1
|
Gao F, Yang J, Zhai N, Zhang C, Ren X, Zeng Y, Chen Y, Chen R, Pan H. NCR343 is required to maintain the viability of differentiated bacteroids in nodule cells in Medicago truncatula. THE NEW PHYTOLOGIST 2023; 240:815-829. [PMID: 37533094 DOI: 10.1111/nph.19180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Bacteroid (name for rhizobia inside nodule cells) differentiation is a prerequisite for successful nitrogen-fixing symbiosis. In certain legumes, under the regulation of host proteins, for example, a large group of NCR (nodule cysteine rich) peptides, bacteroids undergo irreversible terminal differentiation. This process causes them to lose the ability to propagate inside nodule cells while boosting their competency for nitrogen fixation. How host cells maintain the viability of differentiated bacteroids while maximizing their nitrogen-reducing activities remains elusive. Here, through mutant screen, map-based cloning, and genetic complementation, we find that NCR343 is required for the viability of differentiated bacteroids. In Medicago truncatula debino1 mutant, differentiated bacteroids decay prematurely, and NCR343 is proved to be the casual gene for debino1. NCR343 is mainly expressed in the nodule fixation zone, where bacteroids are differentiated. In nodule cells, mature NCR343 peptide is secreted into the symbiosomes. RNA-Seq assay shows that many stress-responsive genes are significantly induced in debino1 bacteroids. Additionally, a group of stress response-related rhizobium proteins are identified as putative interacting partners of NCR343. In summary, our findings demonstrate that beyond promoting bacteroid differentiation, NCR peptides are also required in maintaining the viability of differentiated bacteroids.
Collapse
Affiliation(s)
- Fengzhan Gao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Jian Yang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Niu Zhai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Chao Zhang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xinru Ren
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yating Zeng
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yuhui Chen
- College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rujin Chen
- College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huairong Pan
- College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Webb IUC, Xu J, Sánchez-Cañizares C, Karunakaran R, Ramachandran VK, Rutten PJ, East AK, Huang WE, Watmough NJ, Poole PS. Regulation and Characterization of Mutants of fixABCX in Rhizobium leguminosarum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1167-1180. [PMID: 34110256 DOI: 10.1094/mpmi-02-21-0037-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Symbiosis between Rhizobium leguminosarum and Pisum sativum requires tight control of redox balance in order to maintain respiration under the microaerobic conditions required for nitrogenase while still producing the eight electrons and sixteen molecules of ATP needed for nitrogen fixation. FixABCX, a cluster of electron transfer flavoproteins essential for nitrogen fixation, is encoded on the Sym plasmid (pRL10), immediately upstream of nifA, which encodes the general transcriptional regulator of nitrogen fixation. There is a symbiotically regulated NifA-dependent promoter upstream of fixA (PnifA1), as well as an additional basal constitutive promoter driving background expression of nifA (PnifA2). These were confirmed by 5'-end mapping of transcription start sites using differential RNA-seq. Complementation of polar fixAB and fixX mutants (Fix- strains) confirmed expression of nifA from PnifA1 in symbiosis. Electron microscopy combined with single-cell Raman microspectroscopy characterization of fixAB mutants revealed previously unknown heterogeneity in bacteroid morphology within a single nodule. Two morphotypes of mutant fixAB bacteroids were observed. One was larger than wild-type bacteroids and contained high levels of polyhydroxy-3-butyrate, a complex energy/reductant storage product. A second bacteroid phenotype was morphologically and compositionally different and resembled wild-type infection thread cells. From these two characteristic fixAB mutant bacteroid morphotypes, inferences can be drawn on the metabolism of wild-type nitrogen-fixing bacteroids.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Isabel U C Webb
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Jiabao Xu
- Department of Engineering, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | | | - Ramakrishnan Karunakaran
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Vinoy K Ramachandran
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Paul J Rutten
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Alison K East
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Wei E Huang
- Department of Engineering, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Nicholas J Watmough
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, U.K
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| |
Collapse
|
3
|
van Schadewijk R, Krug JR, Shen D, Sankar Gupta KBS, Vergeldt FJ, Bisseling T, Webb AG, Van As H, Velders AH, de Groot HJM, Alia A. Magnetic Resonance Microscopy at Cellular Resolution and Localised Spectroscopy of Medicago truncatula at 22.3 Tesla. Sci Rep 2020; 10:971. [PMID: 31969628 PMCID: PMC6976659 DOI: 10.1038/s41598-020-57861-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/18/2019] [Indexed: 01/30/2023] Open
Abstract
Interactions between plants and the soil’s microbial & fungal flora are crucial for the health of soil ecosystems and food production. Microbe-plant interactions are difficult to investigate in situ due to their intertwined relationship involving morphology and metabolism. Here, we describe an approach to overcome this challenge by elucidating morphology and the metabolic profile of Medicago truncatula root nodules using Magnetic Resonance (MR) Microscopy, at the highest magnetic field strength (22.3 T) currently available for imaging. A home-built solenoid RF coil with an inner diameter of 1.5 mm was used to study individual root nodules. A 3D imaging sequence with an isotropic resolution of (7 μm)3 was able to resolve individual cells, and distinguish between cells infected with rhizobia and uninfected cells. Furthermore, we studied the metabolic profile of cells in different sections of the root nodule using localised MR spectroscopy and showed that several metabolites, including betaine, asparagine/aspartate and choline, have different concentrations across nodule zones. The metabolite spatial distribution was visualised using chemical shift imaging. Finally, we describe the technical challenges and outlook towards future in vivo MR microscopy of nodules and the plant root system.
Collapse
Affiliation(s)
- Remco van Schadewijk
- Solid-state NMR, Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Julia R Krug
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, The Netherlands
| | - Defeng Shen
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Karthick B S Sankar Gupta
- Solid-state NMR, Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Frank J Vergeldt
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Radiology department, Leiden University Medical Centre, Leiden University, Leiden, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Henk Van As
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Aldrik H Velders
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, The Netherlands
| | - Huub J M de Groot
- Solid-state NMR, Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - A Alia
- Solid-state NMR, Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands. .,Institute for Medical Physics and Biophysics, Leipzig University, Härtelstraße 16/18, Leipzig, 04107, Germany.
| |
Collapse
|
4
|
Abstract
Rhizobia are α- and β-proteobacteria that form a symbiotic partnership with legumes, fixing atmospheric dinitrogen to ammonia and providing it to the plant. Oxygen regulation is key in this symbiosis. Fixation is performed by an oxygen-intolerant nitrogenase enzyme but requires respiration to meet its high energy demands. To satisfy these opposing constraints the symbiotic partners cooperate intimately, employing a variety of mechanisms to regulate and respond to oxygen concentration. During symbiosis rhizobia undergo significant changes in gene expression to differentiate into nitrogen-fixing bacteroids. Legumes host these bacteroids in specialized root organs called nodules. These generate a near-anoxic environment using an oxygen diffusion barrier, oxygen-binding leghemoglobin and control of mitochondria localization. Rhizobia sense oxygen using multiple interconnected systems which enable a finely-tuned response to the wide range of oxygen concentrations they experience when transitioning from soil to nodules. The oxygen-sensing FixL-FixJ and hybrid FixL-FxkR two-component systems activate at relatively high oxygen concentration and regulate fixK transcription. FixK activates the fixNOQP and fixGHIS operons producing a high-affinity terminal oxidase required for bacterial respiration in the microaerobic nodule. Additionally or alternatively, some rhizobia regulate expression of these operons by FnrN, an FNR-like oxygen-sensing protein. The final stage of symbiotic establishment is activated by the NifA protein, regulated by oxygen at both the transcriptional and protein level. A cross-species comparison of these systems highlights differences in their roles and interconnections but reveals common regulatory patterns and themes. Future work is needed to establish the complete regulon of these systems and identify other regulatory signals.
