1
|
Abstract
Vitamin B6 is an ensemble of six interconvertible vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and their 5'-phosphate derivatives, PNP, PMP, and PLP. Pyridoxal 5'-phosphate is a coenzyme in a variety of enzyme reactions concerning transformations of amino and amino acid compounds. This review summarizes all known and putative PLP-binding proteins found in the Escherichia coli MG1655 proteome. PLP can have toxic effects since it contains a very reactive aldehyde group at its 4' position that easily forms aldimines with primary and secondary amines and reacts with thiols. Most PLP is bound either to the enzymes that use it as a cofactor or to PLP carrier proteins, protected from the cellular environment but at the same time readily transferable to PLP-dependent apoenzymes. E. coli and its relatives synthesize PLP through the seven-step deoxyxylulose-5-phosphate (DXP)-dependent pathway. Other bacteria synthesize PLP in a single step, through a so-called DXP-independent pathway. Although the DXP-dependent pathway was the first to be revealed, the discovery of the widespread DXP-independent pathway determined a decline of interest in E. coli vitamin B6 metabolism. In E. coli, as in most organisms, PLP can also be obtained from PL, PN, and PM, imported from the environment or recycled from protein turnover, via a salvage pathway. Our review deals with all aspects of vitamin B6 metabolism in E. coli, from transcriptional to posttranslational regulation. A critical interpretation of results is presented, in particular, concerning the most obscure aspects of PLP homeostasis and delivery to PLP-dependent enzymes.
Collapse
|
2
|
Abstract
The biosynthesis of histidine in Escherichia coli and Salmonella typhimurium has been an important model system for the study of relationships between the flow of intermediates through a biosynthetic pathway and the control of the genes encoding the enzymes that catalyze the steps in a pathway. This article provides a comprehensive review of the histidine biosynthetic pathway and enzymes, including regulation of the flow of intermediates through the pathway and mechanisms that regulate the amounts of the histidine biosynthetic enzymes. In addition, this article reviews the structure and regulation of the histidine (his) biosynthetic operon, including transcript processing, Rho-factor-dependent "classical" polarity, and the current model of his operon attenuation control. Emphasis is placed on areas of recent progress. Notably, most of the enzymes that catalyze histidine biosynthesis have recently been crystallized, and their structures have been determined. Many of the histidine biosynthetic intermediates are unstable, and the histidine biosynthetic enzymes catalyze some chemically unusual reactions. Therefore, these studies have led to considerable mechanistic insight into the pathway itself and have provided deep biochemical understanding of several fundamental processes, such as feedback control, allosteric interactions, and metabolite channeling. Considerable recent progress has also been made on aspects of his operon regulation, including the mechanism of pp(p)Gpp stimulation of his operon transcription, the molecular basis for transcriptional pausing by RNA polymerase, and pathway evolution. The progress in these areas will continue as sophisticated new genomic, metabolomic, proteomic, and structural approaches converge in studies of the histidine biosynthetic pathway and mechanisms of control of his biosynthetic genes in other bacterial species.
Collapse
|
3
|
Abstract
The biosynthesis of histidine in Escherichia coli and Salmonella typhimurium has been an important model system for the study of relationships between the flow of intermediates through a biosynthetic pathway and the control of the genes encoding the enzymes that catalyze the steps in a pathway. This article provides a comprehensive review of the histidine biosynthetic pathway and enzymes, including regulation of the flow of intermediates through the pathway and mechanisms that regulate the amounts of the histidine biosynthetic enzymes. In addition, this article reviews the structure and regulation of the histidine (his) biosynthetic operon, including transcript processing, Rho-factor-dependent "classical" polarity, and the current model of his operon attenuation control. Emphasis is placed on areas of recent progress. Notably, most of the enzymes that catalyze histidine biosynthesis have recently been crystallized, and their structures have been determined. Many of the histidine biosynthetic intermediates are unstable, and the histidine biosynthetic enzymes catalyze some chemically unusual reactions. Therefore, these studies have led to considerable mechanistic insight into the pathway itself and have provided deep biochemical understanding of several fundamental processes, such as feedback control, allosteric interactions, and metabolite channeling. Considerable recent progress has also been made on aspects of his operon regulation, including the mechanism of pp(p)Gpp stimulation of his operon transcription, the molecular basis for transcriptional pausing by RNA polymerase, and pathway evolution. The progress in these areas will continue as sophisticated new genomic, metabolomic, proteomic, and structural approaches converge in studies of the histidine biosynthetic pathway and mechanisms of control of his biosynthetic genes in other bacterial species.
