1
|
Leonard AC. Recollections of a Helmstetter Disciple. Life (Basel) 2023; 13:life13051114. [PMID: 37240759 DOI: 10.3390/life13051114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Nearly fifty years ago, it became possible to construct E. coli minichromosomes using recombinant DNA technology. These very small replicons, comprising the unique replication origin of the chromosome oriC coupled to a drug resistance marker, provided new opportunities to study the regulation of bacterial chromosome replication, were key to obtaining the nucleotide sequence information encoded into oriC and were essential for the development of a ground-breaking in vitro replication system. However, true authenticity of the minichromosome model system required that they replicate during the cell cycle with chromosome-like timing specificity. I was fortunate enough to have the opportunity to construct E. coli minichromosomes in the laboratory of Charles Helmstetter and, for the first time, measure minichromosome cell cycle regulation. In this review, I discuss the evolution of this project along with some additional studies from that time related to the DNA topology and segregation properties of minichromosomes. Despite the significant passage of time, it is clear that large gaps in our understanding of oriC regulation still remain. I discuss some specific topics that continue to be worthy of further study.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32952, USA
| |
Collapse
|
2
|
Wegrzyn KE, Gross M, Uciechowska U, Konieczny I. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids. Front Mol Biosci 2016; 3:39. [PMID: 27563644 PMCID: PMC4980987 DOI: 10.3389/fmolb.2016.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells.
Collapse
Affiliation(s)
- Katarzyna E Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Marta Gross
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Urszula Uciechowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
3
|
Rajewska M, Wegrzyn K, Konieczny I. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEMS Microbiol Rev 2011; 36:408-34. [PMID: 22092310 DOI: 10.1111/j.1574-6976.2011.00300.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/07/2011] [Indexed: 11/27/2022] Open
Abstract
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
4
|
Borrell L, Yang J, Pittard AJ, Praszkier J. Interaction of initiator proteins with the origin of replication of an IncL/M plasmid. Plasmid 2006; 56:88-101. [PMID: 16774786 DOI: 10.1016/j.plasmid.2006.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 04/07/2006] [Accepted: 04/27/2006] [Indexed: 11/24/2022]
Abstract
The origin of replication of the IncL/M plasmid pMU604 was analyzed to identify sequences important for binding of initiator proteins and origin activity. A thrice repeated sequence motif 5'-NANCYGCAA-3' was identified as the binding site (RepA box) of the initiator protein, RepA. All three copies of the RepA box were required for in vivo activity and binding of RepA to these boxes appeared to be cooperative. A DnaA R box (box 1), located immediately upstream of the RepA boxes, was not required for recruitment of DnaA during initiation of replication by RepA of pMU604 unless a DnaA R box located at the distal end of the origin (box 3) had been inactivated. However, DnaA R box 1 was important for recruitment of DnaA to the origin of replication of pMU604 when the initiator RepA was that from a distantly related plasmid, pMU720. A mutation which scrambled DnaA R boxes 1 and 3 and one which scrambled DnaA R boxes 1, 3 and 4 had much more deleterious effects on initiation by RepA of pMU720 than on initiation by RepA of pMU604. Neither Rep protein could initiate replication from the origin of pMU604 in the absence of DnaA, suggesting that the difference between them might lie in the mechanism of recruitment of DnaA to this origin. DnaA protein enhanced the binding and origin unwinding activities of RepA of pMU604, but appeared unable to bind to a linear DNA fragment bearing the origin of replication of pMU604 in the absence of other proteins.
Collapse
Affiliation(s)
- L Borrell
- Department of Microbiology and Immunology, The University of Melbourne, Vic. 3010, Australia
| | | | | | | |
Collapse
|
5
|
Sakamoto K, Ishimaru S, Kobayashi T, Walker JR, Yokoyama S. The Escherichia coli argU10(Ts) phenotype is caused by a reduction in the cellular level of the argU tRNA for the rare codons AGA and AGG. J Bacteriol 2004; 186:5899-905. [PMID: 15317795 PMCID: PMC516816 DOI: 10.1128/jb.186.17.5899-5905.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli argU10(Ts) mutation in the argU gene, encoding the minor tRNA(Arg) species for the rare codons AGA and AGG, causes pleiotropic defects, including growth inhibition at high temperatures, as well as the Pin phenotype at 30 degrees C. In the present study, we first showed that the codon selectivity and the arginine-accepting activity of the argU tRNA are both essential for complementing the temperature-sensitive growth, indicating that this defect is caused at the level of translation. An in vitro analysis of the effects of the argU10(Ts) mutation on tRNA functions revealed that the affinity with elongation factor Tu-GTP of the argU10(Ts) mutant tRNA is impaired at 30 and 43 degrees C, and this defect is more serious at the higher temperature. The arginine acceptance is also impaired significantly but to similar extents at the two temperatures. An in vivo analysis of aminoacylation levels showed that 30% of the argU10(Ts) tRNA molecules in the mutant cells are actually deacylated at 30 degrees C, while most of the argU tRNA molecules in the wild-type cells are aminoacylated. Furthermore, the cellular level of this mutant tRNA is one-tenth that of the wild-type argU tRNA. At 43 degrees C, the cellular level of the argU10(Ts) tRNA is further reduced to a trace amount, while neither the cellular abundance nor the aminoacylation level of the wild-type argU tRNA changes. We concluded that the phenotypic properties of the argU10(Ts) mutant result from these reduced intracellular levels of the tRNA, which are probably caused by the defective interactions with elongation factor Tu and arginyl-tRNA synthetase.