Collapse
Affiliation(s)
- Paul J Rutten
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Serova TA, Tsyganova AV, Tsyganov VE. Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages. PROTOPLASMA 2018; 255:1443-1459. [PMID: 29616347 DOI: 10.1007/s00709-018-1246-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/21/2018] [Indexed: 05/13/2023]
Abstract
Plant symbiotic mutants are useful tool to uncover the molecular-genetic mechanisms of nodule senescence. The pea (Pisum sativum L.) mutants SGEFix--1 (sym40), SGEFix--3 (sym26), and SGEFix--7 (sym27) display an early nodule senescence phenotype, whereas the mutant SGEFix--2 (sym33) does not show premature degradation of symbiotic structures, but its nodules show an enhanced immune response. The nodules of these mutants were compared with each other and with those of the wild-type SGE line using seven marker genes that are known to be activated during nodule senescence. In wild-type SGE nodules, transcript levels of all of the senescence-associated genes were highest at 6 weeks after inoculation (WAI). The senescence-associated genes showed higher transcript abundance in mutant nodules than in wild-type nodules at 2 WAI and attained maximum levels in the mutant nodules at 4 WAI. Immunolocalization analyses showed that the ethylene precursor 1-aminocyclopropane-1-carboxylate accumulated earlier in the mutant nodules than in wild-type nodules. Together, these results showed that nodule senescence was activated in ineffective nodules blocked at different developmental stages in pea lines that harbor mutations in four symbiotic genes.
Collapse
Affiliation(s)
- Tatiana A Serova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky Chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Anna V Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky Chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Viktor E Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky Chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia.
| |
Collapse
|
6
|
Cooper B, Campbell KB, Beard HS, Garrett WM, Mowery J, Bauchan GR, Elia P. A Proteomic Network for Symbiotic Nitrogen Fixation Efficiency in Bradyrhizobium elkanii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:334-343. [PMID: 29117782 DOI: 10.1094/mpmi-10-17-0243-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rhizobia colonize legumes and reduce N2 to NH3 in root nodules. The current model is that symbiotic rhizobia bacteroids avoid assimilating this NH3. Instead, host legume cells form glutamine from NH3, and the nitrogen is returned to the bacteroid as dicarboxylates, peptides, and amino acids. In soybean cells surrounding bacteroids, glutamine also is converted to ureides. One problem for soybean cultivation is inefficiency in symbiotic N2 fixation, the biochemical basis of which is unknown. Here, the proteomes of bacteroids of Bradyrhizobium elkanii USDA76 isolated from N2 fixation-efficient Peking and -inefficient Williams 82 soybean nodules were analyzed by mass spectrometry. Nearly half of the encoded bacterial proteins were quantified. Efficient bacteroids produced greater amounts of enzymes to form Nod factors and had increased amounts of signaling proteins, transporters, and enzymes needed to generate ATP to power nitrogenase and to acquire resources. Parallel investigation of nodule proteins revealed that Peking had no significantly greater accumulation of enzymes needed to assimilate NH3 than Williams 82. Instead, efficient bacteroids had increased amounts of enzymes to produce amino acids, including glutamine, and to form ureide precursors. These results support a model for efficient symbiotic N2 fixation in soybean where the bacteroid assimilates NH3 for itself.
Collapse
Affiliation(s)
- Bret Cooper
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | - Kimberly B Campbell
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | - Hunter S Beard
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | | | - Joseph Mowery
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | - Gary R Bauchan
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | - Patrick Elia
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| |
Collapse
|
7
|
Daubech B, Remigi P, Doin de Moura G, Marchetti M, Pouzet C, Auriac MC, Gokhale CS, Masson-Boivin C, Capela D. Spatio-temporal control of mutualism in legumes helps spread symbiotic nitrogen fixation. eLife 2017; 6:e28683. [PMID: 29022875 PMCID: PMC5687860 DOI: 10.7554/elife.28683] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023] Open
Abstract
Mutualism is of fundamental importance in ecosystems. Which factors help to keep the relationship mutually beneficial and evolutionarily successful is a central question. We addressed this issue for one of the most significant mutualistic interactions on Earth, which associates plants of the leguminosae family and hundreds of nitrogen (N2)-fixing bacterial species. Here we analyze the spatio-temporal dynamics of fixers and non-fixers along the symbiotic process in the Cupriavidus taiwanensis-Mimosa pudica system. N2-fixing symbionts progressively outcompete isogenic non-fixers within root nodules, where N2-fixation occurs, even when they share the same nodule. Numerical simulations, supported by experimental validation, predict that rare fixers will invade a population dominated by non-fixing bacteria during serial nodulation cycles with a probability that is function of initial inoculum, plant population size and nodulation cycle length. Our findings provide insights into the selective forces and ecological factors that may have driven the spread of the N2-fixation mutualistic trait.
Collapse
Affiliation(s)
- Benoit Daubech
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| | - Philippe Remigi
- New Zealand Institute for Advanced StudyMassey UniversityAucklandNew Zealand
| | - Ginaini Doin de Moura
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| | - Marta Marchetti
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| | - Cécile Pouzet
- Fédération de Recherches Agrobiosciences, Interactions et Biodiversité, Plateforme d’Imagerie TRI, CNRS - UPSCastanet-TolosanFrance
| | - Marie-Christine Auriac
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
- Fédération de Recherches Agrobiosciences, Interactions et Biodiversité, Plateforme d’Imagerie TRI, CNRS - UPSCastanet-TolosanFrance
| | - Chaitanya S Gokhale
- Research Group for Theoretical Models of Eco-evolutionary Dynamics, Department of Evolutionary TheoryMax Planck Institute for Evolutionary BiologyPlönGermany
| | - Catherine Masson-Boivin
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| | - Delphine Capela
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| |
Collapse
|
8
|
Gao M, Nguyen H, Salas González I, Teplitski M. Regulation of fixLJ by Hfq Controls Symbiotically Important Genes in Sinorhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:844-853. [PMID: 27712144 DOI: 10.1094/mpmi-09-16-0182-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The RNA-binding chaperone Hfq plays critical roles in the establishment and functionality of the symbiosis between Sinorhizobium meliloti and its legume hosts. A mutation in hfq reduces symbiotic efficiency resulting in a Fix- phenotype, characterized by the inability of the bacterium to fix nitrogen. At least in part, this is due to the ability of Hfq to regulate the fixLJ operon, which encodes a sensor kinase-response regulator pair that controls expression of the nitrogenase genes. The ability of Hfq to bind fixLJ in vitro and in planta was demonstrated with gel shift and coimmunoprecipitation experiments. Two (ARN)2 motifs in the fixLJ message were the likely sites through which Hfq exerted its posttranscriptional control. Consistent with the regulatory effects of Hfq, downstream genes controlled by FixLJ (such as nifK, noeB) were also subject to Hfq regulation in planta.
Collapse
Affiliation(s)
- Mengsheng Gao
- Soil and Water Sciences Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville 32611, U.S.A
| | - Hahn Nguyen
- Soil and Water Sciences Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville 32611, U.S.A
| | - Isai Salas González
- Soil and Water Sciences Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville 32611, U.S.A
| | - Max Teplitski
- Soil and Water Sciences Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville 32611, U.S.A
| |
Collapse
|
9
|
Pérez-Montaño F, Jiménez-Guerrero I, Acosta-Jurado S, Navarro-Gómez P, Ollero FJ, Ruiz-Sainz JE, López-Baena FJ, Vinardell JM. A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis. Sci Rep 2016; 6:31592. [PMID: 27539649 PMCID: PMC4990936 DOI: 10.1038/srep31592] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
Sinorhizobium fredii HH103 is a rhizobial soybean symbiont that exhibits an extremely broad host-range. Flavonoids exuded by legume roots induce the expression of rhizobial symbiotic genes and activate the bacterial protein NodD, which binds to regulatory DNA sequences called nod boxes (NB). NB drive the expression of genes involved in the production of molecular signals (Nod factors) as well as the transcription of ttsI, whose encoded product binds to tts boxes (TB), inducing the secretion of proteins (effectors) through the type 3 secretion system (T3SS). In this work, a S. fredii HH103 global gene expression analysis in the presence of the flavonoid genistein was carried out, revealing a complex regulatory network. Three groups of genes differentially expressed were identified: i) genes controlled by NB, ii) genes regulated by TB, and iii) genes not preceded by a NB or a TB. Interestingly, we have found differentially expressed genes not previously studied in rhizobia, being some of them not related to Nod factors or the T3SS. Future characterization of these putative symbiotic-related genes could shed light on the understanding of the complex molecular dialogue established between rhizobia and legumes.