Collapse
|
4
|
Pease AJ, Roa BR, Luo W, Winkler ME. Positive growth rate-dependent regulation of the pdxA, ksgA, and pdxB genes of Escherichia coli K-12. J Bacteriol 2002; 184:1359-69. [PMID: 11844765 PMCID: PMC134838 DOI: 10.1128/jb.184.5.1359-1369.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found that transcription of the pdxA and pdxB genes, which mediate steps in the biosynthesis of the essential coenzyme pyridoxal 5"-phosphate, and the ksgA gene, which encodes an rRNA modification enzyme and is partly cotranscribed with pdxA, is subject to positive growth rate regulation in Escherichia coli K-12. The amounts of the pdxA-ksgA cotranscript and pdxB- and ksgA-specific transcripts and expression from pdxA- and pdxB-lacZ fusions increased as the growth rate increased. The half-lives of ksgA- and pdxB-specific transcripts were not affected by the growth rate, whereas the half-life of the pdxA-ksgA cotranscript was too short to be measured accurately. A method of normalization was applied to determine the amount of mRNA synthesized per gene and the rate of protein accumulation per gene. Normalization removed an apparent anomaly at fast growth rates and demonstrated that positive regulation of pdxB occurs at the level of transcription initiation over the whole range of growth rates tested. RNA polymerase limitation and autoregulation could not account for the positive growth rate regulation of pdxA, pdxB, and ksgA transcription. On the other hand, growth rate regulation of the amount of the pdxA-ksgA cotranscript was abolished by a fis mutation, suggesting a role for the Fis protein. In contrast, the fis mutation had no effect on pdxB- or ksgA-specific transcript amounts. The amounts of the pdxA-ksgA cotranscript and ksgA-specific transcript were repressed in the presence of high intracellular concentrations of guanosine tetraphosphate; however, this effect was independent of relA function for the pdxA-ksgA cotranscript. Amounts of the pdxB-specific transcript remained unchanged during amino acid starvation in wild-type and relA mutant strains.
Collapse
Affiliation(s)
- Andrew J Pease
- Department of Microbiology and Molecular Genetics, University of Texas Houston Medical School, Houston, TX 77030-1501, USA
| | | | | | | |
Collapse
|
5
|
Drewke C, Leistner E. Biosynthesis of vitamin B6 and structurally related derivatives. VITAMINS AND HORMONES 2001; 61:121-55. [PMID: 11153264 DOI: 10.1016/s0083-6729(01)61004-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In spite of the rather simple structure of pyridoxal 5'-phosphate (I), a member of the vitamin B6 group, the elucidation of its de novo biosynthesis remained largely unexplored until recently. Experiments designed to investigate the formation of the vitamin B6 pyridine nucleus mainly concentrated on Escherichia coli. The results of tracer experiments with radioactive and stable isotopes, feeding experiments, and molecular biological studies led to the prediction that 4-hydroxy-L-threonine (VIII, R = H) and 1-deoxy-D-xylulose (VII, R = H) are precursors which are assembled to yield the carbon-nitrogen skeleton of vitamin B6. At this point, the involvement of the phosphorylated forms of these precursors in this assembly seems quite clear. However, vitamin B6 biosynthesis in organisms other than E. coli remains largely unknown. Toxic derivatives of vitamin B6, such as ginkgotoxin, occurring in higher plants may be suitable targets to gain further insight into this tricky problem.