Collapse
Affiliation(s)
- Kensaku Sakamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
6
|
d'Alençon E, Taghbalout A, Bristow C, Kern R, Aflalo R, Kohiyama M. Isolation of a new hemimethylated DNA binding protein which regulates dnaA gene expression. J Bacteriol 2003; 185:2967-71. [PMID: 12700277 PMCID: PMC154408 DOI: 10.1128/jb.185.9.2967-2971.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we show that yccV, a gene of unknown function, encodes a protein having an affinity for a hemimethylated oriC DNA and that the protein negatively controls dnaA gene expression in vivo.
Collapse
|
7
|
Rawlings DE. Proteic toxin-antitoxin, bacterial plasmid addiction systems and their evolution with special reference to the pas system of pTF-FC2. FEMS Microbiol Lett 1999; 176:269-77. [PMID: 10427709 DOI: 10.1111/j.1574-6968.1999.tb13672.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Genes encoding toxin-antitoxin proteins are frequently found on plasmids where they serve to stabilize the plasmid within a bacterial population. The toxin-antitoxin proteins do not increase the likelihood of a progeny cell receiving a plasmid but rather function as post-segregational killing mechanisms which decrease the proportion of cells that survive after losing the plasmid. These toxin-antitoxin couples therefore act as plasmid addiction systems. Several new proteic toxin-antitoxin systems have been identified and these systems appear to be ubiquitous on the chromosomes of bacteria and archaea. When placed on plasmids, these chromosomal systems also have the ability to stabilize plasmids and in at least one case, chromosomal- and plasmid-based toxin-antitoxin systems have been shown to interact. Recent findings regarding toxin-antitoxin systems and questions that have arisen as a result of these findings are reviewed.
Collapse
Affiliation(s)
- D E Rawlings
- Department of Microbiology, University of Stellenbosch, Matieland, South Africa.
| |
Collapse
|
8
|
Guo L, Katayama T, Seyama Y, Sekimizu K, Miki T. Isolation and characterization of novel cold-sensitive dnaA mutants of Escherichia coli. FEMS Microbiol Lett 1999; 176:357-66. [PMID: 10427718 DOI: 10.1111/j.1574-6968.1999.tb13684.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We developed an efficient method for isolation of novel dnaA mutations based on PCR mutagenesis in the presence of manganese ion and shuffling of dnaA-carrying plasmids in a dnaA deletion host bacterium. Using this system, we obtained 30 cold-sensitive mutants from 4000 clones carrying plasmids with a mutagenized dnaA gene. All 27 cold-sensitive mutants analyzed were defective in DNA replication; none had a DnaAcos (over-initiation) phenotype. Nucleotide sequencing revealed that novel 15 alleles (mutations in 14 amino acid residues) are responsible for the cold-sensitive phenotype and are all located in the carboxy-terminal half of the DnaA protein.
Collapse
Affiliation(s)
- L Guo
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
9
|
Onogi T, Niki H, Yamazoe M, Hiraga S. The assembly and migration of SeqA-Gfp fusion in living cells of Escherichia coli. Mol Microbiol 1999; 31:1775-82. [PMID: 10209749 DOI: 10.1046/j.1365-2958.1999.01313.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SeqA protein, which binds to hemi-methylated GATC sequences of DNA, is localized to discrete fluorescent foci in wild-type Escherichia coli cells. In this work, we observed cellular localization of the SeqA-Gfp fusion in living cells. SeqA-Gfp was localized to a discrete focus or foci in wild-type and seqA null mutant cells, but the fusion was dispersed in the whole cell in dam null mutant cells lacking Dam methyltransferase. These results were consistent with the previous description of the localization of SeqA by immunofluorescence microscopy. Time-lapse experiments revealed that duplicated SeqA-Gfp foci migrated rapidly in opposite directions. Flow cytometry demonstrated that the fusion restored synchronous replication of chromosomal DNA from multiple origins in seqA null mutant cells, indicating that SeqA-Gfp is biologically active. Immunoprecipitation of the fusion from cell extracts using anti-Gfp antibody indicated that the fusion was assembled with the wild-type SeqA protein.
Collapse
Affiliation(s)
- T Onogi
- Department of Molecular Cell Biology, Kumamoto University School of Medicine, Japan
| | | | | | | |
Collapse
|
10
|
Hiraga S, Ichinose C, Niki H, Yamazoe M. Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA-protein complexes in E. coli. Mol Cell 1998; 1:381-7. [PMID: 9660922 DOI: 10.1016/s1097-2765(00)80038-6] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Using immunofluorescence microscopy, we have found that SeqA protein, a regulator of replication initiation, is localized as discrete fluorescent foci in E. coli wild-type cells. Surprisingly, SeqA foci were observed also in an oriC deletion mutant. Statistical analysis revealed that a SeqA focus is localized at midcell in newborn cells. The SeqA focus is duplicated and tethered at midcell until an FtsZ ring is formed. Subsequently, these foci migrate in opposite directions toward cell quarter sites and remain tethered there until the cell divides. The cell cycle-dependent bidirectional migration of SeqA-DNA complexes is quite different from the migration pattern of oriC Dna copies. MukB protein is required for correct localization of SeqA complexes by an unknown mechanism.