Collapse
Affiliation(s)
- F Pérez-Montaño
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - I Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - S Acosta-Jurado
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - P Navarro-Gómez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - F J Ollero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - J E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - F J López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - J M Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| |
Collapse
|
10
|
Op den Camp RHM, Polone E, Fedorova E, Roelofsen W, Squartini A, Op den Camp HJM, Bisseling T, Geurts R. Nonlegume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:954-63. [PMID: 22668002 DOI: 10.1094/mpmi-11-11-0304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The non-legume genus Parasponia has evolved the rhizobium symbiosis independent from legumes and has done so only recently. We aim to study the promiscuity of such newly evolved symbiotic engagement and determine the symbiotic effectiveness of infecting rhizobium species. It was found that Parasponia andersonii can be nodulated by a broad range of rhizobia belonging to four different genera, and therefore, we conclude that this non-legume is highly promiscuous for rhizobial engagement. A possible drawback of this high promiscuity is that low-efficient strains can infect nodules as well. The strains identified displayed a range in nitrogen-fixation effectiveness, including a very inefficient rhizobium species, Rhizobium tropici WUR1. Because this species is able to make effective nodules on two different legume species, it suggests that the ineffectiveness of P. andersonii nodules is the result of the incompatibility between both partners. In P. andersonii nodules, rhizobia of this strain become embedded in a dense matrix but remain vital. This suggests that sanctions or genetic control against underperforming microsymbionts may not be effective in Parasponia spp. Therefore, we argue that the Parasponia-rhizobium symbiosis is a delicate balance between mutual benefits and parasitic colonization.
Collapse
MESH Headings
- Base Sequence
- Cannabaceae/microbiology
- Cannabaceae/ultrastructure
- Cell Death
- Fabaceae/microbiology
- Fabaceae/ultrastructure
- Genes, Bacterial/genetics
- Genome, Bacterial/genetics
- Host Specificity/physiology
- Molecular Sequence Data
- Nitrogen Fixation
- Phylogeny
- Plant Root Nodulation/physiology
- Proteobacteria/genetics
- Proteobacteria/isolation & purification
- Proteobacteria/physiology
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Rhizobium tropici/genetics
- Rhizobium tropici/isolation & purification
- Rhizobium tropici/physiology
- Root Nodules, Plant/ultrastructure
- Sequence Analysis, DNA
- Sinorhizobium/genetics
- Sinorhizobium/isolation & purification
- Sinorhizobium/physiology
- Symbiosis/physiology
Collapse
Affiliation(s)
- Rik H M Op den Camp
- Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Queiroux C, Washburn BK, Davis OM, Stewart J, Brewer TE, Lyons MR, Jones KM. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules. BMC Microbiol 2012; 12:74. [PMID: 22587634 PMCID: PMC3462710 DOI: 10.1186/1471-2180-12-74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy's Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. RESULTS Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a "SodM-like" (superoxide dismutase-like) protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon) identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. CONCLUSIONS Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.
Collapse
Affiliation(s)
- Clothilde Queiroux
- Department of Biological Science, Florida State University, Biology Unit I, 230A, Tallahassee, FL 32306-4370, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhao H, Li M, Fang K, Chen W, Wang J. In silico insights into the symbiotic nitrogen fixation in Sinorhizobium meliloti via metabolic reconstruction. PLoS One 2012; 7:e31287. [PMID: 22319621 PMCID: PMC3272708 DOI: 10.1371/journal.pone.0031287] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 01/05/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Sinorhizobium meliloti is a soil bacterium, known for its capability to establish symbiotic nitrogen fixation (SNF) with leguminous plants such as alfalfa. S. meliloti 1021 is the most extensively studied strain to understand the mechanism of SNF and further to study the legume-microbe interaction. In order to provide insight into the metabolic characteristics underlying the SNF mechanism of S. meliloti 1021, there is an increasing demand to reconstruct a metabolic network for the stage of SNF in S. meliloti 1021. RESULTS Through an iterative reconstruction process, a metabolic network during the stage of SNF in S. meliloti 1021 was presented, named as iHZ565, which accounts for 565 genes, 503 internal reactions, and 522 metabolites. Subjected to a novelly defined objective function, the in silico predicted flux distribution was highly consistent with the in vivo evidences reported previously, which proves the robustness of the model. Based on the model, refinement of genome annotation of S. meliloti 1021 was performed and 15 genes were re-annotated properly. There were 19.8% (112) of the 565 metabolic genes included in iHZ565 predicted to be essential for efficient SNF in bacteroids under the in silico microaerobic and nutrient sharing condition. CONCLUSIONS As the first metabolic network during the stage of SNF in S. meliloti 1021, the manually curated model iHZ565 provides an overview of the major metabolic properties of the SNF bioprocess in S. meliloti 1021. The predicted SNF-required essential genes will facilitate understanding of the key functions in SNF and help identify key genes and design experiments for further validation. The model iHZ565 can be used as a knowledge-based framework for better understanding the symbiotic relationship between rhizobia and legumes, ultimately, uncovering the mechanism of nitrogen fixation in bacteroids and providing new strategies to efficiently improve biological nitrogen fixation.
Collapse
Affiliation(s)
- Hansheng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Mao Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Kechi Fang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- * E-mail: (WC); (JW)
| | - Jing Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (WC); (JW)
| |
Collapse
|
13
|
Fumeaux C, Bakkou N, Kopcińska J, Golinowski W, Westenberg DJ, Müller P, Perret X. Functional analysis of the nifQdctA1y4vGHIJ operon of Sinorhizobium fredii strain NGR234 using a transposon with a NifA-dependent read-out promoter. MICROBIOLOGY-SGM 2011; 157:2745-2758. [PMID: 21719545 DOI: 10.1099/mic.0.049999-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhizobia are a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes (Fix phenotype). Synthesis of the nitrogenase and its accessory components is under the transcriptional control of the key regulator NifA and is generally restricted to the endosymbiotic forms of rhizobia known as bacteroids. Amongst studied rhizobia, Sinorhizobium fredii strain NGR234 has the remarkable ability to fix nitrogen in association with more than 130 species in 73 legume genera that form either determinate, indeterminate or aeschynomenoid nodules. Hence, NGR234 is a model organism to study nitrogen fixation in association with a variety of legumes. The symbiotic plasmid pSfrNGR234a carries more than 50 genes that are under the transcriptional control of NifA. To facilitate the functional analysis of NifA-regulated genes a new transposable element, TnEKm-PwA, was constructed. This transposon combines the advantages of in vitro mutagenesis of cloned DNA fragments with a conditional read-out promoter from NGR234 (PwA) that reinitiates NifA-dependent transcription downstream of transposition sites. To test the characteristics of the new transposon, the nifQdctA1y4vGHIJ operon was mutated using either the Omega interposon or TnEKm-PwA. The symbiotic phenotypes on various hosts as well as the transcriptional characteristics of these mutants were analysed in detail and compared with the ineffective (Fix(-)) phenotype of strain NGRΔnifA, which lacks a functional copy of nifA. De novo transcription from inserted copies of TnEKm-PwA inside bacteroids was confirmed by qRT-PCR. Unexpectedly, polar mutants in dctA1 and nifQ were Fix(+) on all of the hosts tested, indicating that none of the six genes of the nifQ operon of NGR234 is essential for symbiotic nitrogen fixation on plants that form nodules of either determinate or indeterminate types.