Collapse
Affiliation(s)
- C Drewke
- Institut für Pharmazeutische Biologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | | |
Collapse
|
6
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
7
|
Zhao G, Winkler ME. Kinetic limitation and cellular amount of pyridoxine (pyridoxamine) 5'-phosphate oxidase of Escherichia coli K-12. J Bacteriol 1995; 177:883-91. [PMID: 7860596 PMCID: PMC176679 DOI: 10.1128/jb.177.4.883-891.1995] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report the purification and enzymological characterization of Escherichia coli K-12 pyridoxine (pyridoxamine) 5'-phosphate (PNP/PMP) oxidase, which is a key committed enzyme in the biosynthesis of the essential coenzyme pyridoxal 5'-phosphate (PLP). The enzyme encoded by pdxH was overexpressed and purified to electrophoretic homogeneity by four steps of column chromatography. The purified PdxH enzyme is a thermally stable 51-kDa homodimer containing one molecule of flavin mononucleotide (FMN). In the presence of molecular oxygen, the PdxH enzyme uses PNP or PMP as a substrate (Km = 2 and 105 microM and kcat = 0.76 and 1.72 s-1 for PNP and PMP, respectively) and produces hydrogen peroxide. Thus, under aerobic conditions, the PdxH enzyme acts as a classical monofunctional flavoprotein oxidase with an extremely low kcat turnover number. Comparison of kcat/Km values suggests that PNP rather than PMP is the in vivo substrate of E. coli PdxH oxidase. In contrast, the eukaryotic enzyme has similar kcat/Km values for PNP and PMP and seems to act as a scavenger. E. coli PNP/PMP oxidase activities were competitively inhibited by the pathway end product, PLP, and by the analog, 4-deoxy-PNP, with Ki values of 8 and 105 microM, respectively. Immunoinhibition studies suggested that the catalytic domain of the enzyme may be composed of discontinuous residues on the polypeptide sequence. Two independent quantitation methods showed that PNP/PMP oxidase was present in about 700 to 1,200 dimer enzyme molecules per cell in E. coli growing exponentially in minimal medium plus glucose at 37 degrees C. Thus, E. coli PNP/PMP oxidase is an example of a relatively abundant, but catalytically sluggish, enzyme committed to PLP coenzyme biosynthesis.
Collapse
Affiliation(s)
- G Zhao
- Department of Microbiology and Molecular Genetics, University of Texas, Houston Medical School 77030
| | | |
Collapse
|
8
|
Björk GR. Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:263-338. [PMID: 7538683 DOI: 10.1016/s0079-6603(08)60817-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- G R Björk
- Department of Microbiology, Umeå University, Sweden
| |
Collapse
|
9
|
Lam HM, Winkler ME. Characterization of the complex pdxH-tyrS operon of Escherichia coli K-12 and pleiotropic phenotypes caused by pdxH insertion mutations. J Bacteriol 1992; 174:6033-45. [PMID: 1356963 PMCID: PMC207668 DOI: 10.1128/jb.174.19.6033-6045.1992] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the first molecular genetic analysis of a pyridoxine 5'-phosphate oxidase, the PdxH gene product of Escherichia coli K-12. Chromosomal insertions in and around pdxH were generated with various transposons, and the resulting phenotypes were characterized. The DNA sequence of pdxH was determined, and the promoters of pdxH and the downstream gene tyrS, which encodes tyrosyl-tRNA synthetase, were mapped by RNase T2 protection assays of chromosomal transcripts. These combined approaches led to the following conclusions: (i) pdxH is transcribed from a sigma 70-type promoter and shares its transcript with tyrS; (ii) tyrS is additionally transcribed from a relatively strong, nonconventional internal promoter that may contain an upstream activating sequence but whose expression is unaffected by a fis mutation; (iii) PdxH oxidase is basic, has a molecular mass of 25,545 Da, and shares striking homology (greater than 40% identity) with the developmentally regulated FprA protein of Myxococcus xanthus; (iv) mild pyridoxal 5'-phosphate limitation of pdxH mutants inhibits cell division and leads to formation of unsegregated nucleoids; (v) E. coli PdxH oxidase is required aerobically and anaerobically, but second-site suppressors that replace pdxH function entirely can be isolated; and (vi) pdxH mutants excrete significant amounts of L-glutamate and a compound, probably alpha-ketoisovalerate, that triggers L-valine inhibition of E. coli K-12 strains. These findings extend earlier observations that pyridoxal 5'-phosphate biosynthetic and aminoacyl-tRNA synthetase genes are often members of complex, multifunctional operons. Our results also show that loss of pdxH function seriously disrupts cellular metabolism in unanticipated ways.