Collapse
Affiliation(s)
- S Hiraga
- Department of Molecular Cell Biology, Kumamoto University School of Medicine, Japan
| | | | | | | |
Collapse
|
11
|
Kogoma T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 1997; 61:212-38. [PMID: 9184011 PMCID: PMC232608 DOI: 10.1128/mmbr.61.2.212-238.1997] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chromosome replication in Escherichia coli is normally initiated at oriC, the origin of chromosome replication. E. coli cells possess at least three additional initiation systems for chromosome replication that are normally repressed but can be activated under certain specific conditions. These are termed the stable DNA replication systems. Inducible stable DNA replication (iSDR), which is activated by SOS induction, is proposed to be initiated from a D-loop, an early intermediate in homologous recombination. Thus, iSDR is a form of recombination-dependent DNA replication (RDR). Analysis of iSDR and RDR has led to the proposal that homologous recombination and double-strand break repair involve extensive semiconservative DNA replication. RDR is proposed to play crucial roles in homologous recombination, double-strand break repair, restoration of collapsed replication forks, and adaptive mutation. Constitutive stable DNA replication (cSDR) is activated in mhA mutants deficient in RNase HI or in recG mutants deficient in RecG helicase. cSDR is proposed to be initiated from an R-loop that can be formed by the invasion of duplex DNA by an RNA transcript, which most probably is catalyzed by RecA protein. The third form of SDR is nSDR, which can be transiently activated in wild-type cells when rapidly growing cells enter the stationary phase. This article describes the characteristics of these alternative DNA replication forms and reviews evidence that has led to the formulation of the proposed models for SDR initiation mechanisms. The possible interplay between DNA replication, homologous recombination, DNA repair, and transcription is explored.
Collapse
Affiliation(s)
- T Kogoma
- Department of Cell Biology, University of New Mexico Health Sciences Center, Albuquerque 87131, USA.
| |
Collapse
|
12
|
Katayama T, Takata M, Sekimizu K. The nucleoid protein H-NS facilitates chromosome DNA replication in Escherichia coli dnaA mutants. J Bacteriol 1996; 178:5790-2. [PMID: 8824628 PMCID: PMC178422 DOI: 10.1128/jb.178.19.5790-5792.1996] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Growth inhibition of the dnaA(Cs) mutant, which overinitiates chromosome replication, was shown to be dependent upon the nucleoid protein H-NS. [3H]thymine incorporation experiments indicated that the absence of H-NS inhibited overreplication by the dnaA(Cs) mutant. In addition, the temperature-sensitive phenotype of a dnaA46 mutant was enhanced by disruption of H-NS. These observations suggest that H-NS directly or indirectly facilitates the initiation of chromosome replication.
Collapse
Affiliation(s)
- T Katayama
- Department of Microbiology, Kyushu University Faculty of Pharmaceutical Sciences, Fukuoka, Japan.
| | | | | |
Collapse
|
13
|
Mellado E, Asturias JA, Nieto JJ, Timmis KN, Ventosa A. Characterization of the basic replicon of pCM1, a narrow-host-range plasmid from the moderate halophile Chromohalobacter marismortui. J Bacteriol 1995; 177:3443-50. [PMID: 7768853 PMCID: PMC177047 DOI: 10.1128/jb.177.12.3443-3450.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The moderately halophilic bacterium Chromohalobacter marismortui contains a 17.5-kb narrow-host-range plasmid, pCM1, which shows interesting properties for the development of cloning vectors for the genetic manipulation of this important group of extremophiles. Plasmid pCM1 can stably replicate and is maintained in most gram-negative moderate halophiles tested. The replication origin has been identified and sequenced, and the minimal pCM1 replicon has been localized to a 1,600-bp region which includes two functionally discrete regions, the oriV region and the repA gene. oriV, located on a 700-bp fragment, contains four iterons 20 bp in length adjacent to a DnaA box that is dispensable but required for efficient replication of pCM1, and it requires trans-acting functions. The repA gene, which encodes a replication protein of 289 residues, is similar to the replication proteins of other gram-negative bacteria.
Collapse
Affiliation(s)
- E Mellado
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Spain
| | | | | | | | | |
Collapse
|
14
|
Matsunaga F, Kawasaki Y, Ishiai M, Nishikawa K, Yura T, Wada C. DNA-binding domain of the RepE initiator protein of mini-F plasmid: involvement of the carboxyl-terminal region. J Bacteriol 1995; 177:1994-2001. [PMID: 7721691 PMCID: PMC176841 DOI: 10.1128/jb.177.8.1994-2001.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The RepE initiator protein (251 residues) is essential for mini-F replication in Escherichia coli and exhibits two major functions: initiation of DNA replication from ori2 and autogenous repression of repE transcription. Whereas the initiation is mediated by RepE monomers that bind to the ori2 iterons (direct repeats), the autogenous repression is mediated by dimers that bind to the repE operator, which contains an inverted repeat sequence related to the iterons. We now report that the binding of RepE to these DNA sites is primarily determined by the C-terminal region of this protein. The mutant RepE proteins lacking either the N-terminal 33 (or more) residues or the C-terminal 7 (or more) residues were first shown to be defective in binding to both the ori2 and the operator DNAs. However, direct screening and analysis of mutant RepEs which are specifically affected in binding to the ori2 iterons revealed that the mutations (mostly amino acid substitutions) occur exclusively in the C-terminal region (residues 168 to 242). These mutant proteins exhibited reduced binding to ori2 and no detectable binding to the operator. Thus, whereas truncation of either end of RepE can destroy the DNA-binding activities, the C-terminal region appears to represent a primary DNA-binding domain of RepE for both ori2 and the operator. Analogous DNA-binding domains seem to be conserved among the initiator proteins of certain related plasmids.