Collapse
Affiliation(s)
- Coralie Fumeaux
- University of Geneva, Sciences III, Department of Botany and Plant Biology, Microbiology Unit, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Nadia Bakkou
- University of Geneva, Sciences III, Department of Botany and Plant Biology, Microbiology Unit, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Joanna Kopcińska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Wladyslav Golinowski
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
| | - David J Westenberg
- Department of Biological Sciences, Missouri University of Science and Technology, 105A Schrenk Hall, 400 West 11th Street, Rolla, 65409-1120 MO, USA
| | - Peter Müller
- Fachbereich Biologie/Zellbiologie, Philipps Universität Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Xavier Perret
- University of Geneva, Sciences III, Department of Botany and Plant Biology, Microbiology Unit, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
14
|
Trevaskis B, Colebatch G, Desbrosses G, Wandrey M, Wienkoop S, Saalbach G, Udvardi M. Differentiation of plant cells during symbiotic nitrogen fixation. Comp Funct Genomics 2010; 3:151-7. [PMID: 18628847 PMCID: PMC2447268 DOI: 10.1002/cfg.155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Accepted: 02/12/2002] [Indexed: 11/05/2022] Open
Abstract
Nitrogen-fixing symbioses between legumes and bacteria of the family Rhizobiaceae involve differentiation of both plant and bacterial cells. Differentiation of plant root cells is required to build an organ, the nodule, which can feed and accommodate a large population of bacteria under conditions conducive to nitrogen fixation. An efficient vascular system is built to connect the nodule to the root, which delivers sugars and other nutrients to the nodule and removes the products of nitrogen fixation for use in the rest of the plant. Cells in the outer cortex differentiate to form a barrier to oxygen diffusion into nodules, which helps to produce the micro-aerobic environment necessary for bacterial nitrogenase activity. Cells of the central, infected zone of nodules undergo multiple rounds of endoreduplication, which may be necessary for colonisation by rhizobia and may enable enlargement and greater metabolic activity of these cells. Infected cells of the nodule contain rhizobia within a unique plant membrane called the peribacteroid or symbiosome membrane, which separates the bacteria from the host cell cytoplasm and mediates nutrient and signal exchanges between the partners. Rhizobia also undergo differentiation during nodule development. Not surprisingly, perhaps, differentiation of each partner is dependent upon interactions with the other. High-throughput methods to assay gene transcripts, proteins, and metabolites are now being used to explore further the different aspects of plant and bacterial differentiation. In this review, we highlight recent advances in our understanding of plant cell differentiation during nodulation that have been made, at least in part, using high-throughput methods.
Collapse
Affiliation(s)
- Ben Trevaskis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Golm 14476, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Schumpp O, Crèvecoeur M, Broughton WJ, Deakin WJ. Delayed maturation of nodules reduces symbiotic effectiveness of the Lotus japonicus-Rhizobium sp. NGR234 interaction. JOURNAL OF EXPERIMENTAL BOTANY 2008; 60:581-90. [PMID: 19060298 PMCID: PMC2651464 DOI: 10.1093/jxb/ern302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/24/2008] [Accepted: 10/31/2008] [Indexed: 05/24/2023]
Abstract
Lotus japonicus, a model legume, develops an efficient, nitrogen-fixing symbiosis with Mesorhizobium loti that promotes plant growth. Lotus japonicus also forms functional nodules with Rhizobium sp. NGR234 and R. etli. Yet, in a plant defence-like reaction, nodules induced by R. etli quickly degenerate, thus limiting plant growth. In contrast, nodules containing NGR234 are long-lasting. It was found that NGR234 initiates nodule formation in a similar way to M. loti MAFF303099, but that the nodules which develop on eleven L. japonicus ecotypes are less efficient in fixing nitrogen. Detailed examination of nodulation of L. japonicus cultivar MG-20 revealed that symbiosomes formed four weeks after inoculation by NGR234 are enlarged in comparison with MAFF303099 and contain multiple bacteroids. Nevertheless, nodules formed by NGR234 fix sufficient nitrogen to avoid rejection by the plant. With time, these nodules develop into fully efficient organs containing bacteroids tightly enclosed in symbiosome membranes, just like those formed by M. loti MAFF303099. This work demonstrates the usefulness of using the well-characterized micro-symbiont NGR234 to study symbiotic signal exchange in the later stages of rhizobia-legume symbioses, especially given the large range of bacterial (NGR234) and plant (L. japonicus) mutants that are available.
Collapse
Affiliation(s)
| | - Michèle Crèvecoeur
- Département de Botanique et de Biologie Végétale, Université de Genève, 30 Quai Ernest-Ansermet, Sciences III, CH-1211 Genève 4, Switzerland
| | | | | |
Collapse
|
16
|
Rogato A, D'Apuzzo E, Barbulova A, Omrane S, Stedel C, Simon-Rosin U, Katinakis P, Flemetakis M, Udvardi M, Chiurazzi M. Tissue-specific down-regulation of LjAMT1;1 compromises nodule function and enhances nodulation in Lotus japonicus. PLANT MOLECULAR BIOLOGY 2008; 68:585-595. [PMID: 18781388 DOI: 10.1007/s11103-008-9394-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/27/2008] [Indexed: 05/26/2023]
Abstract
Plant ammonium transporters of the AMT1 family are involved in N-uptake from the soil and ammonium transport, and recycling within the plant. Although AMT1 genes are known to be expressed in nitrogen-fixing nodules of legumes, their precise roles in this specialized organ remain unknown. We have taken a reverse-genetic approach to decipher the physiological role of LjAMT1;1 in Lotus japonicus nodules. LjAMT1;1 is normally expressed in both the infected zone and the vascular tissue of Lotus nodules. Inhibition of LjAMT1;1 gene expression, using an antisense gene construct driven by a leghemoglobin promoter resulted in a substantial reduction of LjAMT1;1 transcript in the infected tissue but not the vascular bundles of transgenic plants. As a result, the nitrogen-fixing activity of nodules was partially impaired and nodule number increased compared to control plants. Expression of LjAMT1;1-GFP fusion protein in plant cells indicated a plasma-membrane location for the LjAMT1;1 protein. Taken together, the results are consistent with a role of LjAMT1;1 in retaining ammonium derived from symbiotic nitrogen fixation in plant cells prior to its assimilation.
Collapse
Affiliation(s)
- Alessandra Rogato
- Institute of Genetics and Biophysics A. Buzzati Traverso, Via P. Castellino 12, 80131, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
He Z, Xie R, Wang Y, Zou H, Zhu J, Yu G. Cloning and characterization of a heat shock protein 70 gene, MsHSP70-1, in Medicago sativa. Acta Biochim Biophys Sin (Shanghai) 2008; 40:209-16. [PMID: 18330475 DOI: 10.1111/j.1745-7270.2008.00394.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Some members of the heat shock protein 70 (HSP70) family have important functions in organism development. Here, we identified an alfalfa (Medicago sativa L. cv. Algonquin) HSP70 gene, MsHSP70-1, using cDNA array and reverse transcription-polymerase chain reaction. This gene contains a 1947 bp open reading frame encoding a protein of 649 amino acids. This protein contains all conserved domains, motifs, and characteristic sequences of plant HSP70s. The expression of MsHSP70-1 is enhanced in nodule compared with root, stem, leaf, and flower, and throughout the process of nodule development. Northern hybridization analysis indicated that the expression of MsHSP70-1 in nodule requires the active bacA gene of rhizobia. These results suggested that MsHSP70-1 might play an important role in alfalfa nodule development.
