Escherichia coli K-12 phoR mutant by adenyl cyclase, the cyclic AMP receptor protein, and the phoM operon. J Bacteriol 1988; 170:1092-102. [PMID: 3277944 PMCID: PMC210878 DOI: 10.1128/jb.170.3.1092-1102.1988] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutant phoR cells show a clonal variation phenotype with respect to bacterial alkaline phosphatase (BAP) synthesis. BAP clonal variation is characterized by an alternation between a Bap+ and Bap- phenotype. The switching is regulated by the phoM operon and the presence of glucose; the pho-510 mutant form of the phoM operon abolishes both BAP clonal variation and the effect of glucose (B.L. Wanner, J. Bacteriol. 169:900-903, 1987). In this paper we show that a mutation of the adenyl cyclase (cya) and the cyclic AMP receptor protein (crp) gene also abolish BAP clonal variation; either simultaneously reduces the amount of BAP made in phoR mutants. Also, the pho-510 mutation is epistatic; it increases BAP synthesis in delta cya phoR and delta crp phoR mutants. These data are consistent with the wild-type phoM operon having a negative, as well as a positive, regulatory role in gene expression. Furthermore, the data suggest that adenyl cyclase and Crp indirectly regulate BAP synthesis in a phoR mutant via an interaction with the phoM operon or its gene products. However, phoM operon expression was unaffected when tested with phoM operon lacZ transcriptional fusions. In addition, the switching Bap phenotype was not associated with an alternation in phoM operon expression.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
16
|
Wanner BL, Wilmes MR, Hunter E. Molecular cloning of the wild-type phoM operon in Escherichia coli K-12. J Bacteriol 1988; 170:279-88. [PMID: 3275616 PMCID: PMC210639 DOI: 10.1128/jb.170.1.279-288.1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A metastable bacterial alkaline phosphatase (Bap) phenotype is seen in phoR mutants, which alternately express a Bap-constitutive or -negative phenotype. The alteration is affected by mutations in the phoM region near 0 min. By molecular cloning of the wild-type phoM operon onto a multicopy plasmid and recombining onto the plasmid the pho-510 mutation that abolishes variation, the phoM operon, rather than some nearby gene, was shown to control variation. Complementation tests indicated that the wild-type phoM allele is dominant to the pho-510 mutation when both are in single copy, but whichever allele is present in higher copy appears as dominant when multicopy plasmids are examined. The alternating phenotypic variation of BAP synthesis was not seen in phoR+ cells with multicopy wild-type phoM plasmids, thus showing that the variation is associated with phoM-dependent Bap expression. The alternation acted at the level of phoA transcription; it was also recA independent. BAP clonal variation is phenotypically similar to Salmonella phase variation, which is controlled by a DNA rearrangement. No evidence was found for a DNA change near the phoM operon that might be responsible for the variable Bap phenotype.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
17
|
Abstract
The phoB and phoR genes encode a transcription activator and a sensory protein of the phosphate regulon, respectively. It is shown here that they were transcribed as an operon in which the phoB gene was promoter proximal. Although an operon structure was suggested previously (K. Makino, H. Shinagawa, M. Amemura, and A. Nakata, J. Mol. Biol. 190:37-44 and 192:549-556, 1986), previous results showed only that phoR gene expression during phosphate limitation is dependent on the upstream phoB promoter. The phoR gene could still have had its own promoter for expression in the presence of phosphate. Two polar transposon-induced mutations are described which simultaneously abolished phoB and phoR gene function in cis; one mutation mapped in the phoB gene, and the other mapped upstream of the phoB gene. These results demonstrate an operon structure, in which phoR gene function required expression from the phoB promoter. Unexpectedly, an antisense pho omega Mu d1(lacZ) insertion within the promoter-proximal end of the phoB gene expressed the lacZ reporter gene, thus allowing for the possibility that the phoBR operon is regulated by an antisense RNA.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
18
|
Abstract
The vector pBW2 was made to selectively clone chimeric plasmids with chromosomal Mu d(bla lacZ) transcriptional or translational fusions. It was tetracycline resistant and had the carboxyl-terminal end of bla distal to its PstI site. Because ligation of PstI-digested chromosomal DNA of a Mu d(bla lacZ) insertion with pBW2 restored bla, ampicillin-resistant chimeric plasmids were selectable. These plasmids had the Mu d bla amino terminus and simultaneously acquired other Mu d sequences including lacZ, the chromosomal fusion joint, and the DNA adjacent to the nearest chromosomal PstI site. The plasmid pBW2 was useful in the molecular cloning of several psi and pho::lacZ(Mu d) fusions, as well as chromosomal genes located near Mu d insertions.
Collapse
|
19
|
Wackett LP, Wanner BL, Venditti CP, Walsh CT. Involvement of the phosphate regulon and the psiD locus in carbon-phosphorus lyase activity of Escherichia coli K-12. J Bacteriol 1987; 169:1753-6. [PMID: 3549702 PMCID: PMC212012 DOI: 10.1128/jb.169.4.1753-1756.1987] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Escherichia coli K-12 can readily mutate to use methylphosphonic acid as the sole phosphorus source by a direct carbon-to-phosphorus (C-P) bond cleavage activity that releases methane and Pi. The in vivo C-P lyase activity is both physiologically and genetically regulated as a member of the phosphate regulon. Since psiD::lacZ(Mu d1) mutants cannot metabolize methylphosphonic acid, psiD may be the structural gene(s) for C-P lyase.
Collapse
|