Collapse
Affiliation(s)
- H M Lam
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030
| | | |
Collapse
|
10
|
Lam HM, Tancula E, Dempsey WB, Winkler ME. Suppression of insertions in the complex pdxJ operon of Escherichia coli K-12 by lon and other mutations. J Bacteriol 1992; 174:1554-67. [PMID: 1537800 PMCID: PMC206551 DOI: 10.1128/jb.174.5.1554-1567.1992] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Complementation analyses using minimal recombinant clones showed that all known pdx point mutations, which cause pyridoxine (vitamin B6) or pyridoxal auxotrophy, are located in the pdxA, pdxB, serC, pdxJ, and pdxH genes. Antibiotic enrichments for chromosomal transposon mutants that require pyridoxine (vitamin B6) or pyridoxal led to the isolation of insertions in pdxA, pdxB, and pdxH but not in pdxJ. This observation suggested that pdxJ, like pdxA, pdxB, and serC, might be in a complex operon. To test this hypothesis, we constructed stable insertion mutations in and around pdxJ in plasmids and forced them into the bacterial chromosome. Physiological properties of the resulting insertion mutants were characterized, and the DNA sequence of pdxJ and adjacent regions was determined. These combined approaches led to the following conclusions: (i) pdxJ is the first gene in a two-gene operon that contains a gene, temporarily designated dpj, essential for Escherichia coli growth; (ii) expression of the rnc-era-recO and pdxJ-dpj operons can occur independently, although the pdxJ-dpj promoter may lie within recO; (iii) pdxJ encodes a 26,384-Da polypeptide whose coding region is preceded by a PDX box, and dpj probably encodes a basic, 14,052-Da polypeptide; (iv) mini-Mud insertions in dpj and pdxJ, which are polar on dpj, severely limit E. coli growth; and (v) three classes of suppressors, including mutations in lon and suppressors of lon, that allow faster growth of pdxJ::mini-Mud mutants can be isolated. A model to account for the action of dpj suppressors is presented, and aspects of this genetic analysis are related to the pyridoxal 5'-phosphate biosynthetic pathway.
Collapse
Affiliation(s)
- H M Lam
- Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | | | |
Collapse
|
11
|
Tsui HC, Arps PJ, Connolly DM, Winkler ME. Absence of hisT-mediated tRNA pseudouridylation results in a uracil requirement that interferes with Escherichia coli K-12 cell division. J Bacteriol 1991; 173:7395-400. [PMID: 1938930 PMCID: PMC209251 DOI: 10.1128/jb.173.22.7395-7400.1991] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We show that hisT function is required for normal growth of Escherichia coli K-12, since a lack of hisT-mediated pseudouridine tRNA modification causes a uracil requirement that interferes with cell division. We also show that hisT transcription is positively growth rate regulated in exponentially growing bacteria and is induced during the transition from exponential to stationary growth phase.