Collapse
Affiliation(s)
- F Matsunaga
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Katayama T, Kornberg A. Hyperactive initiation of chromosomal replication in vivo and in vitro by a mutant initiator protein, DnaAcos, of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99932-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Sugiura S, Ohkubo S, Yamaguchi K. Minimal essential origin of plasmid pSC101 replication: requirement of a region downstream of iterons. J Bacteriol 1993; 175:5993-6001. [PMID: 8376344 PMCID: PMC206681 DOI: 10.1128/jb.175.18.5993-6001.1993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The minimal replication origin (ori) of the plasmid pSC101 was defined as an about 220-bp region under the condition that the Rep (or RepA) protein, a plasmid-encoded initiator protein, was supplied in trans. The DnaA box is located at one end of ori, as in other plasmids, like mini-F and P1. The other border is a strong binding site (IR-1) of Rep which is palindromic sequence and lies in an about 50-bp region beyond the repeated sequences (iterons) in ori. This IR-1 is located just upstream of another strong Rep binding site (IR-2), the operator site of the structure gene of Rep (rep), but its function has not been determined. The present study shows that the IR-1 sequence capable of binding to Rep is essential for plasmid replication with a nearly normal copy number. Furthermore, a region between the third iteron and IR-1 is also required in a sequence-specific fashion, since some one-base substitution in this region inactivate the origin function. It is likely that the region also is a recognition site of an unknown protein. Three copy number mutations of rep can suppress any one-base substitution mutation. On the other hand, the sequence of a spacer region between the second and the third iterons, which is similar to that of the downstream region of the third iteron, can be changed without loss of the origin function. The requirement of the region downstream of iterons in pSC101 seems to be unique among iteron-driven plasmid replicons.
Collapse
Affiliation(s)
- S Sugiura
- Institute for Gene Research, Kanazawa University, Japan
| | | | | |
Collapse
|
17
|
Giraldo R, Díaz R. Differential binding of wild-type and a mutant RepA protein to oriR sequence suggests a model for the initiation of plasmid R1 replication. J Mol Biol 1992; 228:787-802. [PMID: 1469713 DOI: 10.1016/0022-2836(92)90864-g] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA replication of the enterobacterial plasmid R1 is initiated by RepA protein. We have developed a new procedure for the purification of RepA from inclusion bodies, which involves CHAPS-mediated solubilization. This method has been also used for the thermosensitive mutant protein RepA2623. The nucleoprotein complexes obtained with both proteins and oriR, the origin of replication, are studied in this paper. DNaseI and hydroxyl-radical footprinting suggest the presence in oriR of two sites with different affinity for RepA separated by eight helical turns. The pattern of hypersensitive sites in the footprints indicates that the oriR sequence, when complexed with RepA, is curved. The binding of RepA molecules to oriR is co-operative and this co-operativity is defective in the thermosensitive protein. Band-shift analysis of RepA-oriR complexes revealed the existence of a species with an anomalously high electrophoretic mobility that appears after formation of the first RepA-oriR complex and requires the sequential interaction of RepA with its two distal binding sites. These features lead us to propose that protein-protein interactions between RepA bound to both distal sites could be responsible for oriR looping. This model represents a novel mechanism that results in activation of an origin in a replicon that does not contain iterons.
Collapse
Affiliation(s)
- R Giraldo
- Unidad de Ingeniería Genética, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | |
Collapse
|
18
|
Ishiai M, Wada C, Kawasaki Y, Yura T. Mini-F plasmid mutants able to replicate in Escherichia coli deficient in the DnaJ heat shock protein. J Bacteriol 1992; 174:5597-603. [PMID: 1512194 PMCID: PMC206504 DOI: 10.1128/jb.174.17.5597-5603.1992] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A subset of Escherichia coli heat shock proteins, DnaJ, DnaK, and GrpE, is required for mini-F plasmid replication, presumably at the step of functioning of the RepE initiator protein. We have isolated and characterized mini-F plasmid mutants that acquired the ability to replicate in the Escherichia coli dnaJ259. The mutant plasmids were found to replicate in any of dnaJ, dnaK, and grpE mutant hosts tested. In each case, the majority of the mutant plasmids carried a unique amino acid alteration in a localized region of repE coding sequence and showed an increased copy number, whereas the minority contained a common single base change (C to T) in the promoter/operator region and produced an increased amount of RepE. All RepE proteins with altered residues (between 92 and 134) exhibited increased initiator activities (hyperactive), and many showed reduced repressor activities as well, indicating that this region is important for the both major functions of RepE protein. These results together with evidence reported elsewhere indicate that the subset of heat shock proteins serves to activate RepE protein prior to or during its binding to the replication origin and that the mutant RepE proteins are active even in their absence. We also found that a C-terminal lesion (repE602) reduces the initiator activity particularly of some hyperactive mutant RepE proteins but does not affect the repressor activity. This finding suggests a functional interaction between the central and C-terminal regions of RepE in carrying out the initiator function.
Collapse
Affiliation(s)
- M Ishiai
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | |
Collapse
|
19
|
Katayama T, Nagata T. Initiation of chromosomal DNA replication which is stimulated without oversupply of DnaA protein in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:491-502. [PMID: 1828106 DOI: 10.1007/bf00260663] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The temperature-sensitive dnaA46 mutation in Escherichia coli can be phenotypically suppressed at 42 degrees C by oversupply of GroELS proteins, and the suppressed cells grow extremely slowly at 30 degrees C. We found that the phenotype of dnaA46 showing this cold sensitivity was dominant over the phenotype of dnaA+, and could not be rescued by introduction of oriC-independent replication systems. These results suggest that the cold sensitivity was not caused by a simple defect in replication. When a growing culture of a dnaA46 strain with a GroELS-overproducing plasmid was shifted from 42 degrees to 30 degrees C in the presence of chloramphenicol, the chromosomal DNA replicated excessively. Initiation of replication occurred at the site of oriC repeatedly four or five times during a 4 h incubation period without concomitant protein synthesis, indicating an excessive capacity for initiation. Such overreplication did not take place at 42 degrees C in the suppressed dnaA46 strain, or at either temperature in GroELS-oversupplied dnaA+ cells. No significant difference was detected between the cellular content of DnaA protein in suppressed cells where the initiation capacity was abnormally high, and that in wild-type cells in which the initiation capacity was normal. Thus, DnaA protein might function in vivo through some phase control mechanism for initiation, apart from a simple regulation by its total amount. A possible mechanism is proposed based on the participation of GroELS proteins in protein folding.