Collapse
Affiliation(s)
- Zhishui He
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
18
|
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:219-31. [PMID: 18184066 DOI: 10.1094/mpmi-21-2-0219] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sinorhizobium meliloti enters an endosymbiosis with alfalfa plants through the formation of nitrogen-fixing nodules. In order to identify S. meliloti genes required for symbiosis and competitiveness, a method of signature-tagged mutagenesis was used. Two sets, each consisting of 378 signature-tagged mutants with a known transposon insertion site, were used in an experiment in planta. As a result, 67 mutants showing attenuated symbiotic phenotypes were identified, including most of the exo, fix, and nif mutants in the sets. For 38 mutants in genes previously not described to be involved in competitiveness or symbiosis in S. meliloti, attenuated competitiveness phenotypes were tested individually. A large part of these phenotypes was confirmed. Moreover, additional symbiotic defects were observed for mutants in several novel genes such as infection deficiency phenotypes (ilvI and ilvD2 mutants) or delayed nodulation (pyrE, metA, thiC, thiO, and thiD mutants).
Collapse
Affiliation(s)
- Nataliya Pobigaylo
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | | | | | | |
Collapse
|
19
|
Chen X, Zou H, Yao Z, Cheng H, Dai X, Zhu J, Yu G. Sinorhizobium meliloti nifA gene exerts a pleiotropic effect on nodulation through the enhanced plant defense response. CHINESE SCIENCE BULLETIN-CHINESE 2007. [DOI: 10.1007/s11434-007-0427-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Yao Z, Tian Z, Dai X, Becker A, Li J, Yan H, Xiao Y, Zhu J, Yu G, Rüverg S, Wang Y, Zou H. Complementation analyses of Sinorhizobium meliloti nifA mutant with different originated nifA genes. CHINESE SCIENCE BULLETIN-CHINESE 2006. [DOI: 10.1007/s11434-006-2203-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Gong ZY, He ZS, Zhu JB, Yu GQ, Zou HS. Sinorhizobium meliloti nifA mutant induces different gene expression profile from wild type in Alfalfa nodules. Cell Res 2006; 16:818-29. [PMID: 17001343 DOI: 10.1038/sj.cr.7310096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several studies have demonstrated that the Rhizobium nifA gene is an activator of nitrogen fixation acting in nodule bacteria. To understand the effects of the Sinorhizobium meliloti nifA gene on Alfalfa, the cDNA-AFLP technique was employed to study the changes in gene expression in nifA mutant nodules. Among the approximately 3,000 transcript-derived fragments, 37 had differential expression levels. These expression levels were subsequently confirmed by reverse Northern blot and RT-polymerase chain reaction. Sequence analyses revealed that 21 cDNA fragments corresponded to genes involved in signal communication, protein degradation, nutrient metabolism, cell growth and development.
Collapse
Affiliation(s)
- Zi Ying Gong
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
22
|
Identification of genes induced during Medicago sativa nodule development by using the cDNA-AFLP technique. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-2093-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Transcriptome analysis of Sinorhizobium meliloti nodule bacteria in nifA mutant background. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-2092-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Ooki Y, Banba M, Yano K, Maruya J, Sato S, Tabata S, Saeki K, Hayashi M, Kawaguchi M, Izui K, Hata S. Characterization of the Lotus japonicus symbiotic mutant lot1 that shows a reduced nodule number and distorted trichomes. PLANT PHYSIOLOGY 2005; 137:1261-71. [PMID: 15793069 PMCID: PMC1088319 DOI: 10.1104/pp.104.056630] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/17/2005] [Accepted: 01/31/2005] [Indexed: 05/18/2023]
Abstract
We isolated a recessive symbiotic mutant of Lotus japonicus that defines a genetic locus, LOT1 (for low nodulation and trichome distortion). The nodule number per plant of the mutant was about one-fifth of that of the wild type. The lot1 mutant showed a moderate dwarf phenotype and distorted trichomes, but its root hairs showed no apparent differences to those of the wild type. Infection thread formation after inoculation of Mesorhizobium loti was repressed in lot1 compared to that in the wild type. The nodule primordia of lot1 did not result in any aborted nodule-like structure, all nodules becoming mature and exhibiting high nitrogen fixation activity. The mutant was normally colonized by mycorrhizal fungi. lot1 also showed higher sensitivity to nitrate than the wild type. The grown-up seedlings of lot1 were insensitive to any ethylene treatments with regard to nodulation, although the mutant showed normal triple response on germination. It is conceivable that a nodulation-specific ethylene signaling pathway is constitutively activated in the mutant. Grafting experiments with lot1 and wild-type seedlings suggested that the root genotype mainly determines the low nodulation phenotype of the mutant, while the trichome distortion is regulated by the shoot genotype. Grafting of har1-4 shoots to lot1 roots resulted in an intermediate nodule number, i.e. more than that of lot1 and less than that of har1-4. Putative double mutants of lot1 and har1 also showed intermediate nodulation. Thus, it was indicated that LOT1 is involved in a distinct signal transduction pathway independent of HAR1.
Collapse
Affiliation(s)
- Yasuhiro Ooki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Edgren T, Nordlund S. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J Bacteriol 2004; 186:2052-60. [PMID: 15028689 PMCID: PMC374401 DOI: 10.1128/jb.186.7.2052-2060.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In our efforts to identify the components participating in electron transport to nitrogenase in Rhodospirillum rubrum, we used mini-Tn5 mutagenesis followed by metronidazole selection. One of the mutants isolated, SNT-1, exhibited a decreased growth rate and about 25% of the in vivo nitrogenase activity compared to the wild-type values. The in vitro nitrogenase activity was essentially wild type, indicating that the mutation affects electron transport to nitrogenase. Sequencing showed that the Tn5 insertion is located in a region with a high level of similarity to fixC, and extended sequencing revealed additional putative fix genes, in the order fixABCX. Complementation of SNT-1 with the whole fix gene cluster in trans restored wild-type nitrogenase activity and growth. Using Western blotting, we demonstrated that expression of fixA and fixB occurs only under conditions under which nitrogenase also is expressed. SNT-1 was further shown to produce larger amounts of both ribulose 1,5-bisphosphate carboxylase/oxygenase and polyhydroxy alkanoates than the wild type, indicating that the redox status is affected in this mutant. Using Western blotting, we found that FixA and FixB are soluble proteins, whereas FixC most likely is a transmembrane protein. We propose that the fixABCX genes encode a membrane protein complex that plays a central role in electron transfer to nitrogenase in R. rubrum. Furthermore, we suggest that FixC is the link between nitrogen fixation and the proton motive force generated in the photosynthetic reactions.
Collapse
Affiliation(s)
- Tomas Edgren
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
26
|
Mitsui H, Sato T, Sato Y, Ito N, Minamisawa K. Sinorhizobium meliloti RpoH1 is required for effective nitrogen-fixing symbiosis with alfalfa. Mol Genet Genomics 2004; 271:416-25. [PMID: 15007732 DOI: 10.1007/s00438-004-0992-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 02/10/2004] [Indexed: 11/29/2022]
Abstract
Sinorhizobium meliloti is a root-nodulating, nitrogen-fixing bacterium. An S. meliloti strain that is mutant for the rpoH(1) gene, which encodes a sigma(32)-like protein, elicits the formation of ineffective nodules on the host plant alfalfa. We characterized the rpoH(1) mutant for phenotypes related to symbiosis. Alfalfa nodules formed by the rpoH(1) mutant exhibited greatly reduced levels of acetylene reduction activity compared to the wild-type nodules. Whereas intracellular colonization by rhizobia was observed in a zone just below the apical meristem, we found ultrastructural abnormalities and signs of degeneration of bacteroids within many host cells in the proximally adjacent zone. In the proximal part of the nodule, only a few nodule cells contained bacteroids. In contrast, the rpoH(1) mutant showed normal induction of nitrogen fixation gene expression in microaerobic culture. These results suggest that the rpoH(1) mutation causes early senescence of bacteroids during the endosymbiotic process, but does not affect the invasion process or the synthesis of the nitrogenase machinery. The rpoH(1) mutant exhibited increased sensitivity to various agents and to acid pH, suggesting that RpoH(1) is required to protect the bacterial cell against environmental stresses encountered within the host. Since RpoH(1) was previously reported to be required for the synthesis of some heat shock proteins (Hsps), we examined the transcription of several genes for Hsp homologs. We found that transcription of groESL(5), lon, and clpB after heat shock was RpoH(1)-dependent, and conserved nucleotide sequences were found in the -35 and -10 regions upstream of the transcription start sites of these genes. Although groESL(5) expression is almost completely dependent on RpoH(1), we found that a groESL(5) mutant strain is still capable of normal symbiotic nitrogen fixation on alfalfa.