Collapse
Affiliation(s)
- H C Tsui
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030
| | | | | | | |
Collapse
|
12
|
Lam HM, Winkler ME. Metabolic relationships between pyridoxine (vitamin B6) and serine biosynthesis in Escherichia coli K-12. J Bacteriol 1990; 172:6518-28. [PMID: 2121717 PMCID: PMC526841 DOI: 10.1128/jb.172.11.6518-6528.1990] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We propose a pathway leading from erythrose-4-phosphate and glutamate to nitrogen 1 and carbons 5,5', and 6 of the pyridoxine ring. This pathway, which parallels the phosphorylated pathway of serine biosynthesis, is predicted on the homology between PdxB and SerA, the structural similarity between serine and 4-hydroxythreonine, and the possible involvement of SerC in pyridoxine biosynthesis. Several predictions of this hypothetical scheme were tested. Consistent with the proposed pathway, supplement inhibition patterns strongly suggest that SerA enzyme acts in a an alternate pathway of pyridoxine biosynthesis in pdxB mutants. Direct enzyme assays detected erythrose-4-phosphate dehydrogenase activity in crude extracts, which again supports the proposed pathway. Chromosomal insertions in serC caused a requirement for pyridoxine, serine, and aromatic compounds, which directly verified that SerC functions in the pyridoxine biosynthetic pathway. Complementation analysis showed that pdxF and pdxC mutations reported previously are most likely alleles of serC. Growth of serC chromosomal insertion mutants on glycoalaldehyde was found to occur without acquisition of second-site mutations and confirmed that pdxB and serC, but not pdxA, function in the same branch of the pyridoxine pathway. In addition, serC::mini-Mu d insertions revealed that the complex serC-aroA operon lacks internal promoters, that the amino terminus of SerC is not strictly essential for activity, and that antisense transcription occurs in the serC-aroA operon. Growth responses of pdxA, pdxB, and serC mutants to beta-hydroxypyruvate, D-alanine, and glycolate could also be reconciled with the proposed pathway. Finally, the proposed scheme is consistent with previous isotope labeling data and accounts for several other observations about pyridoxine biosynthesis. Together, these physiological and biochemical analyses support the proposed pathway and an evolutionary scenario in which this branch of the pyridoxine pathway evolved from the serine pathway by gene recruitment.
Collapse
Affiliation(s)
- H M Lam
- Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | |
Collapse
|
13
|
Abstract
The linkage map of Escherichia coli K-12 depicts the arrangement of genes on the circular chromosome of this organism. The basic units of the map are minutes, determined by the time-of-entry of markers from Hfr into F- strains in interrupted-conjugation experiments. The time-of-entry distances have been refined over the years by determination of the frequency of cotransduction of loci in transduction experiments utilizing bacteriophage P1, which transduces segments of DNA approximately 2 min in length. In recent years, the relative positions of many genes have been determined even more precisely by physical techniques, including the mapping of restriction fragments and the sequencing of many small regions of the chromosome. On the whole, the agreement between results obtained by genetic and physical methods has been remarkably good considering the different levels of accuracy to be expected of the methods used. There are now few regions of the map whose length is still in some doubt. In some regions, genetic experiments utilizing different mutant strains give different map distances. In other regions, the genetic markers available have not been close enough to give accurate cotransduction data. The chromosome is now known to contain several inserted elements apparently derived from lambdoid phages and other sources. The nature of the region in which the termination of replication of the chromosome occurs is now known to be much more complex than the picture given in the previous map. The present map is based upon the published literature through June of 1988. There are now 1,403 loci placed on the linkage group, which may represent between one-third and one-half of the genes in this organism.
Collapse
Affiliation(s)
- B J Bachmann
- Department of Biology, Yale University, New Haven, Connecticut 06511-7444
| |
Collapse
|
14
|
Schoenlein PV, Roa BB, Winkler ME. Divergent transcription of pdxB and homology between the pdxB and serA gene products in Escherichia coli K-12. J Bacteriol 1989; 171:6084-92. [PMID: 2681152 PMCID: PMC210475 DOI: 10.1128/jb.171.11.6084-6092.1989] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report the DNA sequence and in vivo transcription start of pdxB, which encodes a protein required for de novo biosynthesis of pyridoxine (vitamin B6). The DNA sequence confirms results from previous minicell experiments showing that pdxB encodes a 41-kilodalton polypeptide. RNase T2 mapping of in vivo transcripts and corroborating experiments with promoter expression vector pKK232-8 demonstrated that the pdxB promoter shares its -10 region with an overlapping, divergent promoter. Thus, pdxB must be the first gene in the complex pdxB-hisT operon. The steady-state transcription level from these divergent promoters, which probably occlude each other, is approximately equal in bacteria growing in rich medium at 37 degrees C. The divergent transcript could encode a polypeptide whose amino-terminal domain is rich in proline and glutamine residues. Similarity searches of protein data bases revealed a significant number of amino acid matches between the pdxB gene product and D-3-phosphoglycerate dehydrogenase, which is encoded by serA and catalyzes the first step in the phosphorylated pathway of serine biosynthesis. FASTA and alignment score analyses indicated that PdxB and SerA are indeed homologs and share a common ancestor. The amino acid alignment between PdxB and SerA implies that PdxB is a 2-hydroxyacid dehydrogenase and suggests possible NAD+, substrate binding, and active sites of both enzymes. Furthermore, the fact that 4-hydroxythreonine, a probable intermediate in pyridoxine biosynthesis, is structurally related to serine strongly suggests that the pdxB gene product is erythronate-4-phosphate dehydrogenase. The homology between PdxB and SerA provides considerable support for Jensen's model of enzyme recruitment as the basis for the evolution of different biosynthetic pathways.