Collapse
Affiliation(s)
- T Katayama
- Institute for Virus Research, Kyoto University, Japan
| | | |
Collapse
|
20
|
Ezaki B, Mori H, Ogura T, Hiraga S. Possible involvement of the ugpA gene product in the stable maintenance of mini-F plasmid in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:361-8. [PMID: 2270076 DOI: 10.1007/bf00264441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The seg-3 mutant Escherichia coli does not support the maintenance of mini-F plasmid at 42 degrees C. We cloned the chromosomal DNA segment of the wild-type strain W3110 that complements the Seg- phenotype of this mutant. Cleavage mapping of this segment showed that it was derived from the 76-min region of the E. coli chromosome map. Complementation tests using plasmids carrying subcloned DNA segments suggested that the seg-3 mutant carried two mutations that additively affected the maintenance of mini-F plasmid; one was in the ugpA gene and the other was presumably in the rpoH gene. We generated a disrupted ugpA null mutant and found that the mini-F plasmid was unstable in this ugpA null mutant even at 30 degrees C. This suggests that the ugpA gene product is required for the stable maintenance of mini-F plasmid.
Collapse
Affiliation(s)
- B Ezaki
- Department of Molecular Genetics, Kumamoto University Medical School, Japan
| | | | | | | |
Collapse
|
21
|
Katayama T, Nagata T. Inhibition of cell growth and stable DNA replication by overexpression of the bla gene of plasmid pBR322 in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:353-60. [PMID: 2270075 DOI: 10.1007/bf00264440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A composite plasmid comprising the mini-F and pBR322 replicons was found to inhibit cell growth of a host with conditional mutations in dnaA and rnh under restrictive conditions, where the normal initiation of replication from oriC was inactivated, but the alternative replication initiation from oriK was active. It was further shown that the composite plasmid inhibited stable DNA replication (SDR) which occurs constitutively in cells mutant for rnh. Neither pBR322 nor mini-F alone produced these inhibitory effects. Deletion analyses revealed that the mini-F segment responsible for the inhibition of both processes was the promoter region of the sopA gene which had been cloned into a site upstream of the bla gene on pBR322 in such an orientation as to cause overexpression of bla. Inserting the promoter of the Escherichia coli lac gene into the same site had the same effect. Introduction of a deletion and a frameshift mutation into bla abolished the inhibition. Thus, the inhibition of growth and SDR appear to be due to overproduction of the bla gene product, beta-lactamase.
Collapse
Affiliation(s)
- T Katayama
- Institute for Virus Research, Kyoto University, Japan
| | | |
Collapse
|
22
|
Kawasaki Y, Wada C, Yura T. Roles of Escherichia coli heat shock proteins DnaK, DnaJ and GrpE in mini-F plasmid replication. MOLECULAR & GENERAL GENETICS : MGG 1990; 220:277-82. [PMID: 2183004 DOI: 10.1007/bf00260494] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A subset of Escherichia coli heat shock proteins, DnaK, DnaJ and GrpE were shown to be required for replication of mini-F plasmid. Strains of E. coli K12 carrying a missense mutation or deletion in the dnaK, dnaJ, or grpE gene were virtually unable to be transformed by mini-F DNA at the temperature (30 degrees C) that permits cell growth. When excess amounts of the replication initiator protein (repE gene product) of mini-F were provided by means of a multicopy plasmid carrying repE, these mutant bacteria became capable of supporting mini-F replication under the same conditions. However, the copy number of a high copy number mini-F plasmid was reduced in these mutant bacteria as compared with the wild type in the presence of excess RepE protein. Furthermore, mini-F plasmid mutants that produce altered initiator protein and exhibit a very high copy number were able to replicate in strains deficient in any of the above heat shock proteins. These results indicate that the subset of heat shock proteins (DnaK, DnaJ and GrpE) play essential roles that help the functioning of the RepE initiator protein in mini-F DNA replication.
Collapse
Affiliation(s)
- Y Kawasaki
- Institute for Virus Research, Kyoto University, Japan
| | | | | |
Collapse
|
23
|
Ogura T, Niki H, Kano Y, Imamoto F, Hiraga S. Maintenance of plasmids in HU and IHF mutants of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1990; 220:197-203. [PMID: 2183003 DOI: 10.1007/bf00260482] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Complementation and sequencing analyses revealed that the hopD mutants, which could not support stable maintenance of mini-F plasmids (Niki et al. 1988), had mutations in the hupB gene, and that the hopD410 mutation was an ochre mutation at the 5th Gln position of HU-1. Maintenance and stability of various plasmids, mini-P1 plasmids, mini-F plasmids, and oriC plasmids, were studied in the hupA and hupB mutants (HU mutants), and himA and hip mutants (IHF mutants). Mini-P1 plasmids and mini-F plasmids could not be introduced into the delta hupA-delta hupB double deletion mutant. Replication of mini-F plasmids was partially inhibited in the hupB mutants, including the delta hupB and hopD(hupB) mutants, whereas replication of oriC plasmids was not significantly affected even in the delta hupA-delta hupB double deletion mutant. The mini-P1 plasmid was slightly unstable in the himA-hip mutant, whereas the mini-F plasmid was stable.