Collapse
Affiliation(s)
- H Mitsui
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, 980-8577 Sendai, Japan.
| | | | | | | | | |
Collapse
|
27
|
Patriarca EJ, Tatè R, Iaccarino M. Key role of bacterial NH(4)(+) metabolism in Rhizobium-plant symbiosis. Microbiol Mol Biol Rev 2002; 66:203-22. [PMID: 12040124 PMCID: PMC120787 DOI: 10.1128/mmbr.66.2.203-222.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symbiotic nitrogen fixation is carried out in specialized organs, the nodules, whose formation is induced on leguminous host plants by bacteria belonging to the family Rhizobiaceae: Nodule development is a complex multistep process, which requires continued interaction between the two partners and thus the exchange of different signals and metabolites. NH(4)(+) is not only the primary product but also the main regulator of the symbiosis: either as ammonium and after conversion into organic compounds, it regulates most stages of the interaction, from the production of nodule inducers to the growth, function, and maintenance of nodules. This review examines the adaptation of bacterial NH(4)(+) metabolism to the variable environment generated by the plant, which actively controls and restricts bacterial growth by affecting oxygen and nutrient availability, thereby allowing a proficient interaction and at the same time preventing parasitic invasion. We describe the regulatory circuitry responsible for the downregulation of bacterial genes involved in NH(4)(+) assimilation occurring early during nodule invasion. This is a key and necessary step for the differentiation of N(2)-fixing bacteroids (the endocellular symbiotic form of rhizobia) and for the development of efficient nodules.
Collapse
Affiliation(s)
- Eduardo J Patriarca
- International Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80125 Naples, Italy.
| | | | | |
Collapse
|
28
|
Petrova N, Gigova L, Venkov P. Dimerization of Rhizobium meliloti NifH protein in Saccharomyces cerevisiae cells requires simultaneous expression of NifM protein. Int J Biochem Cell Biol 2002; 34:33-42. [PMID: 11733183 DOI: 10.1016/s1357-2725(01)00102-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Compared to free living diazotrophs, the nitrogenase system of symbiotic microorganisms, like Rhizobium (Synorhizobium) meliloti, was poorly studied. The aim of our research was to investigate whether (by analogy with Klebsiella pneumoniae) the NifM product is required and sufficient to obtain active R. meliloti Fe-protein. We cloned nifH gene of R. meliloti and nifM gene of K. pneumoniae in suitable yeast vectors. When introduced into Saccharomyces cerevisiae cells, both genes were effectively expressed to proteins similar to the native products in its immunoreactivity and apparent molecular mass. The association of R. meliloti NifH protein into dimer structure required co-expression of NifM that also conferred stability of NifH polypeptide. However, the NifH protein synthesized in yeast did not show enzyme activity, suggesting that the NifM of K. pneumoniae is incapable of activating the NifH protein of R. meliloti.
Collapse
Affiliation(s)
- Nina Petrova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | | | | |
Collapse
|
29
|
Tirichine L, de Billy F, Huguet T. Mtsym6, a gene conditioning Sinorhizobium strain-specific nitrogen fixation in Medicago truncatula. PLANT PHYSIOLOGY 2000; 123:845-51. [PMID: 10889234 PMCID: PMC59048 DOI: 10.1104/pp.123.3.845] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/1999] [Accepted: 03/09/2000] [Indexed: 05/22/2023]
Abstract
The availability of a wide range of independent lines for the annual medic Medicago truncatula led us to search for natural variants in the symbiotic association with Sinorhizobium meliloti. Two homozygous lines, Jemalong 6 and DZA315.16, originating from an Australian cultivar and a natural Algerian population, respectively, were inoculated with two wild-type strains of S. meliloti, RCR2011 and A145. Both plant lines formed nitrogen-fixing (effective) nodules with the RCR2011 strain. However, the A145 strain revealed a nitrogen fixation polymorphism, establishing an effective symbiosis (Nod(+)Fix(+)) with DZA315.16, whereas only small, white, non-nitrogen fixing nodules (Nod(+)Fix(-)) were elicited on Jemalong 6. Cytological studies demonstrated that these non-fixing nodules are encircled by an endodermis at late stages of development, with no visible meristem, and contain hypertrophied and autofluorescent infection threads, suggesting the induction of plant defense reactions. The non-fixing phenotype is independent of growth conditions and determined by a single recessive allele (Mtsym6), which is located on linkage group 8.
Collapse
Affiliation(s)
- L Tirichine
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique, BP 27, Auzeville, 31326 Castanet-Tolosan cedex, France
| | | | | |
Collapse
|
30
|
Ichige A, Walker GC. Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants. J Bacteriol 1997; 179:209-16. [PMID: 8982000 PMCID: PMC178681 DOI: 10.1128/jb.179.1.209-216.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Rhizobium meliloti bacA gene encodes a function that is essential for bacterial differentiation into bacteroids within plant cells in the symbiosis between R. meliloti and alfalfa. An Escherichia coli homolog of BacA, SbmA, is implicated in the uptake of microcin B17, microcin J25 (formerly microcin 25), and bleomycin. When expressed in E. coli with the lacZ promoter, the R. meliloti bacA gene was found to suppress all the known defects of E. coli sbmA mutants, namely, increased resistance to microcin B17, microcin J25, and bleomycin, demonstrating the functional similarity between the two proteins. The R. meliloti bacA386::Tn(pho)A mutant, as well as a newly constructed bacA deletion mutant, was found to show increased resistance to bleomycin. However, it also showed increased resistance to certain aminoglycosides and increased sensitivity to ethanol and detergents, suggesting that the loss of bacA function causes some defect in membrane integrity. The E. coli sbmA gene suppressed all these bacA mutant phenotypes as well as the Fix- phenotype when placed under control of the bacA promoter. Taken together, these results strongly suggest that the BacA and SbmA proteins are functionally similar and thus provide support for our previous hypothesis that BacA may be required for uptake of some compound that plays an important role in bacteroid development. However, the additional phenotypes of bacA mutants identified in this study suggest the alternative possibility that BacA may be needed for membrane integrity, which is likely to be critically important during the early stages of bacterial differentiation within plant cells.