Collapse
Affiliation(s)
- P V Schoenlein
- Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | |
Collapse
|
15
|
Marvel CC, Kammen HO. Purification of plasmid-expressed proteins which lack functional assay systems. Anal Biochem 1989; 181:336-40. [PMID: 2683865 DOI: 10.1016/0003-2697(89)90253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A general method for the purification of proteins whose genes are cloned into plasmid vectors, but whose biochemical and functional characteristics are unknown, is described. A cell-free transcription-translation system from Escherichia coli K-12 is used to synthesize in vitro radiolabeled protein expressed from recombinant plasmid vectors. The radiolabeled proteins are then fractionated and used as markers for the purification of nonradiolabeled proteins without recourse to functional assays. Biochemical analysis of the purified proteins can reveal information about their cellular localization, binding parameters, and physical, enzymatic, or regulatory properties. This information complements in vivo genetic analysis with the goal of identifying the gene and the function of its protein product. An example using this technique in which the product of the usg gene in the hisT operon of E. coli has been purified and biochemically characterized is described.
Collapse
Affiliation(s)
- C C Marvel
- University of Southern California School of Medicine, Albert Soiland Cancer Research Laboratory, Los Angeles 90015
| | | |
Collapse
|
16
|
Roa BB, Connolly DM, Winkler ME. Overlap between pdxA and ksgA in the complex pdxA-ksgA-apaG-apaH operon of Escherichia coli K-12. J Bacteriol 1989; 171:4767-77. [PMID: 2670894 PMCID: PMC210278 DOI: 10.1128/jb.171.9.4767-4777.1989] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report that pdxA, which is required for de novo biosynthesis of pyridoxine (vitamin B6) and pyridoxal phosphate, belongs to an unusual, multifunctional operon. The pdxA gene was cloned in the same 3.5-kilobase BamHI-EcoRI restriction fragment that contains ksgA, which encodes the 16S rRNA modification enzyme m6(2)A methyltransferase, and apaH, which encodes diadenosine tetraphosphatase (ApppA hydrolase). Previously, Blanchin-Roland et al. showed that ksgA and apaH form a complex operon (Mol. Gen. Genet. 205:515-522, 1986). The pdxA gene was located on recombinant plasmids by subcloning, complementation, and insertion mutagenesis, and chromosomal insertions at five positions upstream from ksgA inactivated pdxA function. DNA sequence analysis and minicell translation experiments demonstrated that pdxA encoded a 35.1-kilodalton polypeptide and that the stop codon of pdxA overlapped the start codon of ksgA by 2 nucleotides. The translational start codon of pdxA was tentatively assigned based on polypeptide size and on the presence of a unique sequence that was also found near the translational start of PdxB. This conserved sequence may play a role in translational control of certain pyridoxine biosynthetic genes. RNase T2 mapping of chromosomal transcripts confirmed that pdxA and ksgA were members of the same complex operon, yet about half of ksgA transcripts arose in vivo under some culture conditions from an internal promoter mapped near the end of pdxA. Transcript analysis further suggested that pdxA is not the first gene in the operon. These structural features support the idea that pyridoxine-biosynthetic genes are members of complex operons, perhaps to interweave coenzyme biosynthesis genetically with other metabolic processes. The results are also considered in terms of ksgA expression.