Collapse
Affiliation(s)
- T Ogura
- Department of Molecular Genetics, Kumamoto University Medical School, Japan
| | | | | | | | | |
Collapse
|
24
|
Abstract
Replication of plasmid deoxyribonucleic acid (DNA) is dependent on three stages: initiation, elongation, and termination. The first stage, initiation, depends on plasmid-encoded properties such as the replication origin and, in most cases, the replication initiation protein (Rep protein). In recent years the understanding of initiation and regulation of plasmid replication in Escherichia coli has increased considerably, but it is only for the ColE1-type plasmids that significant biochemical data about the initial priming reaction of DNA synthesis exist. Detailed models have been developed for the initiation and regulation of ColE1 replication. For other plasmids, such as pSC101, some hypotheses for priming mechanisms and replication initiation are presented. These hypotheses are based on experimental evidence and speculative comparisons with other systems, e.g., the chromosomal origin of E. coli. In most cases, knowledge concerning plasmid replication is limited to regulation mechanisms. These mechanisms coordinate plasmid replication to the host cell cycle, and they also seem to determine the host range of a plasmid. Most plasmids studied exhibit a narrow host range, limited to E. coli and related bacteria. In contrast, some others, such as the IncP plasmid RK2 and the IncQ plasmid RSF1010, are able to replicate in nearly all gram-negative bacteria. This broad host range may depend on the correct expression of the essential rep genes, which may be mediated by a complex regulatory mechanism (RK2) or by the use of different promoters (RSF1010). Alternatively or additionally, owing to the structure of their origin and/or to different forms of their replication initiation proteins, broad-host-range plasmids may adapt better to the host enzymes that participate in initiation. Furthermore, a broad host range can result when replication initiation is independent of host proteins, as is found in the priming reaction of RSF1010.
Collapse
|
25
|
Tilly K, Yarmolinsky M. Participation of Escherichia coli heat shock proteins DnaJ, DnaK, and GrpE in P1 plasmid replication. J Bacteriol 1989; 171:6025-9. [PMID: 2681150 PMCID: PMC210467 DOI: 10.1128/jb.171.11.6025-6029.1989] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Low-copy-number plasmids, such as P1 prophage and the fertility factor F, require a plasmid-encoded replication protein and several host products for replication. Stable maintenance also depends on active partitioning of plasmids into daughter cells. Mini-P1 par+ and par plasmids were found to be destabilized by mutations in the dnaJ, dnaK, and grpE genes of Escherichia coli. The transformation efficiency and stability of mini-F plasmids were also reduced in the mutant strains. These results indicate that heat shock proteins DnaJ, DnaK, and GrpE play roles in the replication of plasmid P1 and probably also in of F.
Collapse
Affiliation(s)
- K Tilly
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
26
|
Abstract
By transformation of dnaA null mutant host cells that are suppressed either by an rnh mutation or by chromosomal integration of a mini-R1 plasmid, it was shown that replication of miniplasmids composed of the NR1 minimal replicon had no absolute dependence upon DnaA protein. In addition, the suppression of the dnaA null mutation by the integrated mini-R1, which is an IncFII relative of NR1, was found to be sensitive to the expression of IncFII-specific plasmid incompatibility. This suggests that the integrative suppression by mini-R1 is under the control of the normal IncFII plasmid replication circuitry. Although NR1 replication had no absolute requirement for DnaA, the copy numbers of NR1-derived miniplasmids were lower in dnaA null mutants, and the plasmids exhibited a much reduced stability of inheritance during subculture in the absence of selection. This suggests that DnaA protein may participate in IncFII plasmid replication in some auxiliary way, such as by increasing the efficiency of formation of an open initiation complex at the plasmid replication origin. Such an auxiliary role for DnaA in IncFII replication would be different from that for replication of most other plasmids examined, for which DnaA has been found to be either essential or unimportant.
Collapse
Affiliation(s)
- X B Tang
- Department of Molecular Biology, The Medical School, Northwestern University, Chicago, Illinois 60611
| | | | | |
Collapse
|
27
|
Ezaki B, Ogura T, Mori H, Niki H, Hiraga S. Involvement of DnaK protein in mini-F plasmid replication: temperature-sensitive seg mutations are located in the dnaK gene. MOLECULAR & GENERAL GENETICS : MGG 1989; 218:183-9. [PMID: 2674651 DOI: 10.1007/bf00331267] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The seg mutants (seg-1 and seg-2) of Escherichia coli cannot support the replication of the F factor and mini-F plasmids at 42 degrees C. We cloned the wild-type E. coli chromosomal DNA fragment complementing the seg-1 and seg-2 mutations and found that both mutations were complemented by the wild-type dnaK gene coding for a heat shock protein. Transduction with phage P1 indicated that the seg-2 mutation is located at about 0.3 min in the region containing the dnaK gene in the order trpR--thrA--seg-2--leuB, consistent with the locus of the dnaK gene. Cloning and sequencing of the dnaK gene of the seg mutants showed that there was one base substitution within the dnaK gene in each mutant causing an amino acid substitution. These results indicate that the seg gene in which the seg-1 and seg-2 mutations occurred is identical to the dnaK gene. The mini-F plasmid pXX325 did not transform a dnaK null mutant to ampicillin resistance at 30 degrees C in contrast to plasmids pBR322, pACYC184 and pSC101, which did. The active dnaK (seg) gene product is therefore essential for replication of the mini-F plasmid at both 30 degrees and 42 degrees C.
Collapse
Affiliation(s)
- B Ezaki
- Department of Molecular Genetics, Kumamoto University Medical School, Japan
| | | | | | | | | |
Collapse
|
28
|
Masai H, Arai K. Escherichia coli dnaT gene function is required for pBR322 plasmid replication but not for R1 plasmid replication. J Bacteriol 1989; 171:2975-80. [PMID: 2656633 PMCID: PMC210003 DOI: 10.1128/jb.171.6.2975-2980.1989] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plasmid pBR322 was unable to replicate in a temperature-sensitive dnaT1 strain at a nonpermissive temperature, whereas a pBR322-derived plasmid carrying the wild-type dnaT+ gene was able to replicate under the same conditions. In contrast to pBR322, plasmid R1 could replicate in the dnaT1 strain at a nonpermissive temperature. In keeping with this finding, in vitro replication of plasmid R1 did not require DnaT protein.