Collapse
Affiliation(s)
- A Ichige
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
31
|
Glazebrook J, Ichige A, Walker GC. Genetic analysis of Rhizobium meliloti bacA-phoA fusion results in identification of degP: two loci required for symbiosis are closely linked to degP. J Bacteriol 1996; 178:745-52. [PMID: 8550509 PMCID: PMC177721 DOI: 10.1128/jb.178.3.745-752.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The function of the Rhizobium meliloti bacA gene, which is a homolog of the Escherichia coli sbmA gene, is required for an intermediate step in nodule development. A strain carrying the bacA386::TnphoA fusion was mutagenized with N-methyl-N'-nitro-N-nitrosoguanidine, and three mutants that had higher levels of alkaline phosphatase activity were identified. The mutations in these strains were recessive and mapped to the same genetic locus. The gene affected by these mutations was identified and sequenced and was found to be a homolog of the E. coli degP gene, which encodes a periplasmic endopeptidase. Although degP function is important for the virulence of certain intracellular pathogens of mammals, it is not required for the R. meliloti-alfalfa symbiosis. The genetic analyses involving degP were complicated by the presence of a locus immediately upstream of depP that was lethal when present in multiple copies in a DegP- background. R. meliloti derivatives carrying insertion mutations in this locus displayed an N,N,N',N'-tetramethyl-p-phenylenediamine oxidase-negative phenotype, elicited the formation of white cylindrical nodules that did not fix nitrogen, and grew slowly in rich medium, suggesting that the locus was a cyc gene encoding a protein involved in the biosynthesis of a component or components of a respiratory chain. The previously identified fix-382::TnphoA, which similarly causes the formation of white cylindrical nodules that do not fix nitrogen, was shown to affect a gene that is separate from this cyc gene but extremely closely linked to it.
Collapse
Affiliation(s)
- J Glazebrook
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
32
|
Nitrogen Fixing Root Nodule Symbioses: Legume Nodules and Actinorhizal Nodules. BIOTECHNOLOGY ANNUAL REVIEW 1996. [DOI: 10.1016/s1387-2656(08)70009-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
34
|
Weidenhaupt M, Fischer HM, Acuña G, Sanjuan J, Hennecke H. Use of a promoter-probe vector system in the cloning of a new NifA-dependent promoter (ndp) from Bradyrhizobium japonicum. Gene X 1993; 129:33-40. [PMID: 8335258 DOI: 10.1016/0378-1119(93)90693-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Many of the symbiotic nitrogen-fixation genes in the soybean root nodule bacterium, Bradyrhizobium japonicum, are transcribed from -24/-12 promoters that are recognized by the sigma 54-RNA polymerase and activated by the transcriptional regulator protein, NifA. Several lines of evidence suggest that the B. japonicum genome has more than those seven NifA-regulated promoters which were characterized previously. Here, we present a strategy aimed at the cloning of new NifA-activated promoters. It makes use of (i) a promoter-probe vector into which random B. japonicum genomic fragments were cloned in front of a promoterless reporter gene and (ii) a screening procedure that allowed us to distinguish constitutive promoters from promoters that were specifically activated by NifA under microaerobic or anaerobic conditions. With certain modifications, the system may be generally applicable to clone positively regulated, anaerobically induced genes. A novel NifA-dependent promoter region (ndp) of B. japonicum was found by these means. The transcription start point was mapped, and its 5'-flanking DNA carried a -24/-12-type promoter sequence plus potential binding sites for NifA and integration host factor. Further transcript analyses confirmed that maximal transcription from this promoter occurred only in the presence of NifA and sigma 54 during anaerobic growth of B. japonicum. In Escherichia coli, expression of beta-galactosidase derived from a transcriptional ndp::lacZ fusion was activated 11-fold by B. japonicum NifA, and this activation also required sigma 54 but was independent of NtrC. The DNA around ndp shared no similarity with known sequences in databases.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Weidenhaupt
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Abstract
Many legumes respond to Rhizobium inoculation by developing unique structures known as nodules on their roots. The development of a legume nodule in which rhizobia convert atmospheric N2 into ammonia is a finely tuned process. Gene expression from both partners of the symbiosis must be temporally and spatially coordinated. Exactly how this coordination takes place is an area of intense study. Nodule morphogenesis appears to be elicited by at least two distinct signals: one from Rhizobium, a product of the nod genes (Nod factor), and a second signal, which is generated within plant tissues after treatment with Nod factor. The identity of the second signal is unknown but changes in the balance of endogenous plant hormones or the sensitivity of plant tissues to these hormones are likely to be involved. These hormonal changes may be triggered by endogenous flavonoids produced by the root in response to inoculation with Rhizobium. There is some controversy as to whether the legume nodule is an organ sui generis or a highly derived lateral root. A resolution of this question may become more critical as attempts to induce nodules on non-legume hosts, such as rice or maize, increase in number and scope. CONTENTS Summary 211 I. Introduction 211 II. Nodule development 213 III. Nodule initiation 220 IV. The second signal for nodule morphogenesis: role for the plant hormones ? 225 V. Lateral root development 229 VI. Are nodules modified lateral roots ? 229 VII. Conclusions and future prospects 231 Acknowledgements and dedication 232 References 232.
Collapse
Affiliation(s)
- Ann M Hirsch
- Department of Biology, University of California-Los Angeles, Los Angeles, CA 90024-1606, USA
| |
Collapse
|
36
|
Sanjuan J, Olivares J. NifA-NtrA regulatory system activates transcription of nfe, a gene locus involved in nodulation competitiveness of Rhizobium meliloti. Arch Microbiol 1991; 155:543-8. [PMID: 1953295 DOI: 10.1007/bf00245347] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously demonstrated that the Rhizobium meliloti large plasmid pRmeGR4b carries the gene locus nodule formation efficiency (nfe) which is responsible for nodulation efficiency and competitive ability of strain GR4 on alfalfa roots. In this study we report that expression of nfe-lacZ fusions in Escherichia coli is activated in the presence of the cloned nifA gene of R. meliloti. This activation was found to be oxygen sensitive and to require the E. coli ntrA gene product. In contrast to the R. meliloti nifA, the cloned nifA gene of Klebsiella pneumoniae was able to activate expression of nfe in aerobically grown cells of both E. coli and R. meliloti. Hybridization experiments did not show homology to nfe in four R. meliloti wild-type strains tested. These strains were uncompetitive when coinoculated with a GR4 derivative carrying plasmid pRmeGR4b, but were competitive when coinoculated with a GR4 derivative carrying a single transposon mutation into the nfe region. When nfe DNA was introduced into the four wild-type strains, a significant increase in the competitive ability of two of them was observed, as deduced from their respective percentages of alfalfa root nodule occupancy in two-strains coinoculation experiments.
Collapse
Affiliation(s)
- J Sanjuan
- Departamento de Microbiología, Estación Experimental del Zaidín, Granada, Spain
| | | |
Collapse
|
37
|
Ogawa J, Brierley HL, Long SR. Analysis of Rhizobium meliloti nodulation mutant WL131: novel insertion sequence ISRm3 in nodG and altered nodH protein product. J Bacteriol 1991; 173:3060-5. [PMID: 1850728 PMCID: PMC207898 DOI: 10.1128/jb.173.10.3060-3065.1991] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nodulation (nod) genes are required for invasion of legumes by Rhizobium bacteria. Mutant WL131 is a derivative of 102F51 that has a severe Nod- phenotype on alfalfa. Upon examination of the extended DNA region containing host-specific nodulation genes nodFEG and nodH, we found that the nodG gene of WL131 bears a novel insertion sequence, ISRm3. Complementation studies implied, however, that the phenotype on alfalfa correlated with the nodH locus. We found that nodH in WL131 encodes an altered gene product. Correlation of the WL131 defect with nodH was also supported by phenotypic behavior. Each mutation affected nodulation more severely on alfalfa (Medicago sativa) than on sweet clover (Melilotus albus). However, we found that the degree of requirement for nodH in nodulation varied with the conditions under which the plant was grown.