Collapse
Affiliation(s)
- B B Roa
- Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | |
Collapse
|
17
|
Connolly DM, Winkler ME. Genetic and physiological relationships among the miaA gene, 2-methylthio-N6-(delta 2-isopentenyl)-adenosine tRNA modification, and spontaneous mutagenesis in Escherichia coli K-12. J Bacteriol 1989; 171:3233-46. [PMID: 2656644 PMCID: PMC210042 DOI: 10.1128/jb.171.6.3233-3246.1989] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The miaA tRNA modification gene was cloned and located by insertion mutagenesis and DNA sequence analysis. The miaA gene product, tRNA delta 2-isopentenylpyrophosphate (IPP) transferase, catalyzes the first step in the biosynthesis of 2-methylthio-N6-(delta 2-isopentenyl)-adenosine (ms2i6A) adjacent to the anticodon of several tRNA species. The translation start of miaA was deduced by comparison with mod5, which encodes a homologous enzyme in yeasts. Minicell experiments showed that Escherichia coli IPP transferase has a molecular mass of 33.5 kilodaltons (kDa). Transcriptional fusions, plasmid and chromosomal cassette insertion mutations, and RNase T2 mapping of in vivo miaA transcription were used to examine the relationship between miaA and mutL, which encodes a polypeptide necessary for methyl-directed mismatch repair. The combined results showed that miaA, mutL, and a gene that encodes a 47-kDa polypeptide occur very close together, are transcribed in the same direction in the order 47-kDa polypeptide gene-mutL-miaA, and likely form a complex operon containing a weak internal promoter. Three additional relationships were demonstrated between mutagenesis and the miaA gene or ms2i6A tRNA modification. First, miaA transcription was induced by 2-aminopurine. Second, chromosomal miaA insertion mutations increased the spontaneous mutation frequency with a spectrum distinct from mutL mutations. Third, limitation of miaA+ bacteria for iron, which causes tRNA undermodification from ms2i6A to i6A, also increased spontaneous mutation frequency. These results support the notion that complex operons organize metabolically related genes whose primary functions appear to be completely different. In addition, the results are consistent with the idea that mechanisms exist to increase spontaneous mutation frequency when cells need to adapt to environmental stress.
Collapse
Affiliation(s)
- D M Connolly
- Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | |
Collapse
|
18
|
Grogan DW. Temperature-sensitive murein synthesis in an Escherichia coli pdx mutant and the role of alanine racemase. Arch Microbiol 1988; 150:363-7. [PMID: 3060037 DOI: 10.1007/bf00408308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The basis for disruption of morphogenesis by depletion of pyridoxine derivatives was studied using a pdxH null mutant of Escherichia coli K-12. Removal of pyridoxal from growing cultures severely inhibited murein synthesis in vivo, whereas simultaneous supplementation with D-alanine effectively prevented inhibition. Extractable alanine racemase was low following such starvation. Selection of mutants overcoming the glycine- or temperature-sensitivity imposed by pyridoxine limitation yielded a variety of phenotypes. The most effective of these extragenic suppressors conferred an elevated alanine racemase activity which was resistant to the effects of pyridoxal removal.
Collapse
Affiliation(s)
- D W Grogan
- Department of Microbiology, University of Illinois, Urbana 61801
| |
Collapse
|
19
|
Henikoff S, Wallace JC. Detection of protein similarities using nucleotide sequence databases. Nucleic Acids Res 1988; 16:6191-204. [PMID: 3135536 PMCID: PMC336856 DOI: 10.1093/nar/16.13.6191] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A simple procedure is described for finding similarities between proteins using nucleotide sequence databases. The approach is illustrated by several examples of previously unknown correspondences with important biological implications: Drosophila elongation factor Tu is shown to be encoded by two genes that are differently expressed during development; a cluster of three Drosophila genes likely encode maltases; a flesh-fly fat body protein resembles the hypothesized Drosophila alcohol dehydrogenase ancestral protein; an unknown protein encoded at the multifunctional E. coli hisT locus resembles aspartate beta-semialdehyde dehydrogenase; and the E. coli tyrR protein is related to nitrogen regulatory proteins. These and other matches were discovered using a personal computer of the type available in most laboratories collecting DNA sequence data. As relatively few sequences were sampled to find these matches, it is likely that much of the existing data has not been adequately examined.