Collapse
Affiliation(s)
- H Masai
- Department of Molecular Biology, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, California 94304
| | | |
Collapse
|
29
|
Itoh Y, Terawaki Y. Replication properties of mini-Rts1 derivatives deleted for DnaA boxes in the replication origin. Plasmid 1989; 21:242-6. [PMID: 2550979 DOI: 10.1016/0147-619x(89)90048-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mini-Rts1 was found to be unable to replicate in a dnaA-null mutant. However, a mini-Rts1 derivative lacking entire tandem DnaA boxes in the replication origin retained the replication ability in a dnaA+ host although its copy number was about half that of the mini-Rts1 having complete DnaA boxes. Mini-Rts1cop1 that contains a high copy number mutation in repA was found to replicate more efficiently than mini-Rts1 of wild repA when DnaA boxes were deleted. In addition, the copy number of mini-Rts1cop1 without DnaA boxes increased 1.5-fold upon removal of incI iterons, whereas that of mini-Rts1 without DnaA boxes did not increase after the iterons were deleted. These indicate that the RepAcop1 protein can initiate the replication of mini-Rts1 efficiently even when DnaA boxes are absent from the origin of replication.
Collapse
Affiliation(s)
- Y Itoh
- Department of Bacteriology, Shinshu University School of Medicine, Matsumoto, Japan
| | | |
Collapse
|
30
|
|
31
|
Katayama T, Murakami Y, Wada C, Ohmori H, Yura T, Nagata T. Genetic suppression of a dnaG mutation in Escherichia coli. J Bacteriol 1989; 171:1485-91. [PMID: 2646283 PMCID: PMC209770 DOI: 10.1128/jb.171.3.1485-1491.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli strains with a temperature-sensitive mutation, dnaG2903, in the primase-encoding gene spontaneously reverted to the temperature-insensitive phenotype at a high frequency. Many of the reversions were caused by extragenic sdg suppressors. About 100 independently isolated sdg suppressors were analyzed. They fall into two classes. The sdgA mutations were genetically mapped very close to and upstream of the dnaG gene and were found to be cis dominant. DNA sequencing of two of them revealed that G----A and C----A base substitutions had occurred 43 and 62 bases, respectively, upstream of the dnaG start codon. This region represents a transcriptional terminator thought to contribute to control of dnaG gene expression. The other class of suppressor, sdgB, seemed to comprise mutant alleles in the rpoB gene coding for the beta subunit of RNA polymerase core enzyme. Some of them were initially isolated as rifampin-resistant mutants. Both the sdgA and sdgB suppressors were found to increase the transcriptional activity of dnaG. This finding and other observations led to the proposition that sdgA and sdgB suppress the phenotype caused by dnaG2903 by overproducing the mutated primase; the quantitative oversupply may compensate for the qualitative defect of the dnaG2903 primase. An alternative mechanism of suppression by sdgB is discussed.
Collapse
Affiliation(s)
- T Katayama
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Wada M, Kohno K, Imamoto F, Kano Y. Participation of hup gene product in ori2-dependent replication of fertility plasmid F. Gene 1988; 70:393-7. [PMID: 3063607 DOI: 10.1016/0378-1119(88)90211-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The fertility plasmid F'gal was not stably maintained in a hupA-hupB double mutant of Escherichia coli. Moreover, mini-F plasmids pFZY1, pFTC1 and pFTC2 were unable to transform the double mutant, though these plasmids efficiently transformed cells harboring a hupA or hupB single mutation. The composite plasmid pFHS1, which consists of the f5 DNA fragment of F plasmid and the whole DNA of a pSC101 derivative that carries a temperature-sensitive mutation for DNA replication, was not stably maintained in the hup double mutant at 42 degrees C. These findings strongly suggest that HU protein is required for ori2-dependent replication of the F plasmid.
Collapse
Affiliation(s)
- M Wada
- Laboratory of Molecular Genetics, Institute of Physical and Chemical Research, Ibaraki, Japan
| | | | | | | |
Collapse
|
33
|
Nagata T, Murakami Y, Imai M. Requirement of the Escherichia coli dnaA gene function for integrative suppression of dnaA mutations by plasmid R 100-1. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:163-5. [PMID: 2851703 DOI: 10.1007/bf00333414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The phenotype of Escherichia coli dnaA missense and nonsense mutations was integratively suppressed by plasmid R100-1. The suppressed strains, however, could not survive when the dnaA function was totally inactivated. This was demonstrated by the inability of replacing the dnaA allele in the suppressed strain by a dnaA::Tn10 insertion using phage P1-mediated transduction. When the intact dnaA+ allele was additionally supplied by a specialized transducing phage, lambda imm21 dnaA+, which integrated at the att lambda site on the E. coli chromosome, then the dnaA::Tn10 insertion, together with a delta oriC deletion, were able to be introduced into the suppressed strain. Thus, the mechanisms of dnaA function for oriC and for the replication origin of R100-1 may not be quite the same.