Collapse
Affiliation(s)
- J Ogawa
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | | | |
Collapse
|
38
|
Kneen BE, Larue TA, Hirsch AM, Smith CA, Weeden NF. sym 13-A Gene Conditioning Ineffective Nodulation in Pisum sativum. PLANT PHYSIOLOGY 1990; 94:899-905. [PMID: 16667870 PMCID: PMC1077320 DOI: 10.1104/pp.94.3.899] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Treatment of Pisum sativum (L.) cv. ;Sparkle' with ethyl methanesulfonic acid (EMS) produced a stable mutant, E135F, which forms small, white, ineffective nodules. These nodules exhibit histological zonation typical of an indeterminant nodule, e.g. meristematic, early symbiotic, late symbiotic, and senescent zones. Compared with the nitrogen fixing nodules of the parent, the zones are smaller and the nodules senesce prematurely. Bacteroids in E135F are less elongated and less differentiated than those in ;Sparkle.' The E135F mutant forms ineffective nodules when inoculated with nine different effective strains of Rhizobium leguminosarum and also when grown in a soil containing effective strains. The ineffective phenotype of E135F is under monogenic recessive control; the gene is designated sym 13. sym 13 was located on chromosome 2 by linkage with genes for shikimic dehydrogenase and esterase-2. The original selection E135F carried another mutation in heterozygous form at a separate locus, yielding some homozygous recessive nonnodulating progeny, E135N, in later generations. This indicates that EMS treatments may cause mutations at more than one sym gene. The gene conditioning non-nodulation in E135N was designated sym 14. It mapped to a locus on a different part of chromosome 2 by linkage to the gene for fumarase. The data demonstrate that sym genes are not necessarily closely linked.
Collapse
Affiliation(s)
- B E Kneen
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853-1801
| | | | | | | | | |
Collapse
|
39
|
Vasse J, de Billy F, Camut S, Truchet G. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 1990; 172:4295-306. [PMID: 2376562 PMCID: PMC213254 DOI: 10.1128/jb.172.8.4295-4306.1990] [Citation(s) in RCA: 341] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacteroid differentiation was examined in developing and mature alfalfa nodules elicited by wild-type or Fix- mutant strains of Rhizobium meliloti. Ultrastructural studies of wild-type nodules distinguished five steps in bacteroid differentiation (types 1 to 5), each being restricted to a well-defined histological region of the nodule. Correlative studies between nodule development, bacteroid differentiation, and acetylene reduction showed that nitrogenase activity was always associated with the differentiation of the distal zone III of the nodule. In this region, the invaded cells were filled with heterogeneous type 4 bacteroids, the cytoplasm of which displayed an alternation of areas enriched with ribosomes or with DNA fibrils. Cytological studies of complementary halves of transversally sectioned mature nodules confirmed that type 4 bacteroids were always observed in the half of the nodule expressing nitrogenase activity, while the presence of type 5 bacteroids could never be correlated with acetylene reduction. Bacteria with a transposon Tn5 insertion in pSym fix genes elicited the development of Fix- nodules in which bacteroids could not develop into the last two ultrastructural types. The use of mutant strains deleted of DNA fragments bearing functional reiterated pSym fix genes and complemented with recombinant plasmids, each carrying one of these fragments, strengthened the correlation between the occurrence of type 4 bacteroids and acetylene reduction. A new nomenclature is proposed to distinguish the histological areas in alfalfa nodules which account for and are correlated with the multiple stages of bacteroid development.
Collapse
Affiliation(s)
- J Vasse
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Céntre National de la Recherche Scientifique-Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | | | | | | |
Collapse
|
40
|
Engelke T, Jording D, Kapp D, Pühler A. Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier. J Bacteriol 1989; 171:5551-60. [PMID: 2551890 PMCID: PMC210396 DOI: 10.1128/jb.171.10.5551-5560.1989] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transposon Tn5-induced C4-dicarboxylate transport mutants of Rhizobium meliloti 2011 which could be complemented by cosmid pRmSC121 were subdivided into two classes. Class I mutants (RMS37 and RMS938) were defective in symbiotic C4-dicarboxylate transport and in nitrogen fixation. They were mutated in the structural gene dctA, which codes for the C4-dicarboxylate carrier. Class II mutants (RMS11, RMS16, RMS17, RMS24, and RMS31) expressed reduced activity in symbiotic C4-dicarboxylate transport and in nitrogen fixation. These mutants were mutated in regulatory dct genes which do not play an essential role in the symbiotic state. Thin sections of alfalfa nodules induced by the wild type and class I and class II mutants were analyzed by light microscopy. Class mutants induced typical Fix- nodules, showing a large senescent zone, whereas nodules induced by class II mutants only differed in an enhanced content of starch granules compared with wild-type nodules. Class I mutants could be complemented by a 2.1-kilobase SalI-HindIII subfragment of cosmid pRmSC121. DNA sequencing of this fragment resulted in the identification of an open reading frame, which was designated dctA because Tn5 insertion sites of the class I mutants mapped within this coding region. The dctA gene was preceded by a nif consensus promoter and an upstream NifA-binding element. Upstream of the dctA promoter, the 5' end of the R. meliloti dctB gene could be localized. The amino acid sequence of the N-terminal part of the R. meliloti DctB protein shared 49% homology with the corresponding part of the R. leguminosarum DctB protein. The DctA protein consisted of 441 or 453 amino acids due to two possible ATG start codons, with calculated molecular masses of 46.1 and 47.6 kilodaltons, respectively. The hydrophobicity plot suggests that DctA is a membrane protein with several membrane passages. The amino acid sequences of the R. meliloti and the R. leguminosarum DctA proteins were highly conserved (82%).
Collapse
Affiliation(s)
- T Engelke
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany
| | | | | | | |
Collapse
|
41
|
Kannenberg EL, Brewin NJ. Expression of a cell surface antigen from Rhizobium leguminosarum 3841 is regulated by oxygen and pH. J Bacteriol 1989; 171:4543-8. [PMID: 2768181 PMCID: PMC210248 DOI: 10.1128/jb.171.9.4543-4548.1989] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rhizobium leguminosarum bv. viciae 3841 was grown in liquid suspension culture to investigate how culture conditions could affect the expression of a developmentally regulated cell surface antigen associated with lipopolysaccharide. The antigen, which is recognized by monoclonal antibody AFRC MAC 203, was expressed when cultures were grown at neutral pH under low-oxygen conditions (less than 7.5% [vol/vol] O2 in the gas phase). Antigen was also expressed in aerobically grown cultures at pH values below 5.3. The nature of the nitrogen and the carbon sources had no effect on antigen expression except by indirect changes on the pH of the culture medium; similarly, growth in 0.3 M NaCl did not result in antigen expression. The induction of MAC 203 antigen by low-oxygen or low-pH culture conditions is discussed in the context of tissue-specific expression within the legume root nodule.
Collapse
|
42
|
Sanjuan J, Olivares J. Implication of nifA in regulation of genes located on a Rhizobium meliloti cryptic plasmid that affect nodulation efficiency. J Bacteriol 1989; 171:4154-61. [PMID: 2546913 PMCID: PMC210185 DOI: 10.1128/jb.171.8.4154-4161.1989] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We examined the contribution of a cryptic plasmid, pRmeGR4b, to the nodulation of Medicago sativa by strain GR4 of Rhizobium meliloti. A 905-base-pair PstI DNA fragment in pRmeGR4b was found to hybridize DNA of the R. meliloti fixA promoter region as a probe. Sequence analysis of the PstI fragment showed a 206-base-pair region displaying high homology with the DNA upstream of the RNA start points of the P1 and P2 symbiotic promoters. Putative nif promoter consensus sequences were conserved in this DNA segment. Expression of DNA downstream of the nif promoterlike sequence, monitored by beta-galactosidase activity of different lacZ fusions, was demonstrated to depend on a functional nifA gene, both in microaerobically free-living cells and in nodules. Individual transposon Tn3-HoHo1 insertions in this DNA region caused a reduced nodulation competitiveness. This new symbiotic region, occupying approximately 5 kilobases of pRmeGR4b DNA, was called nfe (nodule formation efficiency).
Collapse
Affiliation(s)
- J Sanjuan
- Departamento de Microbiología, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | |
Collapse
|
43
|
Symbiotic and galactose utilization properties of phage RMP64-resistant mutants affecting three complementation groups inRhizobium meliloti. J Genet 1989. [DOI: 10.1007/bf02927852] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|