Collapse
Affiliation(s)
- S Henikoff
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | |
Collapse
|
20
|
Frey B, McCloskey J, Kersten W, Kersten H. New function of vitamin B12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. J Bacteriol 1988; 170:2078-82. [PMID: 3129401 PMCID: PMC211089 DOI: 10.1128/jb.170.5.2078-2082.1988] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Queuosine (Q), 7-[(4,5-cis-dihydroxy-2-cyclopentene-1-yl)-amino)methyl)-7- deazaguanosine, and Q derivatives usually replace guanosine in the anticodon of tRNAs(GUN) of eubacteria and of cytoplasmic and mitochondrial tRNAs of lower and higher eucaryotes except yeasts. Q appears to be synthesized de novo exclusively in eubacteria, and the free-base queuine serves as a nutrient factor for eucaryotes. Recently, a Q derivative, oQ, containing a 2,3-epoxy-4,5-dihydroxycyclopentane ring, has been identified in Escherichia coli tRNA(Tyr). Here we show that oQ is formed when E. coli or Salmonella typhimurium is grown in glucose-salt medium. The formation of oQ was independent of molecular oxygen, and oQ-tRNAs were converted to Q-tRNAs by adding cobalamin to the growth medium. Under strictly anaerobic conditions, considerable amounts of Q were present in E. coli and S. typhimurium tRNAs when the bacteria were grown in the presence of cobalt ions with glycerol as the carbon source and fumarate as the electron acceptor. Under these conditions, the biosynthesis of cobalamin was induced. The results suggest that oQ is derived from ribose and that oQ is finally reduced to Q by a cobamide-dependent enzyme.
Collapse
Affiliation(s)
- B Frey
- Institut für Biochemie, Universität Erlangen-Nürnberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
21
|
Arps PJ, Winkler ME. Structural analysis of the Escherichia coli K-12 hisT operon by using a kanamycin resistance cassette. J Bacteriol 1987; 169:1061-70. [PMID: 3029016 PMCID: PMC211901 DOI: 10.1128/jb.169.3.1061-1070.1987] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We constructed a series of recombinant plasmids containing a kanamycin resistance (Kmr) cassette upstream from, within, and downstream from hisT, which encodes the tRNA modification enzyme pseudouridine synthase I. These Kmr insertions were then crossed directly into the bacterial chromosome. We determined growth characteristics, assayed in vivo hisT expression, and mapped in vivo hisT operon transcripts for the Kmr insertion mutants. We also analyzed polypeptides synthesized in minicells from plasmids containing Kmr cassettes. The combined results from these experiments demonstrate new features concerning the structure and expression of the complex operon that contains hisT. We show that the minimum size of the operon is approximately 3,500 base pairs and that it contains at least four genes, which are arranged in the order usg-2 (pdxB), usg-1, hisT, and dsg-1 and encode polypeptides with apparent molecular masses of 42,000, 45,000, 31,000, and 17,000 daltons, respectively. Of these genes, only the functions of usg-2 (pdxB) and hisT are known, and genetic evidence suggests that these two genes do not require usg-1 or dsg-1 for function, usg-2 (pdxB) is required for growth of bacteria on minimal medium at 37 degrees C. In contrast, the three genes at the end of the hisT operon are dispensable and form a transcription unit that is expressed from a relatively strong internal promoter. The phenotypes of the Kmr insertion mutants and results from gene expression experiments further confirm the position of the internal promoter and locate additional genetic signals in the DNA sequence around hisT. The experiments reported here also indicate several interesting properties of the Kmr cassette as a tool for probing complex operons.
Collapse
|