Collapse
Affiliation(s)
- T Nagata
- Institute for Virus Research, Kyoto University, Japan
| | | | | |
Collapse
|
34
|
Thomas CM. Recent studies on the control of plasmid replication. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 949:253-63. [PMID: 2450587 DOI: 10.1016/0167-4781(88)90150-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- C M Thomas
- Department of Genetics, University of Birmingham, U.K
| |
Collapse
|
35
|
Seufert W, Dobrinski B, Lurz R, Messer W. Functionality of the dnaA protein binding site in DNA replication is orientation-dependent. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69127-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Wada C, Imai M, Yura T. Host control of plasmid replication: requirement for the sigma factor sigma 32 in transcription of mini-F replication initiator gene. Proc Natl Acad Sci U S A 1987; 84:8849-53. [PMID: 2447584 PMCID: PMC299648 DOI: 10.1073/pnas.84.24.8849] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Replication of F factor or mini-F plasmid is strongly inhibited in the rpoH (htpR) mutants of Escherichia coli deficient in the sigma factor (sigma 32) known to be required for heat shock gene expression. Transcription of the mini-F repE gene encoding a replication initiator protein (E protein) was examined by operon fusion and by direct determination of repE mRNA. The synthesis rate and the level of repE mRNA were found to increase transiently upon temperature upshift (30 degrees C to 42 degrees C) in wild-type cells but to decrease rapidly in the rpoH mutants. Thus sigma 32 appeared to be directly involved in transcription of repE whose product, E protein, in turn activates DNA replication from the mini-F ori2 region. This scheme of host-controlled plasmid replication is further supported by the analysis of transcription in vitro: RNA synthesis can be initiated from the repE promoter by a minor form of RNA polymerase containing sigma 32 but not by the major polymerase containing the normal sigma factor sigma 70. The sigma 32-mediated transcription from the repE promoter is strongly inhibited by the E protein. We conclude that transcription of the mini-F repE gene is mediated by the host transcription factor sigma 32 and is negatively controlled by its own product.
Collapse
Affiliation(s)
- C Wada
- Institute for Virus Research, Kyoto University, Japan
| | | | | |
Collapse
|
37
|
Kogoma T, Kline BC. Integrative suppression of dnaA(Ts) mutations mediated by plasmid F in Escherichia coli is a DnaA-dependent process. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:262-9. [PMID: 2830456 DOI: 10.1007/bf00325692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The thermosensitivity of dnaA(Ts) mutations can be suppressed by integration of plasmid F (integrative suppression). In the light of the recent finding that F requires DnaA protein for both establishment and maintenance, integrative suppression of 11 dnaA(Ts) mutations by a mini-F, pML31, integrated near oriC was examined. The plating efficiency of integratively suppressed strains was dnaA(Ts) allele-dependent and medium-dependent. The initiation capability of suppressed dnaA(Ts) strains lacking the oriC site and their F- counterparts was determined at various temperatures between 30 degrees C and 42 degrees C. The degree of integrative suppression measured by the initiation capability varied in a dnaA(Ts) allele-dependent manner. F-directed DNA replication was most affected by the dnaA(Ts) mutations mapping in the middle of the gene whereas oriC-dependent replication was most thermosensitive in strains carrying mutations mapping in the carboxy-terminal half of the gene. The results indicated that the integrative suppression by F plasmid is a DnaA-dependent process and suggested that the requirements for DnaA protein in the oriC-dependent replication and F replication processes are qualitatively different.
Collapse
Affiliation(s)
- T Kogoma
- Department of Cell Biology, School of Medicine, University of New Mexico, Albuquerque 87131
| | | |
Collapse
|
38
|
Ohmori H, Murakami Y, Nagata T. Nucleotide sequences required for a ColE1-type plasmid to replicate in Escherichia coli cells with or without RNase H. J Mol Biol 1987; 198:223-34. [PMID: 2828638 DOI: 10.1016/0022-2836(87)90308-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To elucidate the replication mechanism of a ColE1-type plasmid in RNase H-deficient (rnh-) strains of Escherichia coli, we constructed plasmid derivatives that deleted the whole, or a part, of the 5'-AAAAA-3' sequence (positions -3 to +2) that acts as the origin of replication in vivo and in vitro in the presence of RNase H. The activity of plasmid replication in rnh+ cells was found to be reduced by alterations of the AAAAA sequence. The activity could be restored when the derivatives, retaining the upstream sequence down to -8, regained a sequence containing at least two A residues in the region from -3 to +2. By contrast, replication in rnh- cells was maintained at high levels even when the deletion included the AAAAA sequence and extended up to position -7. The activity in rnh- cells decreased as deletions proceeded to -8 and further up to -17, and was abolished completely by further upward deletions. We concluded that in rnh- cells the plasmid replicates by a mechanism that operates only when RNase H is inactive. This RNase H-sensitive replication in rnh- cells seems to require the RNA-DNA hybrid formation that is also required for RNase H-dependent replication in rnh+ cells. The hybrid formation probably contributes by unwinding a portion of DNA from which replication can be initiated.
Collapse
Affiliation(s)
- H Ohmori
- Institute for Virus Research, Kyoto University, Japan
| | | | | |
Collapse
|
39
|
Gaylo PJ, Turjman N, Bastia D. DnaA protein is required for replication of the minimal replicon of the broad-host-range plasmid RK2 in Escherichia coli. J Bacteriol 1987; 169:4703-9. [PMID: 2820940 PMCID: PMC213843 DOI: 10.1128/jb.169.10.4703-4709.1987] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The minimal origin of replication of the broad-host-range plasmid RK2 has two potential recognition sequences for the DnaA protein of Escherichia coli. DNA transfer by transformation into a dnaA-null mutant of E. coli showed that DnaA protein is needed for replication or maintenance of mini-RK2. We isolated and purified DnaA protein as a chimeric protein, covalently attached to a piece of collagen and beta-galactosidase. The hybrid protein specifically bound to restriction fragments from the oriV region of RK2, which contained the two dnaA boxes. Deletion of the second dnaA box inactivated the origin and abolished the binding of the hybrid protein to the DNA fragment that had suffered the deletion. When the second dnaA box was replaced with an EcoRI linker of identical length, origin activity was restored. Binding experiments showed that the linker provided a weak dnaA box. An alternative explanation was that the linker restored proper spacing between sequences on either side of the deleted box, thus restoring origin activity.
Collapse
Affiliation(s)
- P J Gaylo